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Usability

Explainability

Trust

Democratization of data systems
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Makes data systems accessible to 
non-expert users.

• Applications
• Data access

• Querying relational databases
• Data integration
• Data transformation
• Data visualization
• Data summarization

• Text document summarization

Usability

Usability

Explainability

Trust                
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Trust
Enhances people’s confidence
towards data systems.

• Applications
• Artificial intelligence and machine learning

• Model predictions
• Novel interaction mechanisms

• Programming by example

Usability

Explainability

Trust
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Usability

Explainability

Explainability
Increases transparency of data 
systems.

• Applications
• Machine learning

• Model predictions

• Distributed systems
• Concurrent applications

• Data evolution
• Why/how two databases differ?

• Fairness in algorithms/software

Trust
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Usability

Explainability

Trust

Dissertation outline
Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Data Summarization 
by Example

[VLDB 2020] (demo)

Comparative User Study: 
QBE vs SQL

[CHI 2020]*

Adaptive Interventional 
Debugging
[SIGMOD 2020]

Data Change 
Explanation

Explaining Tuple 
Non-conformance

[SIGMOD 2019] (demo)

Conformance 
Constraints: Trusted ML

[SIGMOD 2021]*

* under submission/revision 6/147



Part 1: 
Usability of Data Systems Usability



Are data systems accessible to non-experts?

Who are our most 
valuable customers?
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How to express complex task specifications?
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• A step towards democratization of 
computational power.

• Enhances usability for both non-experts 
and experts.

Programming by example (PBE)

User
provides
examples

System
“guesses”

intent

Program
synthesis

Result
delivery
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SQuID 
Semantic similarity-aware Query Intent Discovery

Querying relational databases by example
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• Alice wants to find all Funny Actors from the IMDb database.

12/147



Challenge 1: understanding the schema
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Challenge 2: SQL expertise
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Query by example (QBE)

QBE
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Expectation vs reality

All actors
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Humans use context
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There is no “funny” attribute in the data

Discovering semantic similarity
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There is no “funny” attribute in the data

Discovering semantic similarity
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SQuID
Semantic Similarity-aware 
Query Intent Discovery
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

SQuID Outline

21/147



Semantic context: basic

• Directly affiliated with an entity.

person

birth year

gender

height

age

1962

Male

6’ 2’’

57

Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

• Aggregate over a basic property of an associated entity.
• number of comedy movies an actor appeared in.

movie

genre

language
person

40 
Comedy 
movies

10 Drama 
movies

67 
English 
movies

Semantic context: derived
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

Filters

SELECT 
person

FROM 
people 

WHERE 
color = orange

• Encode semantic context.
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Intended or co-incidental?

• Male
• Born in North America
• Appeared in 80+ Hollywood movies
• Appeared in 40+ comedy movies
• Appeared in 20+ drama movies
• Height above 5 feet
• Born after 1940
• …

Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

Abduction

Maximum likelihood estimation is abduction!

•Most likely explanation of an observation.
•Most likely query given the examples.
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

Problem definition

Query intent discovery: given a Database and 
Example, find Query such that:
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

Probabilistic abduction model

semantic context priorquery posterior

semantic context posterior query prior
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

Domain selectivity OutlierAssociation strength

SELECT * FROM p
WHERE 5 <= age <= 90

SELECT * FROM p
WHERE  25 <= age <= 30

age

25            30

0    5                                                                90   100
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

USA: 80% CAN: 20%

• Data selectivity
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

P(USA| country = USA) 
=  1 

Context Predicate 
in Query
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

country
… USA

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

P(USA| country = USA) 
=  1 

P(USA | No Filter)  
= 0.8 

Context Predicate 
in Query
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

country
… USA

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

P(USA| country = USA) 
=  1 

P(USA | No Filter)  
= 0.8 

country
… USA
… USA

P(USA | No Filter)  
= 0.8 * 0.8
= 0.64

Context Predicate 
in Query
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

country
… USA

country
… USA
… USA
… USA
… USA
… USA
… CAN
… USA
… CAN
… USA
… USA

P(USA| country = USA) 
=  1 

P(USA | No Filter)  
= 0.8 

country
… USA
… USA

P(USA | No Filter)  
= 0.8 * 0.8
= 0.64

P(USA | No Filter)  
= 0.8 * 0.8 * 0.8
= 0.51

country
… USA
… USA
… USA

country
… USA
… USA
… USA

Context Predicate 
in Query
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Modeling 
Semantic 
Context

Query 
Intent 

Discovery

Real-time 
Performance Evaluation

SQuID algorithm: to pick or drop filters?

