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Abstract

The broad availability and relative affordability of public cloud resources have revolutionized
application deployment in distributed settings. But aside from the ease of deployment, appli-
cation development in such distributed settings brings forth important challenges. Particularly,
failures in distributed applications are often triggered by concurrency bugs, such as interference
and coordination issues. Such concurrency bugs are difficult to reproduce; therefore, the root
causes of concurrent program failures are hard to identify, and even harder to explain. A number
of prior work focused on identifying the causes of concurrent application failure by exploiting
the statistical correlation between certain runtime events and failure. However, correlation does
not always imply causality. Without succinct explanation of how the root cause eventually
triggers failure, the developer might fail to draw the causal connection from the root cause to
the failure. The goal of this work is to provide a succinct explanation path consisting of multiple
causally related events that explains how a root cause leads to program failure. In this work,
we present Active Statistical Debugging : a program intervention-based framework, to discover
the causal relationship among runtime events and program failure. The framework applies
causality-based intervention techniques to control or treat certain runtime events on top of the
statistical debugging framework, and learns causal relationship from the intervention outcomes.
Active statistical debugging discovers the correct explanation path, while keeping the number of
interventions required low. At the core of this framework is an efficient algorithm built on group-
testing, a field of applied mathematics. Our experiments show that program intervention is a
promising first step towards explaining causes of program failures, motivating further research.

1 Introduction

Computer programs fail due to a variety of reasons. One of the most common causes of program
failure is bug in source code, which makes a sequential program more likely to fail for certain set
of inputs. Another cause of program failure is certain runtime conditions which mostly apply to
concurrent programs. For the same input, a concurrent program might behave differently in different
executions and only fail when certain runtime conditions, such as data race, are met. To understand
such failures, we need to identify the fault, i.e., why the program failed; and the corresponding
context, i.e., how the fault triggered failure.

While stack trace provides some context for understanding the root cause of program failures, it is
limited to the sequence of program statements that led to the failure. However, program statements
are not expressive enough to capture complex runtime scenarios such as concurrent access to the
same memory address by multiple threads in an interleaved manner. Moreover, stack trace analysis
tools report failure trace of a single run at a time and do not leverage discriminatory statistics within
a set of failed and passed runs.

To overcome the shortcomings of stack-trace based root cause analysis, dynamic analysis based
fault localization techniques, such as statistical debugging approaches [18, 24, 26, 16], use predicates
to capture certain program behaviors or runtime events (e.g., a variable taking a particular value).
These techniques identify the program faults by contrasting the evaluation statistics of the predicates
between failed and passed program executions and produce a ranked list of discriminating predicates.
The underlying assumption of such techniques is: developers have a perfect bug understanding, i.e.,
it is enough for them to examine a faulty statement in isolation, without any context, to reason about
program failure. However, without any context, a ranked list of predicates is often overwhelming
for the developer since often a large number of predicates show similar evaluation statistics and
are equally discriminative. To understand the root cause of program failure, the developer needs
succinct information regarding how the predicates are causally related to each other and the failure.
A user study [28] on Tarantula [19], a debugging tool that produces rank list of suspicious statements,
reports: “simply giving the statement was not enough for the participants to understand the problem
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and that more context was needed, which made us conclude that perfect bug understanding is generally
not a realistic assumption.”

To discover concurrent program bugs, there exists work [16] that defines compound predicates to
capture complex interactions among multiple threads (e.g., two threads modifying the same mem-
ory location concurrently). However, a shortcoming of this approach is that it does not provide
any context (intermediate predicates) of a root cause towards failure. Another approach [8] looks
for discriminating subgraphs within the set of program control flow graphs towards identifying bug
signature. Although it provides a better context; however, the unit of bug signature is program
statement which fails to model compound predicates such as concurrent access to an object. While
there exists work [15] that provides context of program failure in the form of high coverage faulty
control flow paths that link many bug predictors; however, this approach suffers from several short-
comings: (1) it cannot be trivially adopted for concurrent programs, (2) it does not incorporate the
notion of causality among bug predictors, and (3) it does not guarantee to generate the optimal
path in presence of multiple candidate paths.

Instead of reporting the highest scoring predicate [24, 26, 16] or context limited to high coverage
control flow path [15], a sequence of causally connected predicates provide much richer explanation
to program failures. However, to the best of our knowledge, none of the existing approaches model
causality among predicates, nor they provide a sequence of predicates to explain the program failure.
A good explanation of program failure is a sequence of predicates, where the first predicate is the
root cause, each predicate causes the next predicate in the sequence, and the last predicate is the
failure indicating symptom. In Section 2, we present motivating examples to show how both statis-
tical debugging and control-flow-path-based approaches fail to provide succinct causal explanation
of concurrent program failures.

In this work, we aim to identify and explain causes of failures observed in concurrent programs
that behave non-deterministically. We start with a set of program executions that operated on the
same set of inputs and each execution is labeled as either “passed” or “failed”. Observed predicates
within these program executions constitute potential root causes, failure indicating symptoms, and
units of explanation. Beyond answering the question why the program fails, we provide answer to the
question how it fails. Specifically, our goal is to (1) identify the faulty predicates in the programs,
(2) capture the causal connection between the fault inducing root cause predicates, subsequent
causal predicates, and the failure indicating symptom predicates, and (3) summarize the findings as
causal explanation paths, a sequence of causally related predicates that connect the root causes to
the failures.

To this end, we present active statistical debugging, which is an automatic program intervention
framework built on top of statistical debugging. Through the interventions, we eliminate correlated
but non-causal predicates and construct a causal path from the root cause to the failure indicating
symptom. Inspired from the adaptive group-testing literature [14], the key idea is to optimally
select a set of predicates, control or treat them through interventions, and observe how it affects the
statistical behavior of the intervened executions. Beyond classical adaptive group-testing approach,
we also apply two pruning techniques by exploiting the observed temporal precedence and other
causal potentiality hints among predicates during runtime. We summarize our contributions below:

• We motivate and define the problem of discovering the causal explanation path of unexpected
incidents in concurrent programs which provides a better interpretability during root cause
analysis (Section 2). To that end, we provide a novel active statistical debugging framework,
based on program intervention techniques, to pin point a set of predicates that both (1) dis-
criminate failed runs from the passed ones, and (2) causally connect the root cause to the
program failure.

• We use the causal capability relationship among predicates (Section 4), learned from the pro-
gram execution logs, to develop a causality assumption model (Section 5). This model encodes
information regarding the potential causal relationship among predicates, which serves as an
additional source of information during program intervention.

• We provide an efficient and effective intervention algorithm in the adaptive group-testing
paradigm to extract the correct causal path (Section 6). Using the causality assumption
model, we provide a strategy to optimally choose the best set of interventions during adaptive
group-testing. Compared to the classical adaptive group-testing algorithm, the strategy signif-
icantly reduces the number of required interventions using two predicate pruning mechanisms
which we design. The pruning mechanisms exploit the causality assumption model to discard
predicates based on prior observation only, and without any additional intervention.
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Thread 2
1. slowFoo()  // slowFoo() finishes quickly (P6)
2. access(X) // X is accessed before creation (P4)
3. null pointer exception // throws NPE (P5)

def foo(){
bar()  // bar() takes longer than usual (P2)

}

def bar(){
server-call()    // time-out (P1)

}

Thread 1
1. foo()   // foo() takes longer than usual (P3)

2. create(X)

Thread 2
1. slowFoo() // slowFoo() finishes slowly

3. access(X) // X is accessed after creation

Thread 1
1. foo()     // foo() finishes quickly
2. create(X)
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Figure 1: The failed run throws null pointer exception due to an attempt to access X which was
not created by then. One potential root cause of such incident is a timed-out server-call() inside
bar(). The other potential root cause is unexpected quick execution of slowFoo(). The causal
dependencies among predicates is shown using red arrows in the right.

• Under the presence of the causality assumption model, we provide a theoretical analysis which
quantifies the reduction of required information during intervention, in terms of the minimum
number of interventions required (Section 7). The analysis shows that the information theoretic
lower bound in our case is significantly lower than that of the uninformative group-testing.

• We empirically show that active statistical debugging is effective and efficient on a large set of
synthetically generated concurrent programs (Section 8).

The rest of the report is organized as follows: Section 2 provides two motivating examples that
contrast existing work with active statistical debugging. We state the problem settings and our
assumptions in Section 3. Section 4 discusses predicates that encode the runtime events during
program executions and serve as the basic units of active statistical debugging. Section 5 elaborates
on reasoning about causality among the predicates. We describe the intervention algorithm that
discovers the causal explanation path in Section 6, followed by its complexity analysis in Section 7.
We provide results of the experimental evaluation of active statistical debugging in Section 8. We
contrast active statistical debugging with the existing literature in Section 9 and finally conclude in
Section 10.

2 Motivating Examples

In this section, we provide two motivating examples to demonstrate the shortcomings of the existing
approaches in explaining the root causes of concurrent program failures and the advantage of active
statistical debugging over those approaches. The example scenarios inspire us towards designing our
solution for the causal explanation path discovery problem.

Example 2.1. We provide an example scenario where a program with two concurrent threads fails
due to attempt to access a null pointer.

Scenario settings. In Figure 1, two threads, Thread 1 and Thread 2, are running concurrently. Six
predicates are mined from the instrumented program: P1 – P6. When the program fails, it throws a
null-pointer exception (P5). This was caused due to an attempt to access X which was not created
by then (P4). Note that, P4 does not refer to the event “attempt to access X”, rather it encodes
the compound event “X is being accessed before creation”. This particular event is never observed
in the passed runs. P4 has two potential causes:

1. Slower execution of foo() (P3), which in turn was caused by slower execution of bar() (P2).
The actual root cause here is P1: a timed-out server-call() inside bar(). The corresponding
causal explanation path is: P1→ P2→ P3→ P4→ P5.

2. Faster execution of slowFoo() (P6). The corresponding causal explanation path is: P6 →
P4→ P5.

In contrast, in the passed runs, foo() finishes quickly and slowFoo() finishes slowly. Hence X is
created in Thread 1 before Thread 2 attempts to access it, which leads to normal execution.
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A(){ // main()
B = getValue() // getValue() returning 1 is the 

root cause
if B == 1:

C() // new thread 1
D() // new thread 2
E

if E happens:
F

if B == 1:
G // waits for C, D to finish

if F happens:
H // throws exception

}     

C(){ // thread 1
I
J   

}

D(){ // thread 2
K
L   

}

B = 1

A.C

A.DC.I

C.J D.K

D.L

A.E

A.F

A.G

A.H

B = 1

A.C

A.DC.I

C.J D.K

D.L

A.E

A.F

A.G

A.H

Temporal DAG Actual causal DAG

getValue() 
returns 1

getValue() 
returns 1

1.

2.

3.
4.
5.
6.
7.
8.
9.
10.
11.

15.
16.
17.

18.
19.
20.

Figure 2: The three boxes on top show code segments. The program fails whenever getValue()

returns 1. The bottom-left DAG is a temporal precedence DAG, with transitive edges removed for
the ease of exposition. The bottom-right DAG is the actual causal DAG. The right-most solid red
path is the actual causal path.

Shortcomings of statistical debugging. Existing statistical debugging approaches will report
P4 and P5 as root causes since they are the highest scoring predicates1. However, P5 is not useful at
all in identifying the root cause of failure, since it is just a symptom of the failure. While P4 explains
why P5 happens, it does not explain why P4 happens at the first place in the failed runs while it never
happens in the passed ones. In fact, the root cause lies deep in the program flow, in this case, either
P1 or P6 (or both). Even when P1 and P6 are reported as the root causes, without the intermediate
predicates, the true scenario is obscured. For example, it is often hard for a developer to relate the
timed-out server-call() (P1) with the program failure due to null pointer exception (P5).

In general, neither individual predicates nor rank-list of predicates are sufficient for deep un-
derstanding of program failures. The relationship between a root cause predicate and a failure
indicating symptom predicate is often unclear without the context, i.e., the intermediate predicates
that causally connect the root cause to the failure. One can sort all discriminating predicates by
temporal order of observance to obtain the causal explanation paths, but without the causal con-
nection, the two paths can be arbitrarily interleaved: P6 and P3 have no particular temporal order.
Generally, in concurrent programs, there might not exist any temporal order of predicates that is
consistent across all failed runs. Hence, temporal order-based technique results in reduced inter-
pretability for the developer while analyzing root causes of program failures. Moreover, it does not
provide any guarantee about the causal connection among predicates within the temporal order. We
provide such a scenario in Example 2.2.

Example 2.2. We now provide another example where both statistical debugging approaches and
control-flow-path-based approaches fail.

1Predicate score is computed using different metrics in the existing literature. However, they generally assign highest
score to the predicates that always happen in the failed runs and never happen in the passed runs.
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Scenario settings. In Figure 2, the program fails whenever getValue() returns 1, hence it is
the root cause. Whenever the root cause triggers, two threads (C and D), unrelated to the failure
indicating symptom (H at line 11), are also created. These two threads are unrelated to the bug,
but only spawn during failed executions.

Shortcomings of statistical debugging. In this program, all predicates, including predicates
within threads C and D, will show very strong correlation with failure and there is no way to rank
them based on discriminating power. If we use the notion of increase2 (defined in [24]), all predicates
except the top two (“getValue() returning 1” and “B = 1” ) will be discarded. This is due to the
fact that, [24] treats the two types of predicates equally — (1) predicates that are always observed
and always true, and (2) predicates that are only observed in failed runs and turns out to be true.
However, the latter type of predicates play a vital role in constructing the explanation path from
the root cause to the failure indicating symptom.

Shortcomings of control flow path-based approach. Control flow path-based approach [15]
identifies the control-flow path, that covers the most number of predicates, as the faulty control-
flow path. While the technique works well for non-concurrent programs, it fails for concurrent
programs. In this example, due to multithreading, three different control flow paths exist in the
temporal DAG. Since [15] decides on the correct path based on high predicate coverage, i.e., linking
more discriminating predicates, it will pick the sub-optimal middle branch involving predicates in
D. Moreover, depending on the condition of line 10 (e.g., instead of F, it could be either L or J), the
corresponding correct path would be different.

Example 2.2 shows that in cases where a lot of unrelated events happen during a program failure,
both statistical and control-flow-path based approaches fail to report the correct set of predicates or
control-flow path that are causally related to the failure. This inspires us to design active statistical
debugging which decides on the causal explanation path based on the true causal connection among
program predicates.

3 Problem Settings

In this section, we discuss the problem settings of the proposed active statistical debugging frame-
work, provide our assumptions, and discuss the applicability of the framework. This work aims at
identifying and explaining causes of failures observed in programs that behave non-deterministically
for the same set of inputs. Therefore, the proposed framework is best suited for concurrent programs.
However, the framework would also work for sequential programs when our assumptions hold, and
produce correct result.

The input to our framework is a set of multiple program execution logs where each execution is
labeled as either “passed” or “failed”. From these execution logs, we mine discriminating predicates
(discussed in Section 4) which constitute potential root causes, failure indicating symptoms, and
units of explanation. The output of our system is a causal explanation path that explains why and
how the program failed. We obtain this causal explanation path through active statistical debugging
involving intervention on the discriminating predicates.

In this work, we make two assumptions:

• Identical input. We assume identical input to all program executions; i.e., there is no vari-
ance in program behavior due to input variability. This implies that in all passed (or failed)
runs, a particular method instance, that depends only on the input data, returns a fixed value.

• Exactly-one-causal-path. We assume that there is only a single type of failure, exactly one
root cause, and exactly one causal path that connects the root cause to the failure. The exactly-
one-causal-path assumption implies that there is exactly one root cause which triggers other
intermediate causes which eventually trigger failure. Hence, there is no disjunction among
predicates that lead to multiple causal paths and there is no conjunctive set of predicates that
jointly trigger failure.

These two assumptions enable us to design an efficient intervention algorithm for causal explanation
path discovery. In Section 6.6, we discuss few possible extensions that relax some of the assumptions
mentioned above, and how active statistical debugging can be modified to handle those extensions.

2For a predicate p: increase(p) = #failed runs where p is observed to be True
#runs where p is observed to be True

−#failed runs where p is observed
#runs where p is observed
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4 Predicates

Predicates are the building block of the causal explanation path, and units of intervention in the
proposed active statistical debugging framework. Dynamic fault localization techniques instrument
programs to mine predicates that encode the runtime behavior of program executions. Unlike static
analysis, these techniques do not assume knowledge of program source. Active statistical debugging
framework is built on the same principle of predicate-based dynamic analysis; the causal explanation
path consists of a set of predicates that discriminate failed runs from the passed ones.

In this work, we extract predicates by post-processing the execution logs of instrumented pro-
grams. However, our framework is agnostic of the predicate extraction framework. It works with
predicates extracted directly from the instrumented program executions [24, 31, 26] as well. In this
section, we first discuss the predicates and proceed to two predicate design requirements required for
active statistical debugging. Then we discuss the types of predicates we consider in this work, how
we extract them from program execution logs, and the mechanism to intervene them. Finally, we
discuss predicate scoring to narrow down on the discriminating predicates to start intervention with.

4.1 Design Requirement of Predicates

Predicates encode specific events that describe certain runtime conditions during program execution.
Since the notion of increase [24] is not useful in our problem settings (explained in Example 2.2), we
simply consider each predicate to be either true (observed and evaluated to be true) or false (un-
observed, or observed and evaluated to be false). Prior statistical debugging approaches considered
different types of predicates, but here we focus only on the predicate types that we can intervene on.
Therefore, active statistical debugging is agnostic of the predicate design provided that the design
fulfills the following two requirements:

• Observation. Given a predicate P and an execution log E, a mechanism to answer whether
P is observed in E.

• Intervention. Given a predicate P and a program source S, a mechanism to treat P in S′

such that P will never be observed in any execution of S′.

We discuss the impact of lack of intervenability in the discussion on extensions in Section 6.6.

4.2 Predicates Types

In this work, we consider four types of predicates. Our framework is not limited to these predicates,
rather it can support any predicate that satisfy the two design requirements mentioned above. As
an example, our framework can support predicates that represent runtime faults, used in the fault
injection literature [13, 20]. We provide the description of the predicates that we consider in this
work along with how they satisfy the two predicate design requirements below. Note that, in all
cases, the goal of intervention is to treat the predicates so that it mimics the ideal behavior, i.e., the
behavior observed in the passed runs.

1. Method TTC anomaly: Time to completion (TTC) of a method is the amount of time
required for it to complete a task. We use two sub-types of predicates to express TTC anomalies
— (1) slower TTC, and (2) faster TTC. This type of predicates indicates whether TTC of a
method instance, is shorter/longer than ideal.

• Observation: We learn the ideal TTC of method instances from the passed runs and use
that to detect whether the predicate is observed in the failed runs.

• Intervention: We use delay parameter to intervene. For slower TTC, if the method contains
a delay construct (e.g., Thread.Sleep(sleepTime)), we intervene on the parameter sleepTime
to reduce method latency. To intervene predicates with faster TTC, we inject delay within the
method to ensure slower execution.

2. Order violation: This predicate encodes violation of particular order of accessing the same
object by two methods from two different threads. We learn the ideal access order from the
passed runs and mark the violation of the ideal order in the failed runs. Note that, concurrent
access can also be a form of access order violation.

• Observation: We observe the time signature of the access events which we extract from
the execution logs to observe this type of predicates.
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• Intervention: We use a delay parameter to inject delay before the violating access. As an
example, if the ideal behavior is “A() accesses X before B()”, and the order violation is “B()
accesses X before A()”, we inject delay before B() to ensure the ideal access order. Similar
technique can be used to intervene concurrent accesses as well.

3. Return value anomaly: This predicate encodes unexpected return value of a method in-
stance. According to our problem settings and assumptions, a particular method instance
that depends on the input data only, returns a fixed value in all passed (or failed) runs. For
simplicity, we assume that the method return values are boolean, i.e., either True or False.
However, this assumption can be relaxed to accommodate return value that follows a particu-
lar distribution, but this is orthogonal to our problem and we do not consider it in this work.

• Observation: We observe the return values of method instances from the execution log.

• Intervention: We force a function to return the “correct” value, i.e., the value that is
consistent in the passed runs.

4. Exception: This predicate encodes whether a method instance throws an exception.

• Observation: We observe this predicate by simply looking at the execution log.

• Intervention: We include an exception handling mechanism to prevent the thrown exception
from propagating further in the program flow.

4.3 Discriminating Predicates

The goal of finding discriminating predicates is to identify program behavior that deviates from the
ideal behavior which is observed during the passed executions. We use two metrics, precision and
recall, to capture the discriminatory power of predicates. We provide how we compute them below:

precision(P ) =
#failed runs where P was observed

#runs where P was observed

recall(P ) =
#failed runs where P was observed

#failed runs

Both of these metrics capture the correlation of a predicate with failure but from different aspects.
Since we assume identical inputs to all program executions, any predicate with high precision must
be correlated with program failure. Furthermore, single-failure and exactly-one-causal-path assump-
tions imply that the predicates in the causal path should have high recall. Note that, precision alone
is not a good metric since it will put high significance on rarely observed predicates in very few
failed runs, which might be just coincidental. On the other hand, recall alone is not a good metric
since any program invariant that happens regardless of program failure will have very high recall.
Therefore, we restrict intervention on predicates that have both high precision and high recall and
such predicates best discriminate the failed runs from the passed ones.

5 Modeling Causality

In this section, we discuss the causality assumption model. We start by discussing how we reason
about causal capability relationships among predicates and proceed to describe the data structure
that represents the potential causalities. We conclude with the discussion on counterfactual causality
which we use to reason about actual causality in the intervention step during causal path discovery.

5.1 Causal Capability

A causal capability query is in the form: given two predicates P1 and P2, whether P1 is capable to
cause P2. We need to first understand temporal precedence to reason about causal capability.

5.1.1 Temporal Precedence

For an event to be capable to cause another event, the cause must happen temporally before the
effect. We use the term temporal precedence to express this basic prerequisite for causal capability.
Note that, all causal capability relationships must obey the temporal precedence, but the opposite is
not necessarily true. Specifically, temporal precedence is a necessary condition for causal capability,
but not sufficient.
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For program predicates, it is not always straightforward how to define temporal precedence.
If P1 ends before P2 starts, we can be certain that P1 temporally precedes P2 and P2 does not
temporally precede P1. But for any other case where the predicates overlap temporally, it remains
uncertain. In general, reasoning about temporal precedence of predicates is a challenging task due
to several reasons. First, we do not know the exact timestamps of the predicates, rather a time-
window associated with each predicate. For example, when two methods are related in a parent-child
relationship, i.e., A() calls B(), we can say (1) B() temporally precedes A() since B() finishes its
job before A() does, or (2) A() temporally precedes B() since A() starts its job before B() does.
Second, due to coarser granularity of instrumentation, we might observe two events occurring at the
same time where they might happen a fractions of nano-seconds apart from each other. These two
challenges led us to make some simplified assumption regarding temporal precedence.

Assumption 1 (Temporal Precedence). We assume P1 temporally precedes P2 if P1 started
before P2 in all executions where both of them were observed.

We also note that, no definition of temporal precedence guarantees to capture all causal rela-
tionships. As an example, the predicate “a child method (callee) is running slow” might cause the
predicate “parent (caller) method is running slow”. The definition of temporal precedence that
assigns precedence to the event that finishes first is well suited in this case. On the other hand,
consider two events when the child method execution is delayed due to delayed execution of the
parent method. In this case, the definition of temporal precedence that assigns precedence to the
event that starts first is well suited.

5.1.2 Reasoning About Causal Capability

Given two predicates P1 and P2, we use the following five scenarios to reason about whether P1 is
capable to cause P2. The conditions in the scenarios are much simpler than ideal, but we consider
this orthogonal to our work and hence do not focus on fine tuning the conditions. Ideally, we assume
an oracle that can answer the causal capability queries among predicates. In our work, A predicate
P1 is capable to cause another predicate P2 if all conditions of any of the following scenarios holds:

1. Causality involving simple sequential predicates: We call a predicate simple if it does
not involve events from multiple threads. In a program control-flow, within the same thread, a
simple predicate is always capable to cause another predicate that follows it temporally. This
is also true when the corresponding threads of the predicates are in a parent-child relationship.
the conditions below formalize such a scenario to capture causal capability.

• P1 and P2 do not involve multiple threads.

• Both of them are from either (1) same thread or (2) different threads, but one of their
threads stems from the other’s thread.

• P1 temporally precedes P2.

2. Causality involving exception predicates: A method does not execute further after throw-
ing an exception. Hence, any other event within that method (e.g., running slow) is capable
to cause the event related to that method throwing exception. the conditions below formalize
such a scenario to capture causal capability.

• P1 and P2 do not involve multiple threads.

• P1 and P2 involve the same method instance, hence there is no temporal precedence
among them.

• P2 is a predicate that encodes an exception throwing event.

3. Causality involving compound-simple predicate pairs: We call a predicate compound
when it encodes interaction among events from multiple threads. A compound predicate is
capable to cause another simple predicate, when a part of the compound predicate is capable to
cause (based on the prior two scenarios) the simple predicate. The conditions below formalizes
such a scenario to capture causal capability. To avoid any cycle, we impose strict conditions.

• P1 involves two events P 1
1 and P 2

1 from two different threads.

• P2 does not involve multiple threads.

• P 1
1 or P 2

1 is capable to cause P2.

• P2 is capable to cause neither P 1
1 nor P 2

1 .
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4. Causality involving simple-compound predicate pairs: A simple predicate is capable
to cause another compound predicate, when the simple predicate is capable to cause a part
of the compound predicate (based on the first two scenarios). the conditions below formalize
such a scenario to capture causal capability. To avoid any cycle, we impose strict conditions.

• P1 does not involve multiple threads.

• P2 involves two events P 1
2 and P 2

2 from two different threads.

• P1 is capable to cause either P 1
2 or P 2

2 .

• Neither P 1
2 nor P 2

2 is capable to cause P1.

5. Causality involving compound-compound predicate pairs: When both predicates are
compound, one can cause the other when a part of the former can cause the latter and the
latter can cause no part of the former. the conditions below formalize such a scenario to
capture causal capability.

• P1 involves two events P 1
1 and P 2

1 from two different threads.

• P2 involves two events P 1
2 and P 2

2 from two different threads.

• P1 is capable to cause either P 1
2 or P 2

2 .

• P2 is capable to cause neither P 1
1 nor P 2

1 .

In all other cases, P1 is not capable to cause P2. If none of the two cases — (1) P1 is capable to cause
P2 and (2) P2 is capable to cause P1 — are true, then we conclude that none of them is capable to
cause each other. Note that, this is just a set of rules we follow in this work. In practice, one can
design arbitrarily complex rule set to resolve the causal capability query. We only require that the
definition of causal capability does not introduce any cyclic causal relationship involving multiple
predicates.

5.2 Causal-Capability DAG, Causal DAG, and Causality Assumption

Causal-Capability DAG. Based on the causal capability rules, we organize the predicates using a
directed acyclic graph (DAG) which we call the causal-capability DAG. We put a directed edge from
P1 to P2 in the causal-capability DAG if P1 is capable to cause P2 based on the rules mentioned
above. Note that, the causal-capability DAG contains both causal (P1 causes P2) and sequential
relationships (P1 precedes P2 in the same thread, but does not cause).

Causal DAG. A causal DAG contains the actual causal relationships, i.e., for any edge (u, v) in the
causal DAG, u must cause v. Informally, our causality assumption states that: “the causal-capability
DAG contains the actual causal DAG within it”. We provide it more formally below:

Assumption 2 (Causality Assumption). If an edge (u, v) exists in the causal DAG, there must
be a path from u to v in the causal-capability DAG.

Our goal is to derive the causal DAG from the causal-capability DAG under the causality as-
sumption. However, we are not interested in the entire causal DAG, but only the one that connects
the root cause and the failure indicating symptom. Since we assume that there exists only one such
path, the causal DAG is basically a chain of predicates.

5.3 Counterfactual Causality

There exists different definitions for causality in the existing in causality literature [12, 29]. While the
actual notion of causality is hard to define and sometimes is a philosophical question, for practical
purposes we often consider counterfactuals as causes. This is realistic in our case since we do not
consider any conjunction or disjunction in the causal explanation path.

Assumption 3 (Counterfactual Causality). We assume that the following two statements are
equivalent: (1) if C had not occurred, E would not have occurred, and (2) C causes E.

One might wonder that, from this assumption, running a program is a cause of its failure, because
if the program was not run at the first place, no failure would have occurred. However, since we
limit the predicates within the discriminating ones (with high precision and high recall), we get rid
of such predicates that are program invariants.
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6 Causal Path Discovery: An Intervention-based Approach

There are two steps in active statistical debugging. The first step is to build the causal-capability
DAG from the discriminating predicates (discussed in Sections 4 and 5). The second step involves
refining the causal-capability DAG through interventions and reveal the true causal DAG. In this
section, we describe the second step. We first formalize the problem of causal path discovery under
the problem settings and assumptions discussed in Section 3. After providing some background
on group-testing, we proceed to elaborate on the intervention approach based on the group-testing
paradigm, which we apply to solve the problem of causal path discovery. We conclude by providing
directions towards possible extensions of active statistical debugging on some relaxed assumptions
about the problem settings.

6.1 Problem Definition

Definition 6.1 (Causal path discovery). Given a set of predicates P, a failure indicating predicate
F , and a causal-capability DAG T = (P, E) that encodes the causal capability relationship among
the predicates in P, the problem of causal path discovery is to find a path 〈C0, C1, . . . , Cn〉 such
that (1) Ci ∈ P ∀ 0 ≤ i ≤ n, (2) ∀ 0 ≤ i < n there is a path from Ci to Ci+1 using edges in E,
(3) C0 is the root cause, (4) Cn = F , and (5) ∀ 0 ≤ i < j ≤ n, Ci is a counterfactual cause of Cj .

Under the counterfactual causality assumption, a näıve approach to discover the causal path is
to intervene on each discriminative predicate and learn its causal relationship with other predicates
and the failure. However, this requires linear number of interventions in number of discriminative
predicates. A better way is to use group-testing. We now proceed to discuss group-testing in general
and then elaborate on our intervention scheme based on the group-testing paradigm.

6.2 Group-testing

Group-testing refers to the procedure that identifies certain objects (e.g., defective) among a set
of objects while minimizing the number of group-tests required. Result of a group-test on a group
of items is positive if at least one item in that group is defective, and negative otherwise. More
formally, given a set P of N elements where D of them are defective, we perform M group-tests,
each on group Pi ⊆ P. Result of test on group Pi is positive if ∃p ∈ Pi s.t. p is defective, and
negative otherwise. The objective is to minimize M , i.e., the number of group-tests required.

Two variations of group-testing are studied in the literature: adaptive and non-adaptive. Our
approach is based on adaptive group-testing where the i-th group-test is performed after we observe
the results of all 1 ≤ j < i previous group-tests. In contrast, in the non-adaptive setting, each test
is conducted independently. A trivial upper bound for adaptive group-testing [14] is D logN . A
simple binary search algorithm can find each of the D defective items in at most logN group-tests
and hence a total of D logN group-tests are sufficient to identify all defective items. Note that, if
D ≥ N

logN , then a linear strategy is preferable over any group-testing scheme. Hence, we assume

that D < N
logN .

6.3 Intervention Preliminaries

Notations. We use F to denote the failure indicating predicate. We use the terms symptom or
failure symptom interchangeably to refer to F . We use ¬A to denote the event that predicate A is
not observed. We use P to denote the predicate space, and C to denote the set of predicates that are
in the target causal path connecting the root cause to F . We use Rtest to denote the set of intervened
runs. With slight abuse of notation, we use A(r) to denote the fact that predicate A is observed in
run r, and ¬A(r) to denote that A is not observed in run r. We use A B to denote that there is
a path from A to B in the causal-capability DAG. We summarize the notations in Figure 3.

Intervention terminologies. We use two terms treatment and control to denote whether interven-
tion is performed on a predicate or not. In our case, a treatment is an intervention that deactivates
a predicate. By deactivation, we mean that we make sure that the predicate is behaving the way it
does in the passed runs. As an example, if a method foo() returns True in all passed runs and False

in all failed runs, treating the predicate “foo() returns False” would be to force foo() to return
True. We use the word deactivation because we are deactivating the potential cause of program
failure through the treatment.

10



Notation Description
P Set of predicates
F Failure indicating symptom predicate
T = (P, E) Causal-capability DAG
C = 〈C0, C1, . . . , Cn〉 Causal path
C A potential cause under intervention
X Set of spurious predicates
X A predicate to be discarded via pruning
B Set of mega predicates representing branches
Rtest Set of intervened runs
A(r) Predicate A is observed in run r
¬A(r) Predicate A is not observed in run r
A B There is a path from A to B in T
N or N Total number of predicates (or objects)
M Number of group-interventions (or group-tests)
D Number of faulty predicates (or defective objects)
J Number of junctions in T
B Maximum number of branches at any junction
Tj Number of branches at j-th junction

N j
t Number of predicates in the t-th branch at j-th junction

dj Number of faulty predicates between junction j and j + 1
d = [d1, . . . , dJ ] Vector containing all djs
k Information theoretic lower bound for the group-testing problem
S Number of discarded predicates during each faulty predicate discovery
NC Maximum number of predicates in any path in T

Figure 3: Summary of notations

6.4 Predicate Pruning

The classical group-testing approaches do not assume any dependency among objects. Specifically,
when a group-test is performed on a group Pi, no additional information is obtained or used about
the other groups Pj , j 6= i. In our case, when a particular predicate is deactivated, we will often
observe few other causally related predicates to become deactivated as an effect. We can leverage
this additional information while using an adaptive group-testing strategy in our problem settings.

We use the causal-capability DAG and this additional observation during intervention to prune
predicates aggressively. We provide two cases where we can prune the predicate space beyond adap-
tive group-testing approach below. We focus on intervening on a single predicate while describing
the pruning rules. Later we discuss how these rules can be extended for group-intervention.

• Case 1: We intervene C where C  F and observe 6 ∃r ∈ Rtest ¬C(r) ∧ F (r). We conclude
that C causes F by the counterfactual assumption, i.e., whenever C does not happen, F does
not happen. We update C = C ∪ {C}.
(Pruning). Suppose that X = {X ∈ P : X 6 C ∧ (∃r ∈ Rtest ¬C(r) ∧ ¬F (r) ∧ X(r))}.
We update P = P − X . Informally, we find out all predicates X such that X is not capable
to cause C and X is observed, although neither C nor F is observed. This ensures that X is
neither caused by C nor causes F . Note that, we need the additional constraint X 6 C to
ensure that X is not the root cause that causes C which in turn causes F . Because, in that
case, treating C will not result in deactivation of X as X is independent of C.

• Case 2: We intervene C and observe ∃r ∈ Rtest ¬C(r) ∧ F (r). We conclude that C does not
cause F . We update P = P − {C}.
(Pruning). Now suppose that X = {X ∈ P : C  X  F ∧ (6 ∃r ∈ Rtest ¬C(r) ∧X(r))}.
This means that predicates in X are caused by C, and has nothing to do with F . Hence, we
update P = P − X .

Extending pruning for group-intervention. The aforementioned pruning rules extend when C
is a set of predicates. By the counterfactual assumption: when we deactivate all predicates within
a set of predicates A and observe all predicates in another set of predicates B to be deactivated as
an effect, we can conclude that A is a counterfactual cause of B.
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Algorithm 1: Causal-Path-Discovery (T , F )

Input : Causal-capability DAG, T
Failure indicating predicate, F

Output : A causal path C = 〈C0, C1, . . . , Cn〉
1 begin
2 Tchain = Branch-Prune(T , F )
3 C,X = Group-Intervention-With-Pruning(VTchain−{F}, Tchain, F, [0, |VTchain | − 1])
4 C = Vertex-Induced-Subgraph(C, Tchain)

5 return C

In general, whenever we observe failure despite deactivating some predicates, we prune them and
all other predicates that are deactivated as an effect to the deactivation of the predicates under
treatment. The only difference is when we add a predicate to C. We only add a predicate group to C
when it contains a single predicate. This is because when a group of predicates turn out to be a coun-
terfactual cause of failure, we only know that at least one of the predicates within that group is the
counterfactual cause, but nothing beyond that. Therefore, we perform repeated group-intervention
on that group in a divide and conquer fashion until we narrow down to one single predicate.

6.5 Intervention Algorithm

Now we describe the intervention algorithm. We intervene in a top-down manner since this gives
us more chance to prune spurious predicates based on the two pruning rules. Specifically, we follow
the topological order of predicates in the causal-capability DAG to decide on which predicates to
perform group-intervention first. We execute the intervention algorithm in a two stage approach
— branch pruning (Algorithm 2) and group intervention with pruning (Algorithm 3). During the
branch pruning stage, we do not intervene as long as we are following a single path while traversing
the causal-capability DAG from top to bottom. We perform intervention only when we hit a junction
with multiple possible branches downwards. We provide our intervention algorithm in Algorithm 1.

Branch pruning. Since we assume that there is exactly one causal path, at each junction, we
use adaptive group-testing approach to select the correct branch. To do so, we group all predicates
within a branch and find the correct branch in a divide and conquer approach. In this case, we
perform branch-group-intervention, where we intervene all predicates within a set of branches.

Based on the intervention outcome, we update the causal-capability DAG and remove any predi-
cate that is no longer reachable from the correct branch (Figure 4). After picking the correct branch
(or none if that is the case), we treat all other predicates in the irrelevant branches in one single
intervention and prune the predicates downstream by applying the second pruning rule (line 27 of
Algorithm 3).

Group intervention with pruning. Once we are left with a single chain, we use adaptive group-
testing approach to discard the irrelevant predicates. We pick predicates in the topological order so
that the chance to prune more predicates down in the chain is maximized. We expect this to perform
more efficiently due to the two pruning rules which traditional adaptive group-testing approaches
cannot leverage on. During each intervention round, we pick half of the remaining predicates that
are at the highest topological level, and intervene on them. We keep applying the two pruning rules
during each intervention step until we either (1) obtain the maximum number of causally related
predicates or (2) all predicates are marked as either causal or pruned. If the former happens, we
discard all other predicates since none of them can be causal predicates.

6.6 Extensions

We now discuss how our algorithm needs modification to accommodate few possible extensions that
relax/extend some of our assumptions mentioned earlier in Section 3.

Probability distribution. If we can incorporate the causal probability distribution, we can apply
that to optimally pick branches and predicates during group intervention. In that case, our goal
would be to pick a set of predicates during each intervention that maximizes the expected number
of predicates that will be pruned. In this work, we consider the simplest case where we quantify the
effect of each intervention on other predicates with boolean states (deactivated or not). This can
be seen as if we assign weights to the edges of the causal-capability DAG to either 0 (not causal) or
1 (certainly causal). While this works well under the conservative assumptions that we mentioned
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Algorithm 2: Branch-Prune (T , F )

Input : Causal-capability DAG, T
Failure indicating predicate, F

Output : A chain of predicates Tchain
1 begin
2 Tinit = T
3 potentialCauses = ∅
4 P = {v ∈ VT : 6 ∃u ∈ VT Level(u) < Level(v)} // Level: topological level

5 while |P| > 0 do
6 if |P| == 1 then
7 C = P
8 else
9 B ← ∅

10 foreach p ∈ P do
11 descp =UniqueDescendants(p, T ) // descp ∩ descq = ∅ ∀ p, q ∈ P, p 6= q
12 B = B ∪ {Mega-Predicate(descp) }
13 C,X = Group-Intervention-With-Pruning(B, T , F, [0, 1]) // at most one branch

can be causal
14 C = Extract-Predicates (C)
15 X = Extract-Predicates (X )
16 if C 6= ∅ then // one causal branch is found in B
17 X = X ∪ {u ∈ VT : 6 ∃v ∈ C v  u ∨ u v} // unreachable predicates

18 else // none of the branches in B is causal

19 X = X ∪ Extract-Predicates (B)

20 Remove(X , T ) // remove predicates in X and their incident edges from T
21 potentialCauses = potentialCauses ∪ C
22 Remove(C, T ) // remove predicates in C and their incident edges from T
23 P = {v ∈ VT : 6 ∃u ∈ VT Level(u) < Level(v)}
24 Tchain = Vertex-Induced-Subgraph(potentialCauses, Tinit) // Tchain must be a chain

25 return Tchain

A.B

A.C A.D

C.I D.K

A.B

A.C

C.I

A.B

A.D

C.I D.K

Figure 4: Updating causal-capability DAG after determining the correct branch. We remove any
predicate that is no longer reachable from the correct branch.

in Section 3, in practice, many of those assumptions do not hold. In such cases, we can update
the edge weights using real values in [0, 1] to signify the causal probability. More specifically, when
we intervene on certain predicates, we might observe a deviation in distribution of other predicate
states (not necessarily the two extreme cases of full deactivation or no deactivation). Any significant
deviation implies causal connection between the predicates under intervention and the predicates
that deviates. We can use this deviation to update the edge weights which signify causal probabili-
ties. Hence, after each round of intervention, we will update the causal DAG and compute the next
set of interventions such a way that maximizes the expected number pruning of spurious predicates.

Conjunctive root causes. If we assume that root causes can be conjunctive, i.e., multiple predi-
cates, in conjunction, trigger failure, then we will not be able to apply pruning rule 1.
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Algorithm 3: Group-Intervention-With-Pruning (P, T , F,D)

Input : A set of candidate predicates, P
Causal-capability DAG, T
Failure indicating predicate, F
Lower and upper limit of number of causes to find, D = [Dlow, Dhigh]

Output : A set of predicates that are counterfactual causes of F , C
A set of spurious predicates that are not causally related to F , X

1 begin
2 C = ∅
3 X = ∅
4 while P 6= ∅ ∧ |C| ≤ Dhigh do
5 if Dlow = 0 then // there might be no predicate in P that is causal

6 Rtest = Intervene(P) // deactivate all p ∈ P
7 if ∃r ∈ Rtest F (r) = True then // failure did not stop

8 U = {u ∈
⋃

p∈P Descendants(p, T ): ∀r ∈ Rtest u(r) = False}
9 X = X ∪ P ∪ U // pruning rule 2

10 break

11 Pick Pi ⊆ P s.t. |Pi| = d |P|
2
e∧ 6 ∃u, v : u ∈ Pi ∧ v ∈ (P − Pi) ∧ Level(v) < Level(u)

12 Rtest = Intervene(Pi) // deactivate all p ∈ Pi

13 if ∀r ∈ Rtest F (r) = False then // failure stopped

14 if |Pi| == 1 then
15 C = C ∪ Pi

16 else
17 C′,X ′ = Group-Intervention-With-Pruning(Pi, T , F, [1,min(Dhigh, |Pi|)])
18 C = C ∪ C′
19 X = X ∪ X ′

20 U = {u ∈ P : 6 ∃ p ∈ Pi p ∈Descendants(u, T ) ∧ ∃r ∈ Rtest u(r) = True}
21 X = X ∪ U // pruning rule 1

22 else // failure did not stop

23 X = X ∪ Pi // no predicate in Pi is a counterfactual cause of F
24 U = {u ∈

⋃
p∈Pi

Descendants(p, T ): ∀r ∈ Rtest u(r) = False}
25 X = X ∪ U // pruning rule 2

26 P = P − (C ∪ X )

27 if P 6= ∅ then // we found all causal predicates, the rest are spurious

28 X = X ∪ (P − C)
29 return C, X

Disjunctive root causes. If we assume that there could be multiple disjunctive causal paths, i.e.,
many causal paths are sufficient to trigger failure, then we will not be able to apply pruning rule 2.
Moreover, we will rarely observe a situation where pruning rule 1 can be applied. However, we can
still make some deduction in this case by observing the reduction of failure rate. As an example,
suppose that there exists 3 disjunctive causal paths, each equally likely to cause failure, and we
observe failure in 60% executions. Deactivating one of these paths will reduce failure rate to 40%.

Lack of intervenability. One practical challenge arises when a predicate is not intervenable. In
this case, we rely on other predicates to guide us in pruning spurious non-intervenable predicates.
However, there is no concrete way to guarantee whether such non-intervenable predicates are causally
related to the failure. Hence, we give them a benefit of doubt and do not prune them unless we
are certain. If the root cause is non-intervenable or not captured by any predicate, active statistical
debugging still works by producing a causal path that is close to the actual one. In general, our
intervention algorithm might report false positive predicates in the causal path, but the case of false
negative never happens.

7 Algorithm Complexity Analysis

In this section, we first prove that the information theoretic lower bound is reduced under the
presence of pruning. Then we compare the upper bound of number of required interventions under
branch pruning with that of the classical group-testing without branch pruning. We also prove that
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the upper bound of the number of required interventions is reduced assuming a lower bound on
the number of predicates pruned during each intervention round. For the upper bound analysis,
we use the näıve approach as the underlying adaptive group-testing mechanism, that requires at
most D logN group-tests to retrieve D defective items from N items. While we could use any other
adaptive group-testing algorithm, such as Hwang’s Generalized Binary Splitting Algorithm [14],
we chose the näıve approach for the sake of keeping the analysis simple. Specifically, we want to
show that the upper bound of any group-testing algorithm is reduced when pruning mechanism is
available. Recall that, we assume D < N

logN , since otherwise, a linear approach that intervenes only
one predicate at a time would be preferable.

7.1 Information Theoretic Lower Bound

In the classical group-testing problem, we are given N objects, and out of them D are defective.
Since there are

(N
D

)
possible outcomes for such a case, the information theoretic lower bound of

required computation by any group-testing algorithm is log2

(N
D

)
. Our aim is to show that the

required amount of information is reduced in our case. We can gain such reduction due to two
properties: (1) exactly-one-causal-path assumption, and (2) structure of the causal-capability DAG
and causal dependency among predicates. We now analyze how we can get a lower information
theoretic lower bound exploiting these properties.

7.1.1 Exactly-one-causal-path Assumption

Due to concurrency in the programs, the temporal precedence DAG obtained from the run-time
behavior of the programs can be viewed as a collection of junctions. Junctions are start or sync point
of multiple threads. The exactly-one-causal-path assumption states that, when there are multiple
branches at any junction, at most one of them can contain faulty predicates. Because, otherwise,
we will end up constructing a causal DAG, instead of a causal path.

Suppose that there are J junctions in the causal-capability DAG, there are Tj branches at the j-

th junction, and the t-th branch contains N j
t predicates. Without loss of generality, we can consider

linear parts (there is no branching) of the causal-capability DAG as if there is only one branch there.
Also assume that there are D faulty predicates which are causally related to the failure. We use N
to denote the total number of predicates in the causal-capability DAG.

We use d, a vector of size J , where dj is the number of faulty predicates between junction
j and j + 1 (or the end point containing only the failure indicating predicate), for 1 ≤ j ≤ J .

Also note that,
∑J

j=1 dj = D. This leaves us limited number of ways we can choose the value

of d. We use Sol(D,J) to denote the set of vectors d of size J such that
∑J

j=1 dj = D. Note

that, |Sol(D,J)| =
(
D+J−1

D

)
since there are

(
D+J−1

D

)
possible ways to assign the values of dj for

1 ≤ j ≤ J . Now we can compute the number of possible ways to pick D faulty predicates under the
exactly-one-causal-path assumption WA below:

WA =
∑

d∈Sol(D,J)

∏J
j=1

∑Tj

t=1

(
Nj

t
dj

)
To contrast the above quantity with the case where the exactly-one-causal-path assumption does
not hold, we compute the number of possible outcomes WG. We partition the set Sol(D,J) into
two disjoint subsets. We use the notation Sol′(D,J) ⊆ Sol(D,J) to denote the set of vectors where
exactly one element is non-zero. We use the notation Sol′(D,J) ⊆ Sol(D,J) to denote the set
containing all other elements. i.e., Sol′(D,J) = Sol(D,J)− Sol′(D,J).

Example: Sol′(D,J) = {
[
D 0 0 · · · 0

]
,
[
0 D 0 · · · 0

]
, · · · ,

[
0 0 0 · · · D

]
}.

Theorem 1. Under exactly-one-causal-path assumption, the information theoretic lower bound of

adaptive group-testing is reduced by
∑

d∈Sol(D,J)

∏J
j=1

∑
dj∈Sol′(dj ,Tj)

∏Tj

t=1

(Nj
t

dj
t

)
.

Proof. We compute the number of possible outcomes without exactly-one-causal-path assumption
WG below:

WG =
(N
D

)
=
(∑J

j=1

∑Tj
t=1 Nj

t

D

)
=

∑
d∈Sol(D,J)

J∏
j=1

(∑Tj

t=1 N
j
t

dj

)
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=
∑

d∈Sol(D,J)

J∏
j=1

∑
dj∈Sol(dj ,Tj)

Tj∏
t=1

(
N j

t

djt

)

=
∑

d∈Sol(D,J)

J∏
j=1

( ∑
dj∈Sol′(dj ,Tj)

Tj∏
t=1

(
N j

t

djt

)
+

∑
dj∈Sol′(dj ,Tj)

Tj∏
t=1

(
N j

t

djt

))

=
∑

d∈Sol(D,J)

J∏
j=1

( Tj∑
t=1

(
N j

t

dj

)
+

∑
dj∈Sol′(dj ,Tj)

Tj∏
t=1

(
N j

t

djt

))

= WA +
∑

d∈Sol(D,J)

J∏
j=1

∑
dj∈Sol′(dj ,Tj)

Tj∏
t=1

(
N j

t

djt

)
︸ ︷︷ ︸

Reduction

As shown above, we get a much lower information theoretic lower bound with the exactly-one-
causal-path assumption. To get a sense of how much reduction we are achieving, suppose that there
are J junctions, T branches at each junction, and N predicates at each branch. Although there are
way too many different possible ways to pick the values of djt , when D ≥ TJ , one such possibility is

djt = 1 ∀1 ≤ t ≤ T and ∀1 ≤ j ≤ J . For just this case, the reduction is (NT )
J

. The key take-away
from this is that when we have exactly-one-causal-path assumption, the number of possible ways to
pick faulty predicates at each branch becomes additive to the other branches at the same junction,
where it is multiplicative when the assumption does not hold.

7.1.2 Causal Dependency

Now we move on to analyze the information theoretic lower bound under the presence of two pruning
rules along with the strategy of picking predicates from lowest topological level first. Suppose that
we are given N objects and D of them are defective. In the group-testing approach without any
pruning, after each query, we get 1 bit of information. Now suppose that a minimum number of k
queries are required, i.e., k is the information theoretic lower bound. After retrieving all information,
the remaining information should be ≤ 0. Hence,

log2

(
N

D

)
−

k∑
i=1

1 ≤ 0

=⇒ log2

(
N

D

)
− k ≤ 0

=⇒ k ≥ log2

(
N

D

)

Theorem 2. The information theoretic lower bound for adaptive group-testing is
log2 (N

D)
1+DS

N

when S

predicates are discarded using the two pruning rules during each group-intervention.

Proof. After the first intervention, we get
(

log2

(
N
D

)
− log2

(
N−S
D

)
+ 1
)

bits of information. Since

after retrieving all information, the remaining information should be ≤ 0:

log2

(
N

D

)
−

k∑
i=1

(
log2

(
N−(i−1)S

D

)
− log2

(
N−iS
D

)
+ 1
)
≤ 0

=⇒ log2

(
N−kS

D

)
− k ≤ 0

=⇒ k ≥ log2

(N−kS)!

D!(N−ks−D)!

=⇒ k ≥ log2

(N−kS)D

D!
[

(N−kS)!

(N−ks−D)!
≈ (N − kS)D]

=⇒ k ≥ D log2(N−kS)− log2(D!)

16



=⇒ k ≥ D log2 N(1− kS

N
)− log2(D!)

=⇒ k ≥ D log2 N + D log2(1− kS

N
)− log2(D!)

=⇒ k ≥ D log2 N −
kDS

N
− log2(D!) [log(1− x) ≈ −x for small x; we assume

kS

N
to be small]

=⇒ k
(

1 +
DS

N

)
≥ D log2 N − log2(D!)

=⇒ k
(

1 +
DS

N

)
≥ log2

ND

D!

=⇒ k
(

1 +
DS

N

)
≥ log2

N !

D!(N −D)!
[ND ≈ N !

(N−D)!
]

=⇒ k ≥
log2

(
N
D

)
1 + DS

N

Since DS
N > 0, we obtain a reduced lower bound of number of required interventions. In general,

the larger value S has, the lower the information theoretic lower bound will be.

7.2 Upper Bound of Number of Interventions

Similar to the lower bound analysis, we analyze the upper bound of number of interventions under
exactly-one-path-assumption (using branch pruning), and causal dependency.

7.2.1 Exactly-one-causal-path Assumption

Theorem 3. Under exactly-one-causal-path assumption, with J junctions in the causal-capability
DAG, at most D predicates in the causal path, and J < D, the upper bound of the number of
interventions required is reduced when branch pruning is applied.

Proof. The number of interventions required during the branch pruning process is bounded above by
the logarithm of the number of branches. Since we assume that at most one branch is the true causal
branch at each junction, we can find that using at most logB interventions at each junction, where
B is the number of branches at that junction. Also, B can be at most the number of threads T in
the program. This holds since we assume that the program inputs are fixed and there is no different
conditional branching due to input variation in different failed runs within the same thread. Note
that, although the total number of possible paths can be exponential in the number of branches, the
number of interventions required is logarithmic in the number of branches at each junction. So if
there are J junctions and there are at most T branches at each junction, the number of interventions
required is at most J log T . Now let us assume that the maximum number of predicates in any path
in the causal-capability DAG is NC . Therefore, the chain found after branch pruning can contain
at most NC predicates, and out of them, D are causally related to the failure. We will require at
most D logNC interventions to find out the true causes. Therefore, the total number of required
interventions is at most J log T + D logNC . In contrast, a group-testing approach without branch
pruning would require at most D log(TNC) = D log T +D logNC interventions. Therefore, whenever
J < D, upper bound of the number of interventions required with branch pruning will be lower.

7.2.2 Causal Dependency

We now focus on the upper bound of required interventions. As an extreme case, if every edge
in the causal-capability DAG is causal, we would not need any intervention. On the other hand,
in worst case, any pruning might not happen. In that case, the number of required interventions
would be the same as that of the adaptive group-testing without pruning (≈ D logN , assuming
näıve group-testing approach).

Theorem 4. If at least S predicates are pruned during discovery of each faulty predicate, then
the upper bound of number of interventions required to isolate D faulty predicates among N total

predicates using the näıve group testing approach is D logN − D(D−1)S
2N .

17



Proof. Since at least S predicates will be pruned during discovery of one faulty predicate, and there
are D of them, at least DS predicates will be pruned in total. Now we compute the upper bound of
the number of required interventions using the näıve approach below:

D∑
i=1

log
(
N − (i− 1)S

)
=

D∑
i=1

log
(
N
(
1− (i− 1)S

N

))
=

D∑
i=1

logN +

D∑
i=1

log
(

1− (i− 1)S

N

)
≈

D∑
i=1

logN −
D∑
i=1

(i− 1)S

N

=D logN − D(D − 1)S

2N

Hence, the reduction depends on S. When S = 1, we are referring to the group-testing approach
in absence of pruning, because once we fine a faulty predicate, we exclude that predicate from any
further intervention.

8 Experimental Evaluation

In this section, we present the empirical result of applying active statistical debugging towards root
cause explanation of synthetically generated concurrent programs. We first provide brief discussion
of the program instrumentation towards generating the execution logs and then proceed towards
discussing the dataset, i.e., how we generate the faulty programs. Then we discuss the baseline
approaches and finally present our findings.

8.1 Program Instrumentation

We instrument the programs to generate program execution logs in method-level granularity. For
each instance of a method call, we log run-time features associated with that instance, such as start-
time, duration, thread that invokes the method instance, data type of the object the method is a
member of and the particular object identifier, return value, thrown exception (if any), etc. We use
this execution log to extract predicates from each execution. Additionally, each execution is labelled
as whether it passed or failed.

Since our instrumentation is of much sparser granularity than existing work [24, 16] that employ
sampling based finer granularity instrumentation, we do not use any sampling. Another advantage
of our instrumentation is, we can design the predicates after the execution log collection. In contrast,
prior work instrument the programs to directly extract the predicates. As an example, to assess
whether two methods return the same value, prior work would need to instrument the program using
a hard coded conditional statement “pred = (foo() == bar())”. In contrast, our instrumentation
framework simply collects the return values of the two methods and stores them in the execution log.
Therefore, we have the flexibility to design the predicates post-execution, often based on knowledge
of some domain-expert. For example, in this case, we can design multiple predicates such as whether
two values are equal, unequal, or satisfy any custom relation.

8.2 Dataset

We used a template to automatically generate 20 different programs in C#. The generated programs
had variable number of threads ranging from 3 to 20. In all programs, the length of the causal path
was 5, where three of them were exception related predicates. The total number of predicates ranged
from 77 to 243 and most of these predicates were intervenable.

The root cause of failure of all of these programs was a specific value of a variable which was
randomly generated within the program. However, this root cause was not captured due to limitation
in predicate design and coarse instrumentation granularity. Note that, this program template design
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Figure 5: Comparison based on number of interventions required among four strategies of program
intervention. Each bar group represent aggregated result over programs having same number of
threads. The number of total predicates is shown at the rightmost bar within each bar group.
Without group-testing and pruning, one would need to perform as many interventions as the number
of total predicates to identify the true causal path.

Figure 6: Average number of interventions across all test programs where active statistical debugging
outperforms all baselines.

was intentional, because this type of situation is very common during root cause analysis. In such
cases, often the root cause invokes a number of events that are causally unrelated to the failure.
Without any clever approach, the task of separating the causally related events from spurious events
becomes as difficult as finding needle in a haystack. However, our active statistical debugging
framework efficiently solves this challenging task.

We designed the template such that the root cause triggers a number of spurious method calls in
different threads, including threads containing events that are causally related to failure. Some of
these spurious method calls are causally related to each other, while some are not. In our case, the
next causally related event was a particular method running slow, which triggered an order violation
involving a shared object3. These two events were captured by our predicate design and they in turn
caused three causally connected exceptions including the failure indicating exception. Our goal is
to build the causal chain connecting the two captured causes with the failure indicating exceptions,
and filter out all other correlated but spurious events.

3We call this order violation incident WriteAfterDispose, where a thread attempts to write to a TextWriter object
which had already been disposed by some other thread.
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8.3 Baseline Approaches

In Figures 5 and 6, we use “Topological+Group+Pruning” to refer to our active statistical debugging
approach. This signifies that active statistical debugging (1) intervenes predicates following the
topological order of the causal-capability DAG, (2) applies group intervention as opposed to single
intervention, and (3) applies pruning rules to discard predicates. We empirically contrast active
statistical debugging with four other baselines that are also based on program intervention and
discuss them below:

1. Näıve Approach: The simplest intervention approach to find the causal path is to intervene
each predicate and observe its causal connection to other predicates and program failure using
counterfactual causality. Since we need to inspect each predicate through intervention, the
number of required interventions in such an approach would be equal to the total number of
predicates. Therefore, we do not implement such inefficient approach, but provide the total
number of predicates so that one can compare our approach with the näıve approach.

2. Topological+Group: This approach intervenes the predicate as groups, but does not apply
any pruning scheme. Note that, since this approach does not prune any predicate, it does not
matter whether it picks predicates in topological order or not. Hence, this approach can be
thought of as the classical group-testing approach.

3. Topological+Single+Pruning: This approach intervenes one predicate at a time, but picks
the predicates following the topological order of the causal-capability DAG. Moreover, it also
applies the pruning mechanisms. This is an useful setting because often intervening predicates
interfere with each other. Hence, in such cases, the only way to apply program intervention
technique is to intervene one predicate at a time.

4. Random+Single+Pruning: This approach is similar to the previous approach, except it
picks the predicates in a random order. This approach serves as a baseline to prove our intuitive
hypothesis: following the topological order while picking predicates for intervention results in
pruning more predicates.

8.4 Empirical Findings

We now procede to describe our empirical findings. Figures 5 and 6 summarizes our empirical
findings. All of the implemented strategies resulted in correct causal path discovery, which makes all
of the approaches equally effective. We focus on contrasting the efficiency of different approaches and
we measure efficiency by the number of interventions required. We provide three key-observations
that we learned from the experiments below:

1. Intervening predicates by topological order is beneficial under pruning: This is an
intuitive hypothesis and the results supported the hypothesis. Since no pruning can be done to
antecedent predicates, this is natural that picking predicates by topological order would favor
pruning. The more we can prune early on, the fewer number of interventions we will require
later.

2. Group-testing is better than single-testing under short causal path assumption:
With all other settings kept same, switching from single to group-intervention requires fewer
number of interventions when the number of faulty predicates are small. In our case, only 2
predicates were faulty and hence group-testing approach outperforms single-testing approach.

3. Predicate pruning is beneficial: The key contribution of our approach that differentiates
it from the classical group-testing approach is presence of predicate pruning strategies. It
is also evident from our experiments that applying pruning significantly reduces the number
of required interventions. This reduction is more prominent in case of single-test. Due to
interference among multiple interventions, single-test strategy might be often preferable over
group-testing. In such cases, through predicate pruning, we can significantly reduce the number
of required interventions compared to the näıve approach.

The key take-away from the empirical results is that the relationships among predicates serve as a
significant source of information which pruning strategies exploit. The most significant amount of
reduction in the number of required interventions comes from the application of pruning; and this
is most prominent in the case of single-testing.
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8.5 A Note on Evaluation Requirement

Due to the intervention design requirement of program predicates, active statistical debugging has
limited applicability to the current benchmarks of buggy programs. Writing source codes in an
intervenable framework is one way to support active statistical debugging, but this does not apply to
past codes. The other way is to convert existing codes to include and enable intervention points. This
requires significant engineering effort which is orthogonal to our contribution. Hence, our evaluation
is limited to synthetically generated programs. However, we are currently working on bridging the
gap between what technology is available at this point and how active statistical debugging can be
adopted there.

9 Related Work

Group-testing. Group-testing has been applied for fault diagnosis in prior literature [35]. Partic-
ularly, adaptive group-testing is related to our work since our intervention algorithm uses it as its
skeleton. While group-testing is a well-researched area in theoretical computer science [1, 6, 14, 7],
none of the existing work considers the scenario where a group-test might reveal additional infor-
mation. The probabilistic variation of adaptive group-testing assumes knowledge of the probability
distribution of object defectiveness and leverages that information to minimize the expected num-
ber of group-tests required [23]. In contrast, the combinatorial variation aims at minimizing the
number of group-tests required in the worst case-scenario [10]. Our setting is more aligned with
the combinatorial variation; however, with the knowledge of prior likelihood of causing failure for
the predicates, probabilisitic variation would be better suited. Other variations of adaptive group-
testing are studied in the literature such as group-testing with geometric restriction: objects can
form a group if they are adjacent to each other or forms a valid path within a network. Karbasi
and Zadimoghaddam [21] studied the problem of sequential group-testing with graph constraints,
where a group-test is admissible only if the group induces a connected subgraph within the given
constraint-specification graph. Although we do not consider any restriction on groups that can be
tested, constrained group-testing has applicability in our case where we need to consider interfer-
ence among interventions. In that case, possible interference can be modeled by absence of edges
in the constraint graph, and each valid group must induce a clique to ensure that predicates under
intervention do not interfere with each other.

Causal inference. Attariyan et al. [2, 3] attribute performance issues to configuration settings and
program inputs, and use dynamic information flow tracking to estimate root cause of performance
anomalies. While they observe causality within application components through runtime control
and data flow, they only report a list of root causes ordered by the likelihood of being faulty with-
out providing further causal paths that connect root causes to performance anomalies. Moreover,
the method uses taint tracking which requires low level dynamic binary instrumentation. Beyond
statistical association (e.g., correlation) between root cause and failure, Baah et al. [4, 5] and Shu
et al. [30] apply causal inference methodology for counterfactual inference on observational data
towards software fault localization. To provide the context of failure, Inforence [11] applies feature
selection and statistical causal inference techniques to identify specific combination of statements
that together cause program failure. However, these approaches use observational data collected
from program execution logs, which is often limited in capturing rare scenarios. This is due to the
fact that observational data is not generated by randomized controlled experiments where treatment
selection on variables is random. Particularly, for the task of discovering the intermediate predicates
in a complete causal path, observational data is insufficient, as it does not always satisfy conditional
exchangeability, a key requirement for applying causal inference on observational data.

Discriminating subgraph. Cheng et al. [8] look for discriminating subgraphs within the set of pro-
gram control flow graphs towards identifying bug signature for sequential programs. However, since
they overlook the notion of causality, such discriminative subgraph would contain any correlated
but spurious predicate which is triggered by the root cause, but does not cause failure. Moreover,
in their work, the unit of a bug signature is program statement which fails to model compound
predicates required to capture incidents of concurrent programs. As such, it is not straightforward
to apply their method to concurrent programs. However, such an adoption is complementary to our
work towards discovering the initial causal-capability DAG.

Statistical debugging. Snorlax [22] and Gist [22] employ statistical diagnosis to rank the pro-
gram predicates based on their likelihood of being the root causes of concurrency bugs. Spectrum-
based fault localization techniques [27] rank program statements or blocks instead of predicates
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that capture interaction among statements. However, these and other statistical debugging ap-
proaches [9, 16, 24, 26, 31, 34] suffer from the issue of not separating correlated predicates from the
causal ones, and fail to provide contextual information regarding how root causes lead to program
failures.

Control flow path. Work by Jiang et al. [15] aims at generating faulty control flow paths that
link many bug predictors, but does not consider causal connection among those bug predictors
and program failure. Therefore, the approach produces sub-optimal result in presence of spurious
paths that connect many spurious bug predictors than causal paths that connect fewer but real
bug predictors. Differential slicing [17] aims towards discovering causal path of differences that led
from input differences to the observed difference, but requires complete program execution trace
generated by execution indexing [33]. Dual slicing [32] is another program slicing-based technique
to discover statement level causal paths for concurrent program failures. However, this approach
does not include compound predicates that capture certain runtime conditions during concurrent
program execution, and hence fail to draw causal connection among those runtime conditions. In
general, program slicing based approaches are limited in many aspects, such as dealing with a set of
runs, instead of just two.

Intervention. Perhaps the closest to our work in terms of intervention and predicate pruning
technique is Pinso [25]. Pinso applies a filtration-oriented scheduler to eliminate false positive root
causes involving certain interleaving patterns in shared memory access. It also applies pruning
strategies that share some similarity with ours. However, it does not perform any direct interven-
tion to the program, rather enforces particular thread schedules to keep or avoid certain memory
access patterns.

10 Conclusions

In this work, we defined and motivated the problem of causal path discovery for explaining incidents
in concurrent programs. Our key contribution is the novel active statistical debugging framework,
which applies program-intervention techniques to pin point the causal path that connects the root
cause of program failure to the failure indicating symptom. Such causal path provides better in-
terpretability for understanding and analyzing the root causes of program failure. We showed the-
oretically and empirically that active statistical debugging is both efficient and effective to solve
the causal path discovery problem. As a future direction, we plan to incorporate additional infor-
mation regarding the program behavior to better model the causal capability relationship among
predicates, and address the cases of multiple conjunctive root causes with disjunctive causal paths.
Furthermore, we would like to address the challenge of explaining multiple types of failures as well.
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