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Usability

. Makes data systems accessible to
non-expert users.

-

* Applications
» Data access
* Querying relational databases
« Data integration
» Data transformation
» Data visualization

 Data summarization
 Text document summarization
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Enhances people’s confidence
towards data systems.

* Applications
* Artificial intelligence and machine learning
* Model predictions

* Novel interaction mechanisms
* Programming by example
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Explainability
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Increases transparency of data
systems.

* Applications
* Machine learning
* Model predictions

* Distributed systems
« Concurrent applications

« Data evolution
 Why/how two databases differ?

 Fairness in algorithms/software
/147
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Dissertation outline

Adaptive Interventional
Debugging

[SIGMOD 2020]

Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Comparative User Study:

QBE vs SQL

[CHI 2020]*

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

Data Summarization
by Example

[VLDB 2020] (demo)

Explaining Tuple
Non-conformance

[SIGMOD 2019] (demo)

* under submission/revision



Part 1:
Usability of Data Systems
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' Are data systems accessible to non-experts?

4 N
% WSQLite

OOOOOO

SQL Server .

R C)RJACI_E
DB Managemey

Who are our most
valuable customers?
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' How to express complex task specifications?
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Programming by example (PBE)

A step towards democratization of
computational power.

* Enhances usabillity for both non-experts
and experts.

System
provides ‘guesses”
examples intent

Program Result

synthesis delivery
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uerying relational databases by example
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SQuID
Semantic similarity-aware Query Intent Discovery




UMassAmbherst | §oiege of Information

& Computer Sciences

 Alice wants to find all Funny Actors from the IMDb database.
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Ing the schema

1 kind_type

|

L | ¥ kind

char_name

s~
iImaob_xd
tmc_tndel
mdSsum

nama
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Challenge 2: SQL expertise

SELECT person.name
FROM person, castinfo, movietogenre, genre
WHERE person.id = castinfo.person_id
AND castinfo.movie_id = movietogenre.movie_id
AND movietogenre.genre_ id = genre.id
AND genre.name = ‘Comedy’
GROUP BY person.id J
HAVING count (*) >= 40 r '
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Query by example (QBE)

X

Adam Sandler

QBE

Eddie Murphy Robin Jim Carrey
Williams
Robin 3
Williams

Jim Carrey

Eddie Murphy John Belushi Ben Stiller
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Expectation vs reality

Eddie Murphy

Jim Carrey

16/147




17/147




UMassAmberst | {olese of Information

& Computer Sciences

Discovering semantic similarity

There is no “funny” attribute in the data
(U /)
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Discovering semantic similarity

Robin
Williams

.

Eddie Murphy
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SQuID

Semantic Similarity-aware
Query Intent Discovery
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SQuID Outline

Modeling
Semantic
Context

Real-time

Query Intent

Evaluation

Performance

Discovery

21/147
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Modeling
Semantic
Context

Semantic context: basic

* Directly affiliated with an entity.

birth year

person

UMassAmbherst

1962

Male

6[ 2[’

57
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Semantic context: derived

* Aggregate over a basic property of an associated entity.

* number of comedy movies an actor appeared In.

person =

I\
I\

\

I
I
I

\

\

\

==

genre
language

40
Comedy
movies

10 Drama
movies

6/
English
movies
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Filters

e Encode semantic context.

SELECT

person
FROM

people
WHERE

color = orange

Modeling

Semantic
Context 24/147
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Intended or co-incidental?

 Male

* Born in North America

* Appeared in 80+ Hollywood movies
* Appeared in 40+ comedy movies

* Appeared in 20+ drama movies

* Height above 5 feet

* Born after 1940

Jim Carrey °

Eddie Murphy

Query
Intent

Discovery 25/147
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Abduction

*Most likely explanation of an observation.
*Most likely query given the examples.

4 N

Maximum likelihood estimation is abduction!

Discover y 26/1471
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Problem definition

Query intent discovery: given a Database and
Example, find Query such that:

Example C Query(Database)

Query = argmax, P(q|Example)
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' Probabilistic abduction model

semantic context posterior qguery prior

— =

P(Query| Example) = PCenteriguen(Query

] Q ﬁM

query posterior semantic context prior
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P(Context
Domain selectivity Association strength Outlier

~ SELECT*FROMp

WHERE 25 <= age <= 30

0 ° 90 100

SELECT * FROM p
WHERE 5 <= age <= 90

Query
Intent

Discovery o
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P(Context

* Data selectivity | country

USA
USA

USA: 80% % — CAN: 20%
USA

CAN
USA
CAN
USA
USA

Query
Intent

Discovery 30/147
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P(Context)

Context Predicate
in Query

| country

P(USA| country = USA) 322
USA
USA
CAN
USA
CAN
USA
USA

Query
Intent

Discovery .




College of Information

UMassAmbherst 1
P(Context Query (Query) I | 5 Oramputier Stz

P(Context)

Context Predicate
in Query

| country [N | country
P(USA‘ Country = USA) 322 USA

= 1 USA

USA

USA

P(USA | No Filter) o
=0.8 -
CAN

USA
USA

Query
Intent

Discovery o a
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P(Context)
Context Eredicate
st ] country M country

USA USA

P(USA| country = USA) T e
= 1 USA
USA
USA
P(USA | No Filter) il
1=0.8%0.8 R
= 064 USA
USA

Query
Intent

Discovery e
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P(Context)
Context Predicate
in Qu
a | country [N | country

USA USA

ﬁ(USA\ country = USA) USA USA

= 1 USA USA
USA
|I USA
P(USA | No Filter) i
11=0.8*0.8*0.8 CAN
|=0.51 USA
USA

Intent
Discovery
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SQuID algorithm: to pick or drop filters?

P(Context|Filter)P(Filter)

P(Context|Filter)P(Filter)
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Abduction-ready database

offline oaDB query intent example tuples
module ' abduction-ready  discover | /
i database y A <—
i o i //_\ | o i
DB [ inverted s entity :
. indexing . f=—————3 | disambiguation | | result tuples

A
semantic context

derived relation ___,| derived relations

meta- | o ' > . :
data > = materialization | [—=w——"—""" discovery - SQL

| i semantic property | | N7 g
.. : ‘ > L : . query
filter selectivity | ! statistics ; query —_—

. >\_/< ! i i

. | precomputation | [T———— | | abduction ,

Real-time
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Evaluation

1. How efficient is SQuID for large datasets and many examples?
2. Does SQuID infer the right query?
3. Can alternative techniques be effective in intent discovery?

* Query Reverse Engineering (TALOS, 2014)

 Positive and Unlabeled Learning (Elkan et al., 2008)

* Query run-time comparison
« Case studies

Evaluation
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633 MB

-

15 relations
* person. 6M rows

e movies: 1M rows
e castinfo: 14M rows

MDD

16 benchmark
queries

Evaluation

‘ dblpy

Omput

e

Machine Learning Repostory

5 benchmark
queries

eraphy

20 benchmark
queries

iy g
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Experiment settings
4 )

Inferred

- . Result
Benchmark

Query % »@ »

{ Ground ﬁ Compare
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How does SQuID perform with large datasets or

many examples?

Abduction
time is
practical

—a— |x —— 10x —— 30x

Logarithmic
in DB size

Linear in
example size

DB size

5 10 15 20 25 30
# Examples

Evaluation
41/147
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SQuID works with few examples
= == Precision ====: Recall = F'-score
1Q7 1Q8
£ 1.0 1 | ==
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# Examples # Examples # Examples # Examples # Examples # Examples # Examples # Examples

Evaluation
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' Query reverse engineering (QRE)
_Input _

Reverse %

‘ QRE ‘ Engineered ‘

TALOS Query

Exact match required




College of Information
& Computer Sciences

AN

MMM

(22) (2512) (207)

AN N\

UMass Ambherst

MMM

AMMMMIMIINININ

TALOS

AN

P,

(84) (291) (394) (57)

Benchmark Query with Cardinality

g
g
S

AN\

1Q9 IQ10 IQ11 IQI2 IQ13 IQ14 IQ15 IQI6

(23)

AN I

1Q8
(71)

MMM

B SQuiD

1Q7
(35)

AN

106
(36)

1Q5

1Q4

1 Actual

AN\

c
e
—

®
=

)

>
L

1Q3

AN\

1Q)2

(113) (20) (1531)(1374) (12)

Q1

TT T I T T T [ITTT T

I I L
o™ — (e ™ (a ] — (@)
o - o S O o O < =
— — — - o~ = i ()
So)RIIPOL] F# ?v oI T, 9I00S-4

SQuID outperforms QRE

/




SQuID outperforms QRE UMassAmberst | & cclpuerScinces

1 Actual B SQuiD TALOS
Animation movies é

produced by Pixar
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SQuID outperforms QRE

[ 1 Actual B SQuiD

Original Query

SELECT
DISTINCT movie.title
FROM
movie, production, company, movietogenre, genre
WHERE
movie.id = production.movie id AND
production.company_id = company.id AND
company.name LIKE '%Pixar%' AND
movie.id = movietogenre.movie_id AND
movietogenre.genre_id = genre.id AND
genre.name = 'Animation’;

Evaluation

UMass Ambherst

i
i
)

1Q13
(57)

TALOS
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[ 1 Actual B SQuiD TALOS

Original Query | SQuID Query
SELECT SELECT

DISTINC DISTINCT movie.title
FROM FROM

movie, p movie, production, company, movietogenre, genre
WHERE WHERE

movie.id movie.production_year >= 1984 AND

producti movie.production_year <= 2021 AND

compan) movie.country = USA AND

movie.id genre.name = 'Animation' AND

movietog company.name = 'Pixar' AND

genre.nd movie.id = movietogenre.movie_id AND

genre.id = movietogenre.genre_id AND
movie.id = movietoproduction.movie_id AND
company.id = movietoproduction.company _id

B

1Q13

Evaluation
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1 Actual B SQulD

222 TALOS

Original Query | SQuID Query TALOS Query N

-
SELECT SELECT SELECT Query Reverse

DISTINC DISTINC] distinct title Engineering
FROM FROM FROM

movie, p movie, pr movie \_ overfits Y
WHERE WHERE WHERE

((movietile="Irside O OR movietife='Lited OR movietile='Lod’ OR movietife='For the Birds' OR movietile='Brave’ OR movietile='Coco’)) OR ((movietife<>'Irside Ou’ AND movietile<>'Lifted AND movietife<>'Lou’ AND movietife<>'For the Birds' AND movietitle<>'Brave’ AND
. - . movielile<>'Coco’) AND (movietile='A Bug™s Life' OR movietile='André and Wally B' OR movietile='Boundn™ OR movielile='Bun-E' OR movietile='Cars 2 OR movietile='Cars 3')) OR ((movietile<>'Irside Out' AND movietile<>'Lifted AND movietile<>'Lou’ AND movietile<>'For the
l I I OV I e I l I I OVI e p r( Birds' AND movie tile<>'Brave’ AND movietile<>'Coco’) AND (movietile<>'A Bug's Life' AND movietile<>'André and Wally B AND movietile<>'Boundin™ AND movietife<>'BurnE' AND movietile<>'Cars 2 AND movietile<>'Cars 3') AND (movietile='Dante”s Lunche A Short Tal' OR
- = movietile="Findng Dory’ OR movietile='Findng Nemo' OR movietife='Geri"s Game' OR movietile="Hawaiian Vacation' OR movietile='It"s Tough to Be a Bug')) OR ((movietile<>'Irside Out' AND movietife<>'Lifted AND movietile<>'Lou’ AND movietife<>'For the Birds' AND
movielile<>'Brave’ AND movietile<>'Coco’) AND (movietife<>'A Bug™s Life' AND movietife<>'André and Wally B' AND movietife<>'Boundin™ AND movietile<>'BunE' AND movietife<>'Cars 2 AND movietife<>'Cars 3) AND (movietife<>'Darte™s Lunchc A Short Tal' AND
. - movietile<>'Findng Dory’ AND movietile<>'Findng Nemo' AND movie tile<>'Geri"s Game' AND movietile<>'Hawaian Vacation' AND movietile<>'it"s Tough to Be a Bug') AND (movietile='Krick Krack' OR movieltile='Luxo Jr.' OR movietile='Luxo Jr.in "Surprise” and "Light & Heany™
ro u Ct " I ' I OVl e p r( OR movietile="Luxo Jr. in"Up and Down™ OR movieile="Morsters Uriversity’ OR movie tile="Morsters, Inc.')) OR ((movie ile<>'Irside Ouf AND movietile<>'Lited AND movieile<>"Lot AND movie ile<>'For the Birds' AND movie ile<>'Brave’ AND movie ile<>'Coco) AND
p = (movietife<>'A Bug™s Life' AND movietife<>'André and Wally B' AND movietile<>'Boundin™ AND movietile<>'Bun-E' AND movietife<>'Cars Z AND movietife<>'Cars 3) AND (movietife<>'Darte’™s Lunch A Short Tall' AND movietile<>'Finding Dory’ AND movietile<>'Finding Nemo'
AND movietife<>'Geri"s Game' AND movietile<>'Hawalian Vacation' AND movietile<>'It"s Tough to Be a Bug') AND (movietile<>'Krick Krack' AND movietile<>'Luxo Jr.! AND movietile<>'Luxo Jr.in "Surprise” and "Light & Heany™ AND movietile<>'Luxo Jr. in"Up and Down™ AND
. movietile<>'Morsters University’ AND movie tile<>'Morsters, Inc') AND (movietile='Party Central' OR movielile='Partysarus Rex' OR movietile='Red™s Dream' OR movietile='Riley"s First Date” OR movietile='Sarjay™s Super Tearn' OR movietile='The Good Dincsaur')) OR
CO l I I p a n‘ l I I OVI e CO ((movietile<>'Irside Out’ AND movietile<>'Lited AND movietile<>'Lou’ AND movietile<>'For the Birds' AND movietile<>'Brave’ AND movietile<>'Coco’) AND (movietile<>'A Bug's Life' AND movietile<>'André and Wally B' AND movie tile<>'Boundin™ AND movietife<>'Bun-E' AND
d = movietile<>'Cars Z AND movietile<>'Cars 3') AND (movietile<>'Dante”™s Lunche A Short Tall' AND movietile<>'Finding Dory’ AND movietile<>'Findng Nemd' AND movietile<>'Geri"s Game' AND movie tile<>'Hawaian Vacation' AND movietile<>'It"s Tough to Be a Bug') AND
(movietife<>'Knick Krack' AND movietife<>'Luxo Jr.' AND movietile<>'Luxo Jr. in "Surprise” and "Light & Heany™ AND movietife<>'Luxo Jr.in "Up and Down™ AND movietile<>'Morsters Uriversity’ AND movie tile<>'Morsters, Inc.') AND (movietile<>'Party Certral' AND
! = movielile<>'Partysarus Rex' AND movietife<>'Red™s Dream' AND movie tile<>'Riley™s First Date? AND movietile<>'Sarjay™s Super Team' AND movietife<>'The Good Dincsaur’) AND (movietile='The Incredibles’ OR movietile='The Incredibles 2 OR movietitle='Tin Toy' OR
I ' l OV | e | d e n re n a I movie ile='Tokyo Mafer’ OR movielile='Toy Story’ OR movetile='Toy Stery 2)) OR ((movie tife<>'Irside Ot AND movie file<>'Lifed AND movie ile<>'Lout AND movie ile<>'For the Birds' AND movie ile<>'Brave’ AND movie ile<>'Coca’) AND (monie lite<>'A Bugs Life' AND
- - movietile<>'André and Wally B! AND movietile<>'Boundin™ AND movietife<>'Bun-E' AND movietile<>'Cars Z AND movietile<>'Cars 3') AND (movietile<>'Darte™s Lunche A Short Taill' AND movietile<>'Findng Dory’ AND movietile<>'Findng Nemd' AND movie tile<>'Geri"s Game'
AND movietife<>'Hawasiian Vacatio' AND movietile<>'It"s Tough to Be aBug') AND (movietife<>'Knick Krack' AND movietile<>'Luxo Jr.' AND movietile<>'Luxo Jr. in "Surprise” and "Light & Heany™ AND movietile<>'Luxo Jr.in "Up and Down™ AND movie tile<>'Morsters Uriversity’
. AND movietife<>'Morsters, Inc') AND (movietile<>'Party Central' AND movietile<>'Partysaurus Rex’ AND movietife<>'Red"™s Dream' AND movietile<>'Riley”™s First Date? AND movietile<>'Sarjay™s Super Team' AND movietile<>'The Good Dincsaur’) AND (movietife<>'The
m OV I etO( CO I ' I p a n Incredibies’ AND movie litle<>'The Incredibles. 2 AND movie title<>'Tin Toy' AND movie ile<> Tokyo Mater' AND movie ile<>'Toy Story’ AND movie ile<>'Toy Story 2) AND (movie lile='Toy Story 3 OR movie ile='Toy Story 4' OR movie tile="Urfitled Pixar Aimation Project OR
u movietile="WALL E' OR movietile='Your Friend the Ra OR movietile='Cars') AND movieproduction_year>2006) OR ((movietile<>'Irside Ou’ AND movietile<>'Lifted AND movietile<>'Lou’ AND movietile<>'For the Birds' AND movietile<>'Brave’ AND movietile<>'Coco’) AND
(movietife<>'A Bug™s Life' AND movietife<>'André and Wally B' AND movietile<>'Boundin™ AND movietile<>'Bun-E' AND movietife<>'Cars Z AND movietile<>'Cars 3') AND (movietile<>'Darte™s Lunchc A Short Tal' AND movietile<>'Finding Dory’ AND movie tile<>'Finding Nemo'
A - - AND movietife<>'Geri"s Game' AND movietile<>'Hawalian Vacation' AND movietile<>'It"s Tough to Be a Bug') AND (movietile<>'Krick Krack' AND movietile<>'Luxo Jr.' AND movietile<>'Luxo Jr.in "Surprise” and "Light & Heany™ AND movietile<>'Luxo Jr. in"Up and Down™ AND
g e n re n d I I I OV I e I movie litle<>"Morsters Uriversity’ AND move tile<>'Morsters, Inc') AND (movie ile<>'Party Certral' AND movie tile<>'Partysarus Rex’ AND movieile<>'Red"s Dream' AND movie tifle<>'Riley"s First Date? AND movie title<>'Sarjay”s Super Team' AND movie tile<>'The Good Dinosaur’)
= - AND (movietile<>'The Incredibles’ AND movietile<>'The Incredibles 2 AND movietile<>'Tin Toy’ AND movietile<>'Tokyo Mater' AND movietile<>'Toy Story’ AND movietile<>'Toy Story 2) AND (movietile<>'Toy Story 3 AND movietile<>'Toy Story 4' AND movietile<>'Untitled Pixar
Arimation Project’ AND movietife<>'WALL E' AND movietife<>'Your Friend the Ra’ AND movietife<>'Cars’) AND (movietile='La Lue' OR movietife='Rattcuille’ OR movietiie='The Blue Umbrella’ OR movietile='One Man Band OR movietile='Presto’ OR movietile='Small Fry') AND
- movieproduction yesr<=2008 AND movieproduction_year<=1955) OR ((movietile<>'Irside Ou’ AND movietile<>'Lifted AND movieltile<>'Lou’ AND movietile<>'For the Birds' AND movie tile<>'Brave’ AND movietile<>'Coco’) AND (movietile<>'A Bug's Life' AND movietile<>'André
e n re I ad Wally B' AND movietile<>'Boundin™ AND movietife<>'Bun-E' AND movietile<>'Cars 2 AND movietile<>'Cars 3') AND (movietile<>'Darte’™s Lunche A Short Tall' AND movietile<>'Findng Dory’ AND movietile<>'Findng Nemd' AND movie tile<>'Geri"s Game' AND
g - movielile<>'Hawaian Vacation' AND movietile<>'it"s Tough to Be aBug') AND (movietile<>'Krick Krck' AND movietile<>'Luxo Jr.' AND movietife<>'Luxo Jr.in "Surprise” and "Light & Heanvy™ AND movietitle<>'Luxo Jr.in "Up and Down™ AND movietife<>'Morsters University' AND
movietife<>'Morsters, Inc') AND (movietile<>'Party Central’ AND movietife<>'Partysarus Rex' AND movietile<>'Red™s Dream' AND movietile<>'Riley"s First Date? AND movielile<>'Sarjay"s Super Tean' AND movietife<>'The Good Dincsaur’') AND (movietile<>'The Incredibles’
= = AND movietife<>'The Incredibles 2 AND movietile<>'Tin Toy' AND movietile<>'Tokyo Mater' AND movietile<>'Toy Story’ AND movietile<>'Toy Story 2) AND (movietile<>'Toy Story 3 AND movietile<>'Toy Story 4' AND movietile<>'Urfiled Pixar Animation Project’ AND
l I I OV I e I d movietile<>"WALL E' AND movietife<>'Your Friend the Rat’ AND movietife<>'Cars') AND (movietile='La Lue' OR movietife='Ratatouille’ OR movietife='The Blus Umbrdla’ OR movietife='One Man Band OR movietile='Prestc’ OR movietile='Small Fry') AND
0 movieproduction_year<=2008 AND movieproduction_yesr>1965) OR ((movietile<>'Irside Out' AND movietife<>'Lifted AND movietile<>'Lod’ AND movietile<>'For the Birds' AND movie tile<>'Brave’ AND movietife<>'Coco’) AND (movietile<>'A Bug™s Life' AND movietife<>'André and
Wally B' AND movietile<>'Boundn™ AND movietile<>'Bun-E' AND movietile<>'Cars 2 AND movietile<>'Cars 3') AND (movietile<>'Dante”s Lunche A Short Tal' AND movietile<>'Finding Dory’ AND movie tile<>'Findng Nemo' AND movietile<>'Geri"s Game' AND
movietife<>'Hawaian Vacatio' AND movietile<>'It"s Tough to Be aBug') AND (movietile<>'Knick Krack' AND movietile<>'Luxo Jr.' AND movietife<>'Luxo Jr.in "Surprise” and "Light & Heanvy™ AND movietile<>'Luxo Jr.in "Up and Down™ AND movietife<>'Morsters University’ AND
CO m a n move itle<>"Morsters, Inc') AND (movie ile<>'Party Certral’ AND movie file<>'Partysaurus Rex’ AND movie tile<>'Red"s Dream’ AND movie ile<>'Riley™s First Date? AND movie tile<>'Sarjay"s Super Team' AND movie tile<>'The Good Dincsar’) AND (movie fle<>'The Incredibles’
AND movietife<>'The Incredibles 2 AND movietile<>'Tin Toy' AND movietile<>'Tokyo Mater' AND movietile<>'Toy Story’ AND movietile<>'Toy Story 2) AND (movietile<>'Toy Story 3 AND movietile<>'Toy Story 4' AND movietile<>'Urfiled Pixar Animation Project’ AND
movietile<>"WALL E' AND movietile<>'Your Friend the Rat’ AND movietife<>'Cars') AND (movietile<>'La Lured AND movie tile<>'Ratatouille’ AND movietile<>'The Blus Umbrella’ AND movietife<>'One Man Band AND movietile<>'Presto’ AND movie tile<>'Small Fry') AND
(movietile='Day & Night' OR movietile='Partly Cloudy’ OR movietife='Piper’ OR movietile='Lava’ OR movietile='Up') AND movie production_yeer<=1984)

_— 7N
1Q13

(57) 48/147

Evaluation




— SQulD

Precision

UMass Ambherst
SQuID outperforms machine learning

-—- PU (DT)

Recall

F-score

SO
DO i O 00 O

o "

B STITEE

/e" B
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PU learning
does not
scale

0.1 04 0.7 1.0 0.1 04 0.7 1.0 0.1 0.4 0.7 1.0
Fraction of positive data used as example

Scale factor

PU learning
requires >= 70%
data as example

[ Generic machine learning cannot model RDBMS specific assumptions 1

Evaluation




UMassAmherst | £ of fnformation
' Comparative user studies: QBE vs SQL

SQL

@SQUID
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| | |
SQuID increased user efficiency
S SQL  mmm SQuiD - MM SQL mmm SQuiD
500 A
7 .
400 - 6 -
0 8 5-
— E
@ 300
200 - 3-
2 -
100 A
1 .
0 - 0-
Disney Marvel Funny Strong Disney Marvel Funny Strong
Tasks Tasks
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Overall, SQuID generated more accurate results

UMassAmbherst

0.8
B SQL E SQuiD
0.6 -
Y
S
»n 0.4
—
Ll
0.2
0.0 -
Disney Marvel Funny Strong
Tasks
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SQuID was easier to use

SQuID was a little bit easier -

—

Same level of difficulty -

SQL was a little bit easier -

SQL was a lot easier -

T | 1 I I

3 6 9 12 15 18
#Users

—
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Participants were satisfied with SQuID results

Very satisfied -

Somewhat satisfied -

UMassAmbherst

E—

No opinion -

Somewhat unsatisfied -

Very unsatisfied l

o54/147
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SQuID or SQL?

Definitely SQuID .

Probably SQuID -

No preference -

Probably SQL -

Definitely SQL -

| | | | | |

3 6 9 12 95 1B
#Users
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Anecdotal comments

a

/
“Vague tasks are generally a lot more open to interpretation. ‘

Coding up a query that meets someone’s vague specifications

[is] hard . . . It was very hard to nail down what the correct ﬂ

\
“Even if | forget about syntax . . . figuring out how to go about

writing the pseudo-code query for funny actors [is difficult]”

definition of funny is.”

\_ /




UMass Amherst | Solege of nformation
' Personalized text document summarization

SuDocu: Summarizing
Documents by Example
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UMass Ambherst

' Personalized summarization

Document

M

111l

Personalized summary
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' Summarization by example

@ M




& Computer Sciences

UMass Ambherst ‘ College of Information

SuDocu interface

Summary Input

Generated Summaries
Massachusetts v @

@ Utah v

Sentences (120):

Su‘Docu

@

In 1957, Utah created the Utah State Parks Commission with four parks. Jele ENAREIE RS =N 221 SR ElpEle [ e
parks and several undeveloped areas totaling over 95,000 acres of land and more than 1,000,000 acres of water.

Utah's state parks are scattered throughout Utah, from Bear Lake State Park at the Utah/Idaho border to Edge of
the Cedars State Park Museum deep in the Four Corners region and everywhere in between. Utah State Parks is
also home to the state's off highway vehicle office, state boating office and the trails program.!3*!

Submit Summary

®)

Example Summaries

Utah

The state of Utah relies heavily on
income from tourists and travelers

visiting the state's parks and ski resorts.

Today, Utah State Parks manages 43
parks and several undeveloped areas
totaling over 95,000 acres of land and
more than 1,000,000 acres of water.
With five national parks (Arches, Bryce
Canyon, Canyonlands, Capitol Reef, and
Zion), Utah has the third most national
parks of any state after Alaska and
California. Temperatures dropping below
0 °F (=18 °C) should be expected on
occasion in most areas of the state most
years.

Arizona

Arizona is well known for its desert Basin
and Range region in the state's southern
portions, which is rich in a landscape of
xerophyte plants such as the cactus. The
canyon is one of the Seven Natural
Wonders of the World and is largely
contained in the Grand Canyon National
Park—one of the first national parks in
the United States. Extremely cold
temperatures are not unknown; cold air
systems from the northern states and
Canada occasionally push into the state,
bringing temperatures below 0 °F (—-18
°C) to the state's northern parts.

Montana

The Rocky Mountain Front is a significant feature
in the state's north-central portion, and isolated
island ranges that interrupt the prairie landscape
common in the central and eastern parts of the
state. It contains the state's highest point,
Granite Peak, 12,799 feet high. Farther east,
areas such as Makoshika State Park near
Glendive and Medicine Rocks State Park near
Ekalaka contain some of the most scenic
badlands regions in the state. The coldest
temperature on record for Montana is also the
coldest temperature for the contiguous United
States. On January 20, 1954, =70 °F or =56.7 °C
was recorded at a gold mining camp near Rogers
Pass. Temperatures vary greatly on cold nights.

It borders on the Atlantic Ocean to the east, the states of Connecticut
and Rhode Island to the south, New Hampshire and Vermont to the north,
and New York to the west. The large coastal plain of the Atlantic Ocean in
the eastern section of the state contains Greater Boston, along with most
of the state's population, as well as the distinctive Cape Cod peninsula.
Along the western border of Western Massachusetts lies the highest
elevated part of the state, the Berkshires. Most of Massachusetts has a
humid continental, with cold winters and warm summers. The climate of
Boston is quite representative for the commonwealth, characterized by
summer highs of around 81 °F (27 °C) and winter highs of 35 °F (2 °C),
and is quite wet. Frosts are frequent all winter, even in coastal areas due
to prevailing inland winds.

Explanation (PaQL) @

SELECT PACKAGE(*)
FROM state_sentences

WHERE state = 'Massachusetts'

SUCH THAT
SUM(topic_1) BETWEEN 0.06 AND 0.45 AND
SUM(topic_Z) BETWEEN 0.24 AND 0.79 AND
SUM(topic_3) BETWEEN 0.41 AND 0.84 AND
SUM(topic 4) BETWEEN 0.83 AND 1.85 AND

SUM(toplc 5) BETWEEN O. AND 1. AN

SUM(toplc_7) BETWEEN 2 14 AND 4 72 AND %

SUM(topic 8) BETWEEN 0.07 AND 0.43 AND

SUM(topic 9) BETWEEN 0.07 AND 0.41 AND

SUM(topic_10) BETWEEN 0.58 AND 0.84
MAXIMIZE

SUM(m_score)

topic_6: climate, temperature, summer, winter, ...
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[VLDB 2019]
[SIGMOD 2018] (demo)

Comparative User Study:
QBE vs SQL

[CHI 2020]*
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Adaptive Interventional

Debugging

[SIGMOD 2020]

Data Summarization
by Example

[VLDB 2020] (demo)

* under submission/revision

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

Explaining Tuple
Non-conformance

[SIGMOD 2019] (demo)
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To trust or not to trust?

Daily Wil SQEEEnTech

IBM's Watson Al suggested 'often
inaccurate' and 'unsafe' treatment
recommendations for cancer patients,
internal documents show
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To trust or not to trust?

&he New ork Times

Self-Driving Uber Car Kills Pedestrian

in Arizona, Where Robots Roam

| TEMPE | ‘ JIS'
‘Hf DEADLY CRASH WITH SELF-DRIVING UBER

"“ Il ARIZONA '

E oo |
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Conformance constraints: trusted machine learning
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Trusting ML predictions

Training data New data

O Red b Pink
.

" Yellow Orange
O Green
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Trusting ML predictions

Training data New data

c Red O Pink
.~
. Yellow Orange
}[7Non-conforming ]
C Green 5 , Green
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' Non-conformance = untrustworthy prediction

i
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Regression task: predict arrival delay

UMass Ambherst

A real-world example: airlines dataset

dep_date dep_time

arr_time

duration (minute)

|

DAYTIME
flights

=

May 2 14:30
July 22 09:05
June 6 10:20
May 19 11:10
April 7 22:30

/

18:20
12:15
20:00
13:05
06:10

230
195
582
117
458

/

OVERNIGHT flight

J

College of Information
& Computer Sciences
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UMass Ambherst
A real-world example: airlines dataset

» Trained with DAY TIME flights only  OVERNIGHT flights

» Constraints observed in DAYTIME flights » violate DAYTIME flights’
- “departure time is earlier than arrival time” SemElET |
. “their difference is very close to flight duration”  * Incur high regression error

Constraint violation correlates with high regression error

70/147
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' Conformance constraints (CCs)

ML pipelines drop low-variance dimensions
to achieve dimensionality reduction.

ML models assume that training data’s
constraints/properties will continue to hold
during serving.
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Conformance constraints

» constraints that the data satisfies

» capture the invariants of the data

72/147
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Conformance constraints

* Encode linear arithmetic relationship over multiple attributes.

-€ < (60 - arr_hour + arr_min) — (60 - dep_hour + dep_min) — duration < €

Projection

Lower bound

Upper bound

73/147
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' Conformance constraints: example

6 feet 142 Ibs 19.3

5 feet 170 Ibs 33.2

5 feet 130 Ibs 254
10 < BMI £40

-40 < (28 X Height— Weight) < 30

74/147
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Violation of conformance constraint

10 < BMI =40

6 feet 142 Ibs 19.3
5 feet 170 Ibs 33.2
5 feet 130 Ibs 254

6 feet 170 lbs @
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Degree of violation

10 < BMI =40

6 feet 142 Ibs 19.3
5 feet 170 Ibs 33.2
5 feet 130 Ibs 254
o feet 170 Ibs 231

76/147




' Projection

-€ < (60 - arr_hour + arr_min) — (60 - dep_hour + dep_min) — duration < €

\

UMassAmbherst

College of Information
& Computer Sciences

J

|

Projection

771147
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What are “good” projections?

* Infinitely many projections possible
* Pick the low-variance projections.
* Because?
* They more useful in detecting trends in the data.

* Do we pick all low-variance projections?
* Pick a set of projections with low pair-wise correlations.
* Because?
* They complement each other.
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Low-variance projections

High F2
variance

X

LOW () .: 4@, F3 V

variance >

79/147
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' Projections with small mutual correlation

<

-
N S (o)) (o] o

16
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Discovering projections: PCA
* Principal Component Analysis (PCA)

* Produces projections with small mutual correlations
Intuition: principal components are orthogonal to each other

« Computing violation weight
 Weigh CCs with low variance projections more /
 Weigh CCs with high variance projections less

L 3rd
e
Lst
cane
k 2nd

puz
piE
1St

2nd 3rd 81/147
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Disjunctive conformance constraints

* Divide the dataset into disjoint Yy : M = “May” > -2 < AT - DT —-DUR <0
partitions. Cr

» Learn CCs for each partition. v M="June’> 0<Al-DI'-DUR<5

« Compute disjunctive CCs. V M="July">-5< AT -DT -DUR <0

A A
ol ¥aiks
gy o o
ke - ¥ -
Py - . -
ik ! k ¢
" ] e » ! -
T i "
e y
;> { H L
"\ <
w ¥
;!,' .'! o
7' 4

X X
(a) PCA (b) Disjoint PCA
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Complexity analysis

 Runtime

 Linear in number of tuples in the dataset
* Cubic in number of attributes
» Highly parallelizable

* Memory
» Quadratic in number of attributes
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Experimental results: two applications

* Trusted Machine Learning

* |s there a relationship between CC violation and the
ML model's prediction accuracy?

 Data-drift
» Can CCs be used to quantify data drift?
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Trusted machine learning: airlines dataset
Train Serving
Daytime Overnight Mixed
Average violation 0.02% 0.02% 27.68% 8.87%
MAE 18.95 18.89 80.54 38.60
300 - — Violation } 0.6
o
— -
. 200 - -0.4 .2
5 S
& 100 - -0.25
QO
<
0 - - 0.0
0 200 400 600 800 1000
Tuples (sampled)
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Data drift: EVL benchmark (1/4)

CD-MKL  ——- CD-Area - PCA-SPLL (25%)  —— CCSynth

w
o

o
o

Class 2 I < D I

o
o

Feature 2
T

o
Y
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Data drift: EVL benchmark (2/4)

CD-MKL  ——- CD-Area - PCA-SPLL (25%)  —— CCSynth

L4 Ll
- 0O Class1
O Class2
& Class 3
10 YV Class4
L L
™ r;*r,
e e
’3 C Vv & "‘r‘?
-5 -
.Io .
.15 -
L 1 L L 1 L 1
-158 <10 -5 0 5 10 15
Feature |
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Data drift: EVL benchmark (3/4)

CD-MKL  ——- CD-Area - PCA-SPLL (25%)  —— CCSynth

Class 2

T T T T T T T Y
12r y O Class 1 | — —
O " o
9 s . (; 3 S 0O
0" y

Feature 2

1

e A
1 1 | 1 1 Il A A
-4 -2 0 2 a & 8 10 12 14 O O 5 1
Feature 1 .
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Data drift: EVL benchmark (4/4)

CD-MKL  ——- CD-Area - PCA-SPLL (25%)  —— CCSynth

—— DISynth
4CRE-V1 4CRE-V2

1.0 -
"§ 0.5 1
= 0.0 A
S
S 1CSurr 4CE1CF UG-2C-2D MG-2C-2D FG-2C-2D UG-2C-3D UG-2C-5D GEARS-2C-2D
% 1.0 - S T ) . Y
U 0'0 _I I I I I 1 I I I I 1 I I I | I I I I I I I : I . I

0 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1

Time step (norm.) Time step (norm.) Time step (norm.) Time step (norm.) Time step (norm.) Time step (norm.) Time step (norm.) Time step (norm.)
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Adaptive Interventional

Debugging

[SIGMOD 2020]

Data Summarization
by Example

[VLDB 2020] (demo)

* under submission/revision

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

Explaining Tuple
Non-conformance

[SIGMOD 2019] (demo)
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Why ML models fail for certain tuples?

[
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~

How is this
different?

~

J
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Why do systems (sometimes) behave unexpectedly?

N 1

1 |
|§ \ S avalollk k“l'!l'
8 a v B g VAP LUAS
n A NLUL LR R

& Google Chrome e

The following page(s) have become unresponsive. You
can wait for them to become responsive or kill them.

W untitied

)
_— ‘
o

Kill pages

SSMS - SAL Server Management Studio has encountered g [ |
a problem and needs to close. We are sony for the 5...>‘<'°
inconvenience.

If you were in the middle of something, the information you were working on

might be lost. " ?

e~
Please tell Microsoft about this problem. S ys e m c ra S ~

“We have created an error report that you can send to help us improve \ j

SSMS - SOL Server Management Studio. ‘We will treat this report as
confidential and anonymous.

To see what data this error report contains, click here.

Send Ermor Report H Don't Send | 93/1 47
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ExTuNe
=xplaining Tuple
Non-conformance




l Conformance

constraints

-~

&

Is it |t
non-conforming?

J

UMassAmbherst

ExTuNe
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Explanation

&

Why 1S It

non-conforming?

~

J
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Tuple-level explanation
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Tuple-level explanation

6 feet 142 |bs 19.3
5 feet 170 Ibs 33.2
5 feet 130 Ibs 25.4
( )
6 feet 170 Ibs 231
\_ W,
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Tuple-level explanation

6 feet 142 Ibs 19.3

5 feet 170 Ibs 33.2

5 feet 130 Ibs 25.4
( )

6 feet 170 Ibs 231
\_ W,
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' Intervention reveals causality

6 feet 142 Ibs 19.3
5 feet 170 lbs 33.2
5 feet 130 Ibs 25.4

99/147
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' Intervention reveals causality

6 feet 142 Ibs 19.3
5 feet 170 Ibs 33.2 Blame!

5 feet 130 Ibs 254

o feet 170 Ibs

100/147
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' Intervention reveals causality

Height Weight BMI

6 feet 142 Ibs
5 feet 170 Ibs 33.2
5 feet 130 Ibs 25.4

[ 16 feet 70 Ibs J 25.9

101/147
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ExTuNe principles: actual causality

. aybe T'd be happy
ACtuaI Causallty ,/2 71 hadn'+ enﬂaﬁed’

o any coun+en+’adua/‘

-HQ)/LKJH b
"When K other events are removed, then C is 3

a counterfactual cause of E”

e Cis an actual cause of E
 C(C’sresponsibility is 1/(K + 1)
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ExTuNe interface

Upload reference data 2. Select (1) @ Show aggregated attribute-responsibility _ @
s

ap_hi
Upload test data: X, Select (1) @ ap_lo
weight
10 most non-conforming tuples Preview @
@ cholesterol
. o . : : . smoke
id Violation age gender height weight ap_hi ap_lo cholesterol gluc smoke alco active
21321 0.27 22652 2 163 70 200 180 1 1 0 0 0 alco
18398 0.21 21770 1 161 84 196 182 | 2 2 0 0 1 g|UC
2318 0.2 18961 1 158 74 | 200 170 1 1 0 0 1
8643 015 15086 2 190 165 160 60 1 1 0 0 0 helght
15682 0.15 21300 2 176 98 240 110 1 1 1 0 1 gender
29677 015 16615 2 196 180 130 80 S 1 0 0 1 age
14276 0.14 19798 2 174 75 240 120 2 1 0 1 1
24399 014 15117 2 180 200 150 90 1 1 0 o0 1 active
17058 013 21897 1 152 87 220 110 3 3 0 0 0 . : : ; :
0.0 0.2 04 06 08 1.0
10556 013 21721 2 173 116 190 80 1 3 1 1 0 T
Responsibility

103/147
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ap_hi ram
battery power
ap_lo ,
px_height
weight px_width
cholesterol dual_sim
m_dep
smoke talk_time
alco n_cores
mobile_wt
gluc -
touch_screen
height Wifi
gender sc_h
clock_speed
age ,
int_memory
00 02 04 00 02 04
Responsibility Responsibility
Cardiovascular Mobile
disease price

GrLivArea
OverallQual
1stFIrSF
FullBath
MasVnrArea
BsmtFinSF1
YearBuilt
2ndFIrSF
Fireplaces
ScreenPorch
LotArea
BsmtFullBath
TotRmsAbvGrd
GarageArea
YearRemodAdd

0.0 02 04
Responsibility

House
price

Resp. Violation

UMassAmbherst ‘

ExTuNe evaluation: case studies

--------------------

Data window

LED malfunctioning

College of Information
& Computer Sciences

LED7 LED6 LED5 LED4 LED3 LED2 LED1
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Anomaly in COVID dataset
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Conformance constraint: #positive + #

negative = #total

201
36
256

59
311
91
88
471
389
51

Violation
0.350000
0.350000
0.290000
0.240000
0.240000
0.220000
0.200000
0.190000
0.130000
0.130000
0.130000

date state
20200321 NY
20200324 NY
20200320 NY
20200324 CA
20200323 CA
20200319 NY
20200323 NY
20200323 NJ
20200316 NJ
20200317 CA
20200324 WA

positive
10356
25665
7102
2102
1733
4152
20875
2844
178
483
2221

negative pending hospitalized death

35081 0
65605 0
25325 0
13452
12567
18132
57414 0
359 94
120 20
7981 0
31712 0

1603
3234

0

44
210
35
40
27
12
14

total
45437
91270
32427
27654
26400
22284
78289

33933

19453561
19453561
19453561
39512223
39512223
19453561
19453561

7614893

population hospital_beds

52524
52524
52524
71122
71122
52524
52524
21317
21317
71122
12945

178 + 120
= 298

178 + 120
7218
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' Explaining data systems’ failure

AlD: Causality-guided Adaptive Interventional Debugging
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DBMS are complex and contain bugs

B ENIRIRIAC ENAVE
& GoogleChrome
’ SSMS - SQL Server Management Studio

SSMS - SAQL Server Management Studio has encountered W
a problem and needs to close. We are somny for the Xb
Inconvenience.

If you were in the middle of something, the information you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an error report that you can send to help us improve
SSMS - SOL Server Management Studio. We will treat this report as
confidential and anonymous.

» concurrent
» parallel
» asynchronous

To see what data this error report contains, click here.

Send Eror Report Don't Send
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Intermittent failure

sometimes succeeds sometimes fails

Runtime conditions

» Thread scheduling

venue = "Portland", » Timing
year = 2020

name = "SIGMOD",
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Motivation and goal

~

Can't
reproduce!

Investigate root causes
of intermittent failure
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Npgsql intermittent failure

[ADO.NET data provider for PostgreSQL]

npgsql / npgsdl QUsedby~ 107k & Watch~

Code Q@ Issues 167 Pull requests 33 Actions Security 0 Insights

Race condition in PoolManager.TryGetValue #2485

@’CIosed thetranman opened this issue on May 29, 2019 - 3 comments

il .
| thetranman commented on May 29, 2019 Contributor () «--

Steps to reproduce

I've created a test that can reproduce the issue. All you have to do is fill in the values for the
connection string. The test is VolatileTest as seen here:
https://github.com/thetranman/npgsql/pull/1/files

The issue
Could be related to: #2146

In our production code, we are running into issues when trying to create a new Postgres
connection (Specifically when we call: var connection = new NpgsqglConnection(ConnectionString);
).

This can intermittently occur when we are trying to start our service on a server which can contain

UMassAmbherst

175 vy Star | 2k % Fork 628

Assignees

'} thetranman

Labels

Projects

None yet

Milestone

L
4.0.8

Linked pull requests
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Npgsql intermittent failure

pools
(shared)
0 1 2 3 4
index 4 I
(shared)
v
localPools
(local) 0 1 2 3 4
Thread 1 Thread 2

Find(key): Add (key):
localPools = pools




UMassAmberst | {olese of Information

& Computer Sciences

Npgsql intermittent failure

pools
(shared)

index 5 I
(shared)

localPools
(local) 0 1 2 3 4

Thread 1 Thread 2
Find(key): Add (key):

localPools = pools if pools is filled:

pools = ResizeDouble(pools) e

last slot ++
pools[last slot] = key
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Npgsql intermittent failure

pools
(shared)
0 1 2 3 4 5 6 7 8 9
index |
(shared)
v
localPools
(local) 0 1 2 3 4 5
Thread 1 Thread 2
Find(key): Add (key):

localPools = pools

i1f pools is filled:
pools = ResizeDouble(pools) e

for i in range(0,last slot+l):
if (localPools[i] == key) last slot ++

return i pools[last slot] = key

return null
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Npgsql intermittent failure

pools
(shared)
0 1 2 3 4 5 6 7 8 9
index - I
-5
(shared) , Array Index
localPools OUt Of BOU nd
(local) 0 1 2 3 4 5
Thread 1 Thread 2
Find(key): Add (key):

localPools = pools

i1f pools is filled:
pools = ResizeDouble(pools) e

for i in range(0,last slot+l):
if (localPools[i] == key) last slot ++

return i pools[last slot] = key

return null
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Npgsql intermittent failure

pools
(shared)
0 1 2 3 4 5 6 7 8 9
nare ‘
(shared)
v
localPools
(local) 0 1 2 3 4 5
Thread 1 Thread 2
Find(key): Add (key):
localPools = pools if pools is filled:
pools = ResizeDouble(pools)
for i in range(0,last slot+l): e
if (localPools[i] == key) last slot ++
return 1 pools[last slot] = key
return null




UMassAmberst | {olese of Information

& Computer Sciences

Npgsql intermittent failure

a localPools = pools

if pools is filled:
pools = ResizeDouble(pools) e

last slot ++
pools[last slot] = key

for i in range(0,last slot+l):
if (localPools[i] == key)
e return i

return null
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Investigating Npgsql crash

_— Add () temporally overlaps with ©ind ()

Find () attempts to access invalid array index

Find () throws ArraylndexOutOfBound exception
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' Limitations of statistical debugging

Find() is running Find() and Get() Get() is running too
too slow temporally overlaps | fast
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Root-cause Find() and Get()
= ale=n - temporally overlaps
identification POETY OTETER

%
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Root-cause Find() and Get()
= ale=n - temporally overlaps
identification POETY OTETER

\/

array access
at invalid index

Explanation N/

index-out-of-bound
exception

o
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AlD: Adaptive Interventional Debugging
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' Finding candidate predicates

» Step 1: Program instrumentation finds all predicates

» Step 2: Statistical debugging finds correlated predicates

Always appear In Never appear Iin
failed executions successful executions
i I I
foo () ﬁ foo () |
1 1
' bar () ezl
I

Sjm.
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' Cause must temporally precede effect

Pl

1
P2

Temporal P%i

precedence s

graph . jg\ _

v 7
P6 PO

0

Pl
=T
F

o
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' Approximating causality

Pl
#
P3| P1 may cause P8
Pi\‘ :\//
P /
P
P10
P]
F

| I L
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' Approximating causality

Pl

I
551 =

%;\\\\~ D7
B ;%\\\\\* P11

| ;

P6 P9
5o P4 cannot cause P9

P]

F

| L
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' Counterfactual causality

C Is a counterfactual cause of E
If C had not occurred
E would not have occurred

| I L
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Intervention

Ja 48
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Fault injection
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Group testing

PUBLIC HEALTH

Coronavirus Test Shortages
Trigger a New Strategy: Group
Screening

Pooling diagnostic samples, and using a little math, lets more people get tested with fewer
assays
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'Adaptive group testing
A1AY YaTaTATATe
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' AID applies group intervention

Vs BT D
Pl2
P§////’
N /
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| éf\
B2 Pg P11
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AID pruning

Pl

P2

P10
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Six real-world bugs

&8 kaifka

Network

.

Microsoft

Data race «

Random number
collision

v

&

Azure Cosmos DB

Use-after-free v

BuildAndTest

.

Microsoft

Order violation \/
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HealthTelemetry
-
|

Microsoft

Race condition\/
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Statistical debugging vs AID

AlID produces no false positives

# Predicates

60

50

40

30

: 1 B

10

0 . — . ] — — -

Npgsql Kafka Azure Cosmos DB Network BuiltAndTest HealthTelementry

m Statistical Debugging m®mAID

140/147
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Adaptive group testing vs AID

AlD’s pruning reduces

Interventions

# Interventions

Npgsql Kafka Azure Cosmos DB Network BuiltAndTest HealthTelementry

m Adaptive GT mAID
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Theoretical analyses
CPD: Causal Path Discovery
GT: Group Testing
AlD: Adaptive Interventional Debugging
TAGT: Traditional Adaptive Group Testing
Search #Interventions
space Lower bound Upper bound (AID/TAGT)
JB JB D(D-1)S
CPD | (B(2"—1)+1)7 | 55282 log ('p") | Jlog B+Dlog (Jn) — 25152
JB D(D-1
GT 2 B log (78" Dlog B+Dlog (Jn) — 221




Dissertation outline

Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Comparative User Study:
QBE vs SQL

[CHI 2020]*

Data Summarization
by Example

[VLDB 2020] (demo)

* under submission/revision
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Adaptive Interventional

[]
Explainability

Debugging

[SIGMOD 2020]

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

Explaining Tuple

Non-conformance

[SIGMOD 2019] (demo)
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How did my data change over last couple years?

15:50:23,,0.5,69,,11425,,,,"271504218477G" ,32, 11000411, 00000 15:50:23,,0.5,69,,11425,,,,"271504218477" ,32, , 1400041000000
- 69,"FOUR, PERSON",,FOUR,PERSON,,,,,.,Y,G,41,69,32,2018-10-190 + 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,41,69,32,2018-10-10
15:50:23,,0.5,69,,11428,,,,"2715074915686G" ,32, ,,,ss++11, 000040 15:50:23,,0.5,69,,11428,,,,"271507491568" ,32,,,,00001), 04004
- 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,41,69,32,2018-10-190 + 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,41,69,32,2018-10-10
15:50:23,,0.5,69,,11484,,,,"2715084818576G" ,32,,,,s00+11, 000040 15:50:23,,0.5,69,,11484,,,,"271508481857" ,32,,,1000411, 000040
- 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,77,69,53,2018-10-11 + 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,77,69,53,2018-10-11
11:35:05,,0.05,134,,11447,,,,"874231098887G" ,53,,,,+s+++11, 000040 11:35:05,,0.05,134,,11447,,,,"874231098887" ,53,,,,44++11, 440404
- 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,77,69,53,2018~10~11 + 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,77,69,53,2018~-10~11
11:35:05,,0.05,134,,11448,,,,"874231135374G" ,53,,,,+s+++11, 400004 11:35:05,,0.05,134,,11448,,,,"874231135374",53,,,404044+1), 0004040
- 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,77,69,53,2018~10~11 + 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,(6,77,69,53,2018-10~11
11:35:05,,0.05,134,,11479,,,,"8742314612346G",53,,,,,,++11,, .44+ 11:35:05,,0.05,134,,11479,,,,"874231461234" ,53,,,,,+++11, ., 0440
- 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,87,69,59,2018-10-11 + 69,"FOUR, PERSON",,FOUR,PERSON,,,,,,Y,G,87,69,59,2018-10-11
13:43:24,,0.05,34,,11487,,,,"874231676529G",59,,,,,+++11, 0044 13:43:24,,0.05,34,,11487,,,,"874231676529",59,,,,44+:11,, .44+,
- 73,"FIVE,PERSON", ,FIVE,PERSON,,,,,,Y,(,23,73,19,2018-10-08 + 73,"FIVE,PERSON", ,FIVE,PERSON,,,,,,Y,(,23,73,19,2018-10-08
22:25:59,,0.75,73,,14,,,,"2715084867576G" ,19,,,,,,,,11,,,,44, 22:25:59,,0.75,73,,14,,,,"271508486757",19, ,,,,,++11,,, .44,
- 73,"FIVE,PERSON", ,FIVE,PERSON,,,,,.Y,G,23,73,19,2018-10-08 + 73,"FIVE,PERSON", ,FIVE,PERSON,,,,,,Y,G,23,73,19,2018-10-08
22:25:59,,0.75,73,,11512,,,,"8742319260466G",19,,,,,,,,11,,,,,., 22:25:59,,0.75,73,,11512,,,,"874231926046",19,,,,,,,,11,,,,,4,
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Prior work

* Existing approaches mostly focus on syntactic changes.

» Falil to provide consumable summary of changes.
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Our goal

* Provide a consumable summary of semantic changes
that explains how two databases differ.

* Explains database evolution.

» Reveals patterns in data change.
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Evaluating SuDocu

e Data collection

» Tuning SuDocu’s learning algorithm

 Evaluation
* Against ground-truth summaries
» Comparison with other baselines
» User study




Current status

Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Comparative User Study:

QBE vs SQL

[CHI 2020]*

Data Summarization
by Example

[VLDB 2020] (demo)

* under submission/revision
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Adaptive Interventional

[]
Explainability

Debugging

[SIGMOD 2020]

Data Change
Explanation

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

Explaining Tuple

Non-conformance

[SIGMOD 2019] (demo)
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Tentative timeline
* October 2020: proposal defense

* November — December 2020: evaluating SuDocu
« January 2020: submit to VLDB 2021

« January — June 2021: work on Data Change Explanation Framework
 July 2021: submit to SIGMOD 2022

* June — August 2021: work on dissertation
* August 2021: final defense
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Other project affiliations
* Fair classifiers: experiment \ |
and evaluation L | &£

—

5=

» Data profile debugger

» Data sampling by example
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