With filter Without filter
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Modeling 
Semantic 
Context

Query Intent 
Discovery Real-time Evaluation

Real-time performance
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Modeling 
Semantic 
Context

Query Intent 
Discovery Real-time Evaluation

semantic property 
statistics

derived relations

 offline 
module

DB

meta-
data

inverted 
indexing

derived relation 
materialization

filter selectivity 
precomputation

example tuples query intent 
discovery

SQL 
query

result tuples
entity 

disambiguation

semantic context 
discovery

query 
abduction

αDB
abduction-ready 

database

Abduction-ready database

37/147



Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

1. How efficient is SQuID for large datasets and many examples?
2. Does SQuID infer the right query?
3. Can alternative techniques be effective in intent discovery?

• Query Reverse Engineering (TALOS, 2014)
• Positive and Unlabeled Learning (Elkan et al., 2008)

• Query run-time comparison
• Case studies

Evaluation
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

Datasets

5 benchmark 
queries

20 benchmark 
queries

633 MB 15 relations 
• person: 6M rows 
• movies: 1M rows 
• castinfo: 14M rows

16 benchmark 
queries
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

Experiment settings

Benchmark 
Query

Result

Ground Truth

Sample

Example

SQuID 
Result

Inferred 
Query

Compare
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

5 10 15 20 25 30
# Examples

0
5

10
15
20
25
30
35

T
im

e
(s

)

1x 10x 30x

How does SQuID perform with large datasets or 
many examples?

Linear in 
example size

Logarithmic 
in DB size

Abduction 
time is 

practical
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation
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SQuID works with few examples
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

Query reverse engineering (QRE)

Output

Exact match required

QRE
TALOS

Reverse 
Engineered 

Query

Input
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

SQuID outperforms QRE
Log 

scale

Log 
scale
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

Animation movies 
produced by Pixar

SQuID outperforms QRE
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

Original Query

SELECT 
DISTINCT movie.title

FROM 
movie, production, company, movietogenre, genre 

WHERE 
movie.id = production.movie_id AND 
production.company_id = company.id AND 
company.name LIKE '%Pixar%' AND 
movie.id = movietogenre.movie_id AND 
movietogenre.genre_id = genre.id AND 
genre.name = 'Animation';

SQuID outperforms QRE
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

Animation movies 
produced by Pixar

Original Query

SELECT 
DISTINCT movie.title

FROM 
movie, production, company, movietogenre, genre 

WHERE 
movie.id = production.movie_id AND 
production.company_id = company.id AND 
company.name LIKE '%Pixar%' AND 
movie.id = movietogenre.movie_id AND 
movietogenre.genre_id = genre.id AND 
genre.name = 'Animation';

SQuID Query

SELECT 
DISTINCT movie.title

FROM 
movie, production, company, movietogenre, genre 

WHERE 
movie.production_year >= 1984 AND 
movie.production_year <= 2021 AND 
movie.country = USA AND 
genre.name = 'Animation' AND 
company.name = 'Pixar' AND 
movie.id = movietogenre.movie_id AND 
genre.id = movietogenre.genre_id AND
movie.id = movietoproduction.movie_id AND
company.id = movietoproduction.company_id

SQuID outperforms QRE
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Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation

Animation movies 
produced by Pixar

Original Query

SELECT 
DISTINCT movie.title

FROM 
movie, production, company, movietogenre, genre 

WHERE 
movie.id = production.movie_id AND 
production.company_id = company.id AND 
company.name LIKE '%Pixar%' AND 
movie.id = movietogenre.movie_id AND 
movietogenre.genre_id = genre.id AND 
genre.name = 'Animation';

SQuID Query

SELECT 
DISTINCT movie.title

FROM 
movie, production, company, movietogenre, genre 

WHERE 
movie.production_year >= 1984 AND 
movie.production_year <= 2021 AND 
movie.country = USA AND 
genre.name = 'Animation' AND 
company.name = 'Pixar' AND 
movie.id = movietogenre.movie_id AND 
genre.id = movietogenre.genre_id AND
movie.id = movietoproduction.movie_id AND
company.id = movietoproduction.company_id

SQuID outperforms QRE

Query Reverse 
Engineering 

overfits
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SQuID outperforms machine learning

0.1 0.4 0.7 1.0

0.2
0.4
0.6
0.8
1.0

Precision

SQuID PU (DT) PU (RF)

0.1 0.4 0.7 1.0
Fraction of positive data used as example

(a)

Recall

0.1 0.4 0.7 1.0

F-score

1 4 7 10
Scale factor

(b)

0

10

T
im

e
(s

)

Scalability

PU learning 
requires >= 70% 
data as example

PU learning 
does not 

scale

Generic machine learning cannot model RDBMS specific assumptions

Modeling 
Semantic 
Context

Query Intent 
Discovery

Real-time 
Performance Evaluation
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SQuID SQL

Comparative user studies: QBE vs SQL
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SQuID increased user efficiency 
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Overall, SQuID generated more accurate results
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SQuID was easier to use
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Participants were satisfied with SQuID results
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SQuID or SQL?
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“Even if I forget about syntax . . . figuring out how to go about 
writing the pseudo-code query for funny actors [is difficult]”

“Vague tasks are generally a lot more open to interpretation. 
Coding up a query that meets someone’s vague specifications
[is] hard . . . It was very hard to nail down what the correct 
definition of funny is.”

Anecdotal comments
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Personalized text document summarization

SuDocu: Summarizing 
Documents by Example
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Personalized summarization
Document

Personalized summary
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Summarization by example

Example Summaries Automatic Summaries
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Utah

Submit Summary

S�Doc�
In 1957, Utah created the Utah State Parks Commission with four parks. Today, Utah State Parks manages 43 
parks and several undeveloped areas totaling over 95,000 acres of land and more than 1,000,000 acres of water. 
Utah's state parks are scattered throughout Utah, from Bear Lake State Park at the Utah/Idaho border to Edge of 
the Cedars State Park Museum deep in the Four Corners region and everywhere in between. Utah State Parks is 
also home to the state's o� highway vehicle o�ce, state boating o�ce and the trails program.[33]

Sentences (120):

Example Summaries

Summarize

Arizona MontanaUtah

Explanation (PaQL)

Massachusetts

It borders on the Atlantic Ocean to the east, the states of Connecticut 
and Rhode Island to the south, New Hampshire and Vermont to the north, 
and New York to the west. The large coastal plain of the Atlantic Ocean in 
the eastern section of the state contains Greater Boston, along with most 
of the state's population, as well as the distinctive Cape Cod peninsula. 
Along the western border of Western Massachusetts lies the highest 
elevated part of the state, the Berkshires. Most of Massachusetts has a 
humid continental, with cold winters and warm summers. The climate of 
Boston is quite representative for the commonwealth, characterized by 
summer highs of around 81 °F (27 °C) and winter highs of 35 °F (2 °C), 
and is quite wet. Frosts are frequent all winter, even in coastal areas due 
to prevailing inland winds.

SELECT PACKAGE(*)
FROM state_sentences
WHERE state = 'Massachusetts'
SUCH THAT
  SUM(topic_1)  BETWEEN 0.06 AND 0.45 AND
  SUM(topic_2)  BETWEEN 0.24 AND 0.79 AND
  SUM(topic_3)  BETWEEN 0.41 AND 0.84 AND
  SUM(topic_4)  BETWEEN 0.83 AND 1.85 AND
  SUM(topic_5)  BETWEEN 0.95 AND 1.29 AND
  SUM(topic_6)  BETWEEN 2.64 AND 3.20 AND
  SUM(topic_7)  BETWEEN 2.14 AND 4.72 AND
  SUM(topic_8)  BETWEEN 0.07 AND 0.43 AND
  SUM(topic_9)  BETWEEN 0.07 AND 0.41 AND
  SUM(topic_10) BETWEEN 0.58 AND 0.84
MAXIMIZE
  SUM(m_score)

topic_6: climate, temperature, summer, winter, ...

Generated SummariesSummary Input

The state of Utah relies heavily on 
income from tourists and travelers 
visiting the state's  parks and ski resorts. 
Today, Utah State Parks  manages 43 
parks and several undeveloped areas 
totaling over 95,000 acres of land and 
more than 1,000,000 acres of water. 
With �ve national parks (Arches, Bryce 
Canyon, Canyonlands, Capitol Reef, and 
Zion), Utah has  the third most national 
parks of any state after  Alaska and 
California. Temperatures dropping below 
0 °F (�18 °C) should be expected on 
occasion in most areas of the state most 
years.

Arizona is well known for its desert Basin 
and Range region in the state's southern 
portions, which is rich in a landscape of 
xerophyte plants such as the cactus. The 
canyon is one of the Seven Natural 
Wonders of the World and is largely 
contained in the Grand Canyon National  
Park—one of the �rst national parks in 
the  United States. Extremely cold 
temperatures are not unknown; cold air 
systems from the northern states and 
Canada occasionally push into the state, 
bringing temperatures below 0 °F (�18 
°C) to the state's northern parts.

The Rocky Mountain Front is a signi�cant feature 
in the state's north-central portion, and isolated 
island ranges that interrupt the prairie landscape 
common in the central and eastern parts of the 
state. It contains the state's highest point, 
Granite Peak, 12,799 feet high. Farther east, 
areas such as Makoshika State Park near 
Glendive and Medicine Rocks State Park near 
Ekalaka contain some of the most scenic 
badlands regions in the state. The coldest 
temperature on record for Montana is also the 
coldest temperature for the contiguous United 
States. On January 20, 1954, �70 °F or �56.7 °C 
was recorded at a gold mining camp near Rogers 
Pass. Temperatures vary greatly on cold nights.

1

2

3

4

5

SuDocu interface
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Usability

Explainability

Trust

Dissertation outline
Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Data Summarization 
by Example

[VLDB 2020] (demo)

Comparative User Study: 
QBE vs SQL

[CHI 2020]*

Adaptive Interventional 
Debugging
[SIGMOD 2020]

Data Change 
Explanation

Explaining Tuple 
Non-conformance

[SIGMOD 2019] (demo)

Conformance 
Constraints: Trusted ML

[SIGMOD 2021]*

* under submission/revision 61/147



Part 2:
Trust in Data Systems Trust

62



To trust or not to trust?
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To trust or not to trust?
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Conformance constraints: trusted machine learning
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Trusting ML predictions
Training data

Red

Yellow

Green

New data

Pink

Orange
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Trusting ML predictions

Red

Yellow

Green

Training data New data

Pink

Orange

Non-conforming

Green
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Non-conformance = untrustworthy prediction

Is it 
non-conforming?

Detection
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A real-world example: airlines dataset
Regression task: predict arrival delay

OVERNIGHT flight

DAYTIME 
flights
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A real-world example: airlines dataset
• Trained with DAYTIME flights only
• Constraints observed in DAYTIME flights

• “departure time is earlier than arrival time”
• “their difference is very close to flight duration”

Constraint violation correlates with high regression error

• OVERNIGHT flights 
• violate DAYTIME flights’ 

constraints
• incur high regression error
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Conformance constraints (CCs)

ML pipelines drop low-variance dimensions 
to achieve dimensionality reduction.

ML models assume that training data’s 
constraints/properties will continue to hold 
during serving.
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Conformance constraints

Ø constraints that the data satisfies
Ø capture the invariants of the data
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• Encode linear arithmetic relationship over multiple attributes.

Conformance constraints

-𝝐 ≤ (60 . arr_hour + arr_min) – (60 . dep_hour + dep_min) – duration ≤ 𝝐

Projection

Lower bound Upper bound
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Conformance constraints: example

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

10 ≤ BMI ≤ 40

-40 ≤ (28 X Height— Weight) ≤ 30 
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Violation of conformance constraint

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 231

10 ≤ BMI ≤ 4010 ≤ BMI ≤ 40
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Degree of violation

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 231
6 feet 170 lbs 20000

10 ≤ BMI ≤ 4010 ≤ BMI ≤ 40
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Projection

-𝝐 ≤ (60 . arr_hour + arr_min) – (60 . dep_hour + dep_min) – duration ≤ 𝝐

ProjectionLower bound Upper bound
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• Infinitely many projections possible
• Pick the low-variance projections.
• Because?

• They more useful in detecting trends in the data.

• Do we pick all low-variance projections?
• Pick a set of projections with low pair-wise correlations.
• Because?

• They complement each other.

What are “good” projections?
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Low-variance projections

F1

F2

F3Low 
variance

High 
variance

High 
variance

79/147



Projections with small mutual correlation
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• Principal Component Analysis (PCA)
• Produces projections with small mutual correlations

• Intuition: principal components are orthogonal to each other

• Computing violation
• Weigh CCs with low variance projections more
• Weigh CCs with high variance projections less

Discovering projections: PCA

weight
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Disjunctive conformance constraints
• Divide the dataset into disjoint

partitions.
• Learn CCs for each partition.
• Compute disjunctive CCs.
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• Runtime
• Linear in number of tuples in the dataset
• Cubic in number of attributes
• Highly parallelizable

• Memory
• Quadratic in number of attributes

Complexity analysis
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• Trusted Machine Learning
• Is there a relationship between CC violation and the 

ML model’s prediction accuracy?

• Data-drift
• Can CCs be used to quantify data drift?

Experimental results: two applications
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Trusted machine learning: airlines dataset
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Data drift: EVL benchmark (1/4)
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Data drift: EVL benchmark (2/4)

87/147



Data drift: EVL benchmark (3/4)
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Data drift: EVL benchmark (4/4)
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Usability

Explainability

Trust

Dissertation outline
Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Data Summarization 
by Example

[VLDB 2020] (demo)

Comparative User Study: 
QBE vs SQL

[CHI 2020]*

Adaptive Interventional 
Debugging
[SIGMOD 2020]

Data Change 
Explanation

Explaining Tuple 
Non-conformance

[SIGMOD 2019] (demo)

Conformance 
Constraints: Trusted ML

[SIGMOD 2021]*

* under submission/revision 90/147



Part 3:
Explanation Frameworks Explainability



Why ML models fail for certain tuples?

How is this 
different?
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Why do systems (sometimes) behave unexpectedly?

Why did the 
system crash?
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ExTuNe
Explaining Tuple 
Non-conformance
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Is it 
non-conforming?

Detection

Why is it 
non-conforming?

Explanation

Conformance 
constraints

ExTuNe
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Tuple-level explanation
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Tuple-level explanation

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 231
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Tuple-level explanation

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 231
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Intervention reveals causality

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 25.9

Mean = 
25.9

change
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Intervention reveals causality

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

6 feet 170 lbs 25.9

Blame!
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Intervention reveals causality

Height Weight BMI
6 feet 142 lbs 19.3
5 feet 170 lbs 33.2
5 feet 130 lbs 25.4

16 feet 70 lbs 25.9

Blame!Blame!
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ExTuNe principles: actual causality

Actual Causality

“When K other events are removed, then C is 
a counterfactual cause of E”

• C is an actual cause of E
• C’s responsibility is 1/(K + 1)
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ExTuNe interface
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ExTuNe evaluation: case studies

Cardiovascular 
disease

Mobile 
price

House 
price

LED malfunctioning
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Anomaly in COVID dataset

Conformance constraint: #positive + #negative = #total

178 + 120 
≠ 218 

178 + 120 
= 298
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Explaining data systems’ failure

AID: Causality-guided  Adaptive Interventional Debugging
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Ø concurrent
Ø parallel
Ø asynchronous

DBMS are complex and contain bugs
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Intermittent failure

DBMS

{
name = "SIGMOD",
venue = "Portland",
year = 2020

}

sometimes succeeds sometimes fails

Runtime conditions

Ø Thread scheduling
Ø Timing

Input
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Motivation and goal

Can’t 
reproduce!

Help me 
debug!

Investigate root causes 
of intermittent failure
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Npgsql intermittent failure
[ADO.NET data provider for PostgreSQL]
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Add(key):

Thread 2
Find(key):

Thread 1

4

0 1 2 3 4

localPools
(local) 0 1 2 3 4

localPools = pools1

Npgsql intermittent failure
pools 

(shared)

index 
(shared)
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Add(key):

Thread 2
Find(key):

Thread 1

pools 
(shared)

index
(shared) 5

0 1 2 3 4

0 1 2 3 4

5 6 7 8 9

localPools = pools1 if pools_is_filled:
pools = ResizeDouble(pools) 

last_slot ++
pools[last_slot] = key

2

Npgsql intermittent failure

localPools
(local)
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Add(key):

Thread 2
Find(key):

Thread 1

pools 
(shared)

index
(shared) 5

0 1 2 3 4

0 1 2 3 4

3

for i in range(0,last_slot+1):    
if (localPools[i] == key)

return i

return null

5

5 6 7 8 9

localPools = pools1 if pools_is_filled:
pools = ResizeDouble(pools) 

last_slot ++
pools[last_slot] = key

2

Npgsql intermittent failure

localPools
(local)
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Add(key):

Thread 2
Find(key):

Thread 1

pools 
(shared)

index
(shared) 5

0 1 2 3 4

0 1 2 3 4

3

for i in range(0,last_slot+1):    
if (localPools[i] == key)

return i

return null

5

Array Index 
Out of Bound

5 6 7 8 9

localPools = pools1 if pools_is_filled:
pools = ResizeDouble(pools) 

last_slot ++
pools[last_slot] = key

2

Npgsql intermittent failure

localPools
(local)
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Add(key):

Thread 2
Find(key):

Thread 1

pools 
(shared)

index
(shared) 5

0 1 2 3 4

0 1 2 3 4

3

for i in range(0,last_slot+1):    
if (localPools[i] == key)

return i

return null

5

Array Index 
Out of Bound

5 6 7 8 9

localPools = pools1 if pools_is_filled:
pools = ResizeDouble(pools) 

last_slot ++
pools[last_slot] = key

2

Npgsql intermittent failure

localPools
(local)
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localPools = pools1

if pools_is_filled:
pools = ResizeDouble(pools) 

last_slot ++
pools[last_slot] = key

2

3

for i in range(0,last_slot+1):    
if (localPools[i] == key)

return i

return null

Npgsql intermittent failure
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Add() temporally overlaps with Find()

Investigating Npgsql crash

Find()attempts to access invalid array index

Find()throws ArrayIndexOutOfBound exception

Root cause

ExplanationExplanation

Failure
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Find() and Get() 
temporally overlaps

Find() is running 
too slow

Get() is running too 
fast…

Limitations of statistical debugging

crash
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Find() and Get() 
temporally overlaps

crash

Our goals

Root-cause 
identification
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Find() and Get() 
temporally overlaps

crash

index-out-of-bound 
exception

array access 
at invalid index

Explanation

Root-cause 
identification

Our goals
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statistical 
debugging

fault
injectioncausality

group
testing

AID: Adaptive Interventional Debugging
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statistical 
debugging

fault
injection

causality

group
testing

AID
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Finding candidate predicates

Always appear in 
failed executions

foo()

bar()

Never appear in 
successful executions

foo()
bar()

Ø Step 1: Program instrumentation finds all predicates

Ø Step 2: Statistical debugging finds correlated predicates
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statistical 
debugging

fault
injection

causality

group
testing

AID
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Cause must temporally precede effect

P1

P2
P3

P4

P5

P9

P10

F

P6

P7

P8 P11

Temporal 
precedence 
graph
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Approximating causality
P1

P2
P3

P4

P5

P9

P10

F

P6

P7

P8 P11

P1 may cause P8
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Approximating causality
P1

P2
P3

P4

P5

P9

P10

F

P6

P7

P8 P11

P4 cannot cause P9
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C is a counterfactual cause of E
If C had not occurred

E would not have occurred

Counterfactual causality
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Intervention
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statistical 
debugging

fault
injection

causality

group
testing

AID
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Find()

Add()

Fault injection
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statistical 
debugging

fault
injection

causality

group
testing

AID
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Group testing
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Adaptive group testing
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AID applies group intervention
P1

P2
P3

P4

P5

P9

P10

F

P6

P7

P8 P11
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statistical 
debugging

fault
injection

causality

group
testing

AID
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AID pruning

P3

P11

F

P10

P1

P2
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Six real-world bugs

Data race Use-after-free Timing-bug

Network BuildAndTest HealthTelemetry

Random number 
collision Order violation Race condition
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Statistical debugging vs AID

0
10
20
30
40
50
60
70
80
90

100

Npgsql Kafka Azure Cosmos DB Network BuiltAndTest HealthTelementry

# Predicates

Statistical Debugging AID

AID produces no false positives
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Adaptive group testing vs AID

0

10

20

30

40

50

60

70

80

Npgsql Kafka Azure Cosmos DB Network BuiltAndTