
Enhancing Usability and
Explainability of Data Systems
Anna Fariha

Advisor: Alexandra Meliou

Usability

Explainability

Trust

Democratization of data systems

2/147

Makes data systems accessible to
non-expert users.

• Applications
• Data access

• Querying relational databases
• Data integration
• Data transformation
• Data visualization
• Data summarization

• Text document summarization

Usability

Usability

Explainability

Trust

3/147

Trust
Enhances people’s confidence
towards data systems.

• Applications
• Artificial intelligence and machine learning

• Model predictions
• Novel interaction mechanisms

• Programming by example

Usability

Explainability

Trust

4/147

Usability

Explainability

Explainability
Increases transparency of data
systems.

• Applications
• Machine learning

• Model predictions

• Distributed systems
• Concurrent applications

• Data evolution
• Why/how two databases differ?

• Fairness in algorithms/software

Trust

5/147

Usability

Explainability

Trust

Dissertation outline
Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Data Summarization
by Example

[VLDB 2020] (demo)

Comparative User Study:
QBE vs SQL

[CHI 2020]*

Adaptive Interventional
Debugging
[SIGMOD 2020]

Data Change
Explanation

Explaining Tuple
Non-conformance

[SIGMOD 2019] (demo)

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

* under submission/revision 6/147

Part 1:
Usability of Data Systems Usability

Are data systems accessible to non-experts?

Who are our most
valuable customers?

8/147

How to express complex task specifications?

9/147

• A step towards democratization of
computational power.

• Enhances usability for both non-experts
and experts.

Programming by example (PBE)

User
provides
examples

System
“guesses”

intent

Program
synthesis

Result
delivery

10/147

SQuID
Semantic similarity-aware Query Intent Discovery

Querying relational databases by example

11/147

• Alice wants to find all Funny Actors from the IMDb database.

12/147

Challenge 1: understanding the schema

13/147

Challenge 2: SQL expertise

14/147

Query by example (QBE)

QBE

15/147

Expectation vs reality

All actors

16/147

Humans use context

17/147

There is no “funny” attribute in the data

Discovering semantic similarity

18/147

There is no “funny” attribute in the data

Discovering semantic similarity

19/147

SQuID
Semantic Similarity-aware
Query Intent Discovery

20/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

SQuID Outline

21/147

Semantic context: basic

• Directly affiliated with an entity.

person

birth year

gender

height

age

1962

Male

6’ 2’’

57

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

22/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

• Aggregate over a basic property of an associated entity.
• number of comedy movies an actor appeared in.

movie

genre

language
person

40
Comedy
movies

10 Drama
movies

67
English
movies

Semantic context: derived

23/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

Filters

SELECT
person

FROM
people

WHERE
color = orange

• Encode semantic context.

24/147

Intended or co-incidental?

• Male
• Born in North America
• Appeared in 80+ Hollywood movies
• Appeared in 40+ comedy movies
• Appeared in 20+ drama movies
• Height above 5 feet
• Born after 1940
• …

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

25/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

Abduction

Maximum likelihood estimation is abduction!

•Most likely explanation of an observation.
•Most likely query given the examples.

26/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

Problem definition

Query intent discovery: given a Database and
Example, find Query such that:

27/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

Probabilistic abduction model

semantic context priorquery posterior

semantic context posterior query prior

28/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

Domain selectivity OutlierAssociation strength

SELECT * FROM p
WHERE 5 <= age <= 90

SELECT * FROM p
WHERE 25 <= age <= 30

age

25 30

0 5 90 100

29/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

USA: 80% CAN: 20%

• Data selectivity

30/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

P(USA| country = USA)
= 1

Context Predicate
in Query

31/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

country
… USA

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

P(USA| country = USA)
= 1

P(USA | No Filter)
= 0.8

Context Predicate
in Query

32/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

country
… USA

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

P(USA| country = USA)
= 1

P(USA | No Filter)
= 0.8

country
… USA
… USA

P(USA | No Filter)
= 0.8 * 0.8
= 0.64

Context Predicate
in Query

33/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

country
… USA

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

P(USA| country = USA)
= 1

P(USA | No Filter)
= 0.8

country
… USA
… USA

P(USA | No Filter)
= 0.8 * 0.8
= 0.64

P(USA | No Filter)
= 0.8 * 0.8 * 0.8
= 0.51

country
… USA
… USA
… USA

country
… USA
… USA
… USA

Context Predicate
in Query

34/147

Modeling
Semantic
Context

Query
Intent

Discovery

Real-time
Performance Evaluation

SQuID algorithm: to pick or drop filters?

With filter Without filter

35/147

Modeling
Semantic
Context

Query Intent
Discovery Real-time Evaluation

Real-time performance

36/147

Modeling
Semantic
Context

Query Intent
Discovery Real-time Evaluation

semantic property
statistics

derived relations

 offline
module

DB

meta-
data

inverted
indexing

derived relation
materialization

filter selectivity
precomputation

example tuples query intent
discovery

SQL
query

result tuples
entity

disambiguation

semantic context
discovery

query
abduction

αDB
abduction-ready

database

Abduction-ready database

37/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

1. How efficient is SQuID for large datasets and many examples?
2. Does SQuID infer the right query?
3. Can alternative techniques be effective in intent discovery?

• Query Reverse Engineering (TALOS, 2014)
• Positive and Unlabeled Learning (Elkan et al., 2008)

• Query run-time comparison
• Case studies

Evaluation

38/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

Datasets

5 benchmark
queries

20 benchmark
queries

633 MB 15 relations
• person: 6M rows
• movies: 1M rows
• castinfo: 14M rows

16 benchmark
queries

39/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

Experiment settings

Benchmark
Query

Result

Ground Truth

Sample

Example

SQuID
Result

Inferred
Query

Compare

40/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

5 10 15 20 25 30
Examples

0
5

10
15
20
25
30
35

T
im

e
(s

)

1x 10x 30x

How does SQuID perform with large datasets or
many examples?

Linear in
example size

Logarithmic
in DB size

Abduction
time is

practical

41/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

10 20
0.0

0.5

1.0

A
cc

u
ra

cy
M

et
ri

c

IQ1

Precision Recall F-score

10 20

IQ2

10 20

IQ3

10 20

IQ4

5 10

IQ5

10 20

IQ6

10 20

IQ7

10 20

IQ8

10 20
Examples

0.0

0.5

1.0

A
cc

u
ra

cy
M

et
ri

c

IQ9

10 20
Examples

IQ10

10 20
Examples

IQ11

10 20
Examples

IQ12

10 20
Examples

IQ13

10 20
Examples

IQ14

10 20
Examples

IQ15

10 20
Examples

IQ16

10 20
0.0

0.5

1.0

A
cc

ur
ac

yM
et

ri
c

IQ1

Precision Recall F-score

10 20

IQ2

10 20

IQ3

10 20

IQ4

5 10

IQ5

10 20

IQ6

10 20

IQ7

10 20

IQ8

10 20
Examples

0.0

0.5

1.0

A
cc

ur
ac

yM
et

ri
c

IQ9

10 20
Examples

IQ10

10 20
Examples

IQ11

10 20
Examples

IQ12

10 20
Examples

IQ13

10 20
Examples

IQ14

10 20
Examples

IQ15

10 20
Examples

IQ16

SQuID works with few examples

42/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

Query reverse engineering (QRE)

Output

Exact match required

QRE
TALOS

Reverse
Engineered

Query

Input

43/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

SQuID outperforms QRE
Log

scale

Log
scale

44/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

Animation movies
produced by Pixar

SQuID outperforms QRE

45/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

Original Query

SELECT
DISTINCT movie.title

FROM
movie, production, company, movietogenre, genre

WHERE
movie.id = production.movie_id AND
production.company_id = company.id AND
company.name LIKE '%Pixar%' AND
movie.id = movietogenre.movie_id AND
movietogenre.genre_id = genre.id AND
genre.name = 'Animation';

SQuID outperforms QRE

46/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

Animation movies
produced by Pixar

Original Query

SELECT
DISTINCT movie.title

FROM
movie, production, company, movietogenre, genre

WHERE
movie.id = production.movie_id AND
production.company_id = company.id AND
company.name LIKE '%Pixar%' AND
movie.id = movietogenre.movie_id AND
movietogenre.genre_id = genre.id AND
genre.name = 'Animation';

SQuID Query

SELECT
DISTINCT movie.title

FROM
movie, production, company, movietogenre, genre

WHERE
movie.production_year >= 1984 AND
movie.production_year <= 2021 AND
movie.country = USA AND
genre.name = 'Animation' AND
company.name = 'Pixar' AND
movie.id = movietogenre.movie_id AND
genre.id = movietogenre.genre_id AND
movie.id = movietoproduction.movie_id AND
company.id = movietoproduction.company_id

SQuID outperforms QRE

47/147

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

Animation movies
produced by Pixar

Original Query

SELECT
DISTINCT movie.title

FROM
movie, production, company, movietogenre, genre

WHERE
movie.id = production.movie_id AND
production.company_id = company.id AND
company.name LIKE '%Pixar%' AND
movie.id = movietogenre.movie_id AND
movietogenre.genre_id = genre.id AND
genre.name = 'Animation';

SQuID Query

SELECT
DISTINCT movie.title

FROM
movie, production, company, movietogenre, genre

WHERE
movie.production_year >= 1984 AND
movie.production_year <= 2021 AND
movie.country = USA AND
genre.name = 'Animation' AND
company.name = 'Pixar' AND
movie.id = movietogenre.movie_id AND
genre.id = movietogenre.genre_id AND
movie.id = movietoproduction.movie_id AND
company.id = movietoproduction.company_id

SQuID outperforms QRE

Query Reverse
Engineering

overfits

48/147

SQuID outperforms machine learning

0.1 0.4 0.7 1.0

0.2
0.4
0.6
0.8
1.0

Precision

SQuID PU (DT) PU (RF)

0.1 0.4 0.7 1.0
Fraction of positive data used as example

(a)

Recall

0.1 0.4 0.7 1.0

F-score

1 4 7 10
Scale factor

(b)

0

10

T
im

e
(s

)

Scalability

PU learning
requires >= 70%
data as example

PU learning
does not

scale

Generic machine learning cannot model RDBMS specific assumptions

Modeling
Semantic
Context

Query Intent
Discovery

Real-time
Performance Evaluation

49/147

SQuID SQL

Comparative user studies: QBE vs SQL

50/147

SQuID increased user efficiency

51/147

Overall, SQuID generated more accurate results

52/147

SQuID was easier to use

53/147

Participants were satisfied with SQuID results

54/147

SQuID or SQL?

55/147

“Even if I forget about syntax . . . figuring out how to go about
writing the pseudo-code query for funny actors [is difficult]”

“Vague tasks are generally a lot more open to interpretation.
Coding up a query that meets someone’s vague specifications
[is] hard . . . It was very hard to nail down what the correct
definition of funny is.”

Anecdotal comments

56/147

Personalized text document summarization

SuDocu: Summarizing
Documents by Example

57/147

Personalized summarization
Document

Personalized summary
58/147

Summarization by example

Example Summaries Automatic Summaries

59/147

Utah

Submit Summary

S�Doc�
In 1957, Utah created the Utah State Parks Commission with four parks. Today, Utah State Parks manages 43
parks and several undeveloped areas totaling over 95,000 acres of land and more than 1,000,000 acres of water.
Utah's state parks are scattered throughout Utah, from Bear Lake State Park at the Utah/Idaho border to Edge of
the Cedars State Park Museum deep in the Four Corners region and everywhere in between. Utah State Parks is
also home to the state's o� highway vehicle o�ce, state boating o�ce and the trails program.[33]

Sentences (120):

Example Summaries

Summarize

Arizona MontanaUtah

Explanation (PaQL)

Massachusetts

It borders on the Atlantic Ocean to the east, the states of Connecticut
and Rhode Island to the south, New Hampshire and Vermont to the north,
and New York to the west. The large coastal plain of the Atlantic Ocean in
the eastern section of the state contains Greater Boston, along with most
of the state's population, as well as the distinctive Cape Cod peninsula.
Along the western border of Western Massachusetts lies the highest
elevated part of the state, the Berkshires. Most of Massachusetts has a
humid continental, with cold winters and warm summers. The climate of
Boston is quite representative for the commonwealth, characterized by
summer highs of around 81 °F (27 °C) and winter highs of 35 °F (2 °C),
and is quite wet. Frosts are frequent all winter, even in coastal areas due
to prevailing inland winds.

SELECT PACKAGE(*)
FROM state_sentences
WHERE state = 'Massachusetts'
SUCH THAT
 SUM(topic_1) BETWEEN 0.06 AND 0.45 AND
 SUM(topic_2) BETWEEN 0.24 AND 0.79 AND
 SUM(topic_3) BETWEEN 0.41 AND 0.84 AND
 SUM(topic_4) BETWEEN 0.83 AND 1.85 AND
 SUM(topic_5) BETWEEN 0.95 AND 1.29 AND
 SUM(topic_6) BETWEEN 2.64 AND 3.20 AND
 SUM(topic_7) BETWEEN 2.14 AND 4.72 AND
 SUM(topic_8) BETWEEN 0.07 AND 0.43 AND
 SUM(topic_9) BETWEEN 0.07 AND 0.41 AND
 SUM(topic_10) BETWEEN 0.58 AND 0.84
MAXIMIZE
 SUM(m_score)

topic_6: climate, temperature, summer, winter, ...

Generated SummariesSummary Input

The state of Utah relies heavily on
income from tourists and travelers
visiting the state's parks and ski resorts.
Today, Utah State Parks manages 43
parks and several undeveloped areas
totaling over 95,000 acres of land and
more than 1,000,000 acres of water.
With �ve national parks (Arches, Bryce
Canyon, Canyonlands, Capitol Reef, and
Zion), Utah has the third most national
parks of any state after Alaska and
California. Temperatures dropping below
0 °F (�18 °C) should be expected on
occasion in most areas of the state most
years.

Arizona is well known for its desert Basin
and Range region in the state's southern
portions, which is rich in a landscape of
xerophyte plants such as the cactus. The
canyon is one of the Seven Natural
Wonders of the World and is largely
contained in the Grand Canyon National
Park—one of the �rst national parks in
the United States. Extremely cold
temperatures are not unknown; cold air
systems from the northern states and
Canada occasionally push into the state,
bringing temperatures below 0 °F (�18
°C) to the state's northern parts.

The Rocky Mountain Front is a signi�cant feature
in the state's north-central portion, and isolated
island ranges that interrupt the prairie landscape
common in the central and eastern parts of the
state. It contains the state's highest point,
Granite Peak, 12,799 feet high. Farther east,
areas such as Makoshika State Park near
Glendive and Medicine Rocks State Park near
Ekalaka contain some of the most scenic
badlands regions in the state. The coldest
temperature on record for Montana is also the
coldest temperature for the contiguous United
States. On January 20, 1954, �70 °F or �56.7 °C
was recorded at a gold mining camp near Rogers
Pass. Temperatures vary greatly on cold nights.

1

2

3

4

5

SuDocu interface

60/147

Usability

Explainability

Trust

Dissertation outline
Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Data Summarization
by Example

[VLDB 2020] (demo)

Comparative User Study:
QBE vs SQL

[CHI 2020]*

Adaptive Interventional
Debugging
[SIGMOD 2020]

Data Change
Explanation

Explaining Tuple
Non-conformance

[SIGMOD 2019] (demo)

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

* under submission/revision 61/147

Part 2:
Trust in Data Systems Trust

62

To trust or not to trust?

63/147

To trust or not to trust?

64/147

Conformance constraints: trusted machine learning

65/147

Trusting ML predictions
Training data

Red

Yellow

Green

New data

Pink

Orange

66/147

Trusting ML predictions

Red

Yellow

Green

Training data New data

Pink

Orange

Non-conforming

Green

67/147

Non-conformance = untrustworthy prediction

Is it
non-conforming?

Detection

68/147

A real-world example: airlines dataset
Regression task: predict arrival delay

OVERNIGHT flight

DAYTIME
flights

69/147

A real-world example: airlines dataset
• Trained with DAYTIME flights only
• Constraints observed in DAYTIME flights

• “departure time is earlier than arrival time”
• “their difference is very close to flight duration”

Constraint violation correlates with high regression error

• OVERNIGHT flights
• violate DAYTIME flights’

constraints
• incur high regression error

70/147

Conformance constraints (CCs)

ML pipelines drop low-variance dimensions
to achieve dimensionality reduction.

ML models assume that training data’s
constraints/properties will continue to hold
during serving.

71/147

Conformance constraints

Ø constraints that the data satisfies
Ø capture the invariants of the data

72/147

• Encode linear arithmetic relationship over multiple attributes.

Conformance constraints

-𝝐 ≤ (60 . arr_hour + arr_min) – (60 . dep_hour + dep_min) – duration ≤ 𝝐

Projection

Lower bound Upper bound

73/147

Conformance constraints: example

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

10 ≤ BMI ≤ 40

-40 ≤ (28 X Height— Weight) ≤ 30
74/147

Violation of conformance constraint

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 231

10 ≤ BMI ≤ 4010 ≤ BMI ≤ 40

75/147

Degree of violation

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 231
6 feet 170 lbs 20000

10 ≤ BMI ≤ 4010 ≤ BMI ≤ 40

76/147

Projection

-𝝐 ≤ (60 . arr_hour + arr_min) – (60 . dep_hour + dep_min) – duration ≤ 𝝐

ProjectionLower bound Upper bound

77/147

• Infinitely many projections possible
• Pick the low-variance projections.
• Because?

• They more useful in detecting trends in the data.

• Do we pick all low-variance projections?
• Pick a set of projections with low pair-wise correlations.
• Because?

• They complement each other.

What are “good” projections?

78/147

Low-variance projections

F1

F2

F3Low
variance

High
variance

High
variance

79/147

Projections with small mutual correlation

80/147

• Principal Component Analysis (PCA)
• Produces projections with small mutual correlations

• Intuition: principal components are orthogonal to each other

• Computing violation
• Weigh CCs with low variance projections more
• Weigh CCs with high variance projections less

Discovering projections: PCA

weight

81/147

Disjunctive conformance constraints
• Divide the dataset into disjoint

partitions.
• Learn CCs for each partition.
• Compute disjunctive CCs.

82/147

• Runtime
• Linear in number of tuples in the dataset
• Cubic in number of attributes
• Highly parallelizable

• Memory
• Quadratic in number of attributes

Complexity analysis

83/147

• Trusted Machine Learning
• Is there a relationship between CC violation and the

ML model’s prediction accuracy?

• Data-drift
• Can CCs be used to quantify data drift?

Experimental results: two applications

84/147

Trusted machine learning: airlines dataset

85/147

Data drift: EVL benchmark (1/4)

86/147

Data drift: EVL benchmark (2/4)

87/147

Data drift: EVL benchmark (3/4)

88/147

Data drift: EVL benchmark (4/4)

89/147

Usability

Explainability

Trust

Dissertation outline
Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Data Summarization
by Example

[VLDB 2020] (demo)

Comparative User Study:
QBE vs SQL

[CHI 2020]*

Adaptive Interventional
Debugging
[SIGMOD 2020]

Data Change
Explanation

Explaining Tuple
Non-conformance

[SIGMOD 2019] (demo)

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

* under submission/revision 90/147

Part 3:
Explanation Frameworks Explainability

Why ML models fail for certain tuples?

How is this
different?

92/147

Why do systems (sometimes) behave unexpectedly?

Why did the
system crash?

93/147

ExTuNe
Explaining Tuple
Non-conformance

94/147

Is it
non-conforming?

Detection

Why is it
non-conforming?

Explanation

Conformance
constraints

ExTuNe

95/147

Tuple-level explanation

96/147

Tuple-level explanation

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 231

97/147

Tuple-level explanation

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 231

98/147

Intervention reveals causality

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 25.9

Mean =
25.9

change

99/147

Intervention reveals causality

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 25.9

Blame!

100/147

Intervention reveals causality

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

16 feet 70 lbs 25.9

Blame!Blame!

101/147

ExTuNe principles: actual causality

Actual Causality

“When K other events are removed, then C is
a counterfactual cause of E”

• C is an actual cause of E
• C’s responsibility is 1/(K + 1)

102/147

ExTuNe interface

103/147

ExTuNe evaluation: case studies

Cardiovascular
disease

Mobile
price

House
price

LED malfunctioning

104/147

Anomaly in COVID dataset

Conformance constraint: #positive + #negative = #total

178 + 120
≠ 218

178 + 120
= 298

105/147

Explaining data systems’ failure

AID: Causality-guided Adaptive Interventional Debugging
106/147

107/147

Ø concurrent
Ø parallel
Ø asynchronous

DBMS are complex and contain bugs

108/147

Intermittent failure

DBMS

{
name = "SIGMOD",
venue = "Portland",
year = 2020

}

sometimes succeeds sometimes fails

Runtime conditions

Ø Thread scheduling
Ø Timing

Input

109/147

Motivation and goal

Can’t
reproduce!

Help me
debug!

Investigate root causes
of intermittent failure

110/147

Npgsql intermittent failure
[ADO.NET data provider for PostgreSQL]

111/147

Add(key):

Thread 2
Find(key):

Thread 1

4

0 1 2 3 4

localPools
(local) 0 1 2 3 4

localPools = pools1

Npgsql intermittent failure
pools

(shared)

index
(shared)

112/147

Add(key):

Thread 2
Find(key):

Thread 1

pools
(shared)

index
(shared) 5

0 1 2 3 4

0 1 2 3 4

5 6 7 8 9

localPools = pools1 if pools_is_filled:
pools = ResizeDouble(pools)

last_slot ++
pools[last_slot] = key

2

Npgsql intermittent failure

localPools
(local)

113/147

Add(key):

Thread 2
Find(key):

Thread 1

pools
(shared)

index
(shared) 5

0 1 2 3 4

0 1 2 3 4

3

for i in range(0,last_slot+1):
if (localPools[i] == key)

return i

return null

5

5 6 7 8 9

localPools = pools1 if pools_is_filled:
pools = ResizeDouble(pools)

last_slot ++
pools[last_slot] = key

2

Npgsql intermittent failure

localPools
(local)

114/147

Add(key):

Thread 2
Find(key):

Thread 1

pools
(shared)

index
(shared) 5

0 1 2 3 4

0 1 2 3 4

3

for i in range(0,last_slot+1):
if (localPools[i] == key)

return i

return null

5

Array Index
Out of Bound

5 6 7 8 9

localPools = pools1 if pools_is_filled:
pools = ResizeDouble(pools)

last_slot ++
pools[last_slot] = key

2

Npgsql intermittent failure

localPools
(local)

115/147

Add(key):

Thread 2
Find(key):

Thread 1

pools
(shared)

index
(shared) 5

0 1 2 3 4

0 1 2 3 4

3

for i in range(0,last_slot+1):
if (localPools[i] == key)

return i

return null

5

Array Index
Out of Bound

5 6 7 8 9

localPools = pools1 if pools_is_filled:
pools = ResizeDouble(pools)

last_slot ++
pools[last_slot] = key

2

Npgsql intermittent failure

localPools
(local)

116/147

localPools = pools1

if pools_is_filled:
pools = ResizeDouble(pools)

last_slot ++
pools[last_slot] = key

2

3

for i in range(0,last_slot+1):
if (localPools[i] == key)

return i

return null

Npgsql intermittent failure

117/147

Add() temporally overlaps with Find()

Investigating Npgsql crash

Find()attempts to access invalid array index

Find()throws ArrayIndexOutOfBound exception

Root cause

ExplanationExplanation

Failure

118/147

Find() and Get()
temporally overlaps

Find() is running
too slow

Get() is running too
fast…

Limitations of statistical debugging

crash

119/147

Find() and Get()
temporally overlaps

crash

Our goals

Root-cause
identification

120/147

Find() and Get()
temporally overlaps

crash

index-out-of-bound
exception

array access
at invalid index

Explanation

Root-cause
identification

Our goals

121/147

statistical
debugging

fault
injectioncausality

group
testing

AID: Adaptive Interventional Debugging

122/147

statistical
debugging

fault
injection

causality

group
testing

AID

123/147

Finding candidate predicates

Always appear in
failed executions

foo()

bar()

Never appear in
successful executions

foo()
bar()

Ø Step 1: Program instrumentation finds all predicates

Ø Step 2: Statistical debugging finds correlated predicates

124/147

statistical
debugging

fault
injection

causality

group
testing

AID

125/147

Cause must temporally precede effect

P1

P2
P3

P4

P5

P9

P10

F

P6

P7

P8 P11

Temporal
precedence
graph

126/147

Approximating causality
P1

P2
P3

P4

P5

P9

P10

F

P6

P7

P8 P11

P1 may cause P8

127/147

Approximating causality
P1

P2
P3

P4

P5

P9

P10

F

P6

P7

P8 P11

P4 cannot cause P9

128/147

C is a counterfactual cause of E
If C had not occurred

E would not have occurred

Counterfactual causality

129/147

Intervention

130/147

statistical
debugging

fault
injection

causality

group
testing

AID

131/147

Find()

Add()

Fault injection

132/147

statistical
debugging

fault
injection

causality

group
testing

AID

133/147

Group testing

134/147

Adaptive group testing

135/147

AID applies group intervention
P1

P2
P3

P4

P5

P9

P10

F

P6

P7

P8 P11

136/147

statistical
debugging

fault
injection

causality

group
testing

AID

137/147

AID pruning

P3

P11

F

P10

P1

P2

138/147

139/147

Six real-world bugs

Data race Use-after-free Timing-bug

Network BuildAndTest HealthTelemetry

Random number
collision Order violation Race condition

140/147

Statistical debugging vs AID

0
10
20
30
40
50
60
70
80
90

100

Npgsql Kafka Azure Cosmos DB Network BuiltAndTest HealthTelementry

Predicates

Statistical Debugging AID

AID produces no false positives

141/147

Adaptive group testing vs AID

0

10

20

30

40

50

60

70

80

Npgsql Kafka Azure Cosmos DB Network BuiltAndTest HealthTelementry

Interventions

Adaptive GT AID

AID’s pruning reduces #Interventions

142/147

Theoretical analyses

CPD: Causal Path Discovery
GT: Group Testing
AID: Adaptive Interventional Debugging
TAGT: Traditional Adaptive Group Testing

Usability

Explainability

Trust

Dissertation outline
Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Data Summarization
by Example

[VLDB 2020] (demo)

Comparative User Study:
QBE vs SQL

[CHI 2020]*

Adaptive Interventional
Debugging
[SIGMOD 2020]

Data Change
Explanation

Explaining Tuple
Non-conformance

[SIGMOD 2019] (demo)

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

* under submission/revision 143/147

Part 4:
Proposed Contributions
& Tentative Timeline

Data Change
Explanation

How did my data change over last couple years?

145/147

• Existing approaches mostly focus on syntactic changes.

• Fail to provide consumable summary of changes.

Prior work

146/147

• Provide a consumable summary of semantic changes
that explains how two databases differ.

• Explains database evolution.

• Reveals patterns in data change.

Our goal

147/147

• Data collection

• Tuning SuDocu’s learning algorithm

• Evaluation
• Against ground-truth summaries
• Comparison with other baselines
• User study

Evaluating SuDocu

148/147

Usability

Explainability

Trust

Query by Example (QBE)
[VLDB 2019]

[SIGMOD 2018] (demo)

Data Summarization
by Example

[VLDB 2020] (demo)

Comparative User Study:
QBE vs SQL

[CHI 2020]*

Adaptive Interventional
Debugging
[SIGMOD 2020]

Data Change
Explanation

Explaining Tuple
Non-conformance

[SIGMOD 2019] (demo)

Conformance
Constraints: Trusted ML

[SIGMOD 2021]*

Current status

* under submission/revision 149/147

• October 2020: proposal defense

• November – December 2020: evaluating SuDocu
• January 2020: submit to VLDB 2021

• January – June 2021: work on Data Change Explanation Framework
• July 2021: submit to SIGMOD 2022

• June – August 2021: work on dissertation
• August 2021: final defense

Tentative timeline

150/147

• Fair classifiers: experiment
and evaluation

• Data profile debugger

• Data sampling by example

Other project affiliations

151/147

Acknowledgements

• Committee

• Mentors and collaborators

Acknowledgements

153/147

• Armand Asnani, UMass
• Lucy Cousins, UMass
• Nischal Dave, UMass
• Larkin Flodin, UMass
• Juliana Freire, NYU
• Sainyam Galhotra, UMass
• Maliha Tashfia Islam, UMass
• Eunice Jun, UW
• Beryl Larson, Wellesley College
• Genglin Liu, UMass
• Raoni Lourenço, NYU
• Raj Kumar Maity, UMass
• Kancha Masalia, UMass

• Sheshera Mysore, UMass
• Tony Ohmann, UMass
• Vincent Pun, UMass
• Sheikh Muhammad Sarwar, UMass
• Michael Satanovsky, Hopkins School
• Divesh Srivastava, AT&T
• Zoey Sun, Smith College
• Nishant Yadav, UMass

Acknowledgements

154/147

COMPUTING FOR THE COMMON GOOD

Anna Fariha
afariha@cs.umass.edu

people.cs.umass.edu/afariha

mailto:afariha@cs.umass.edu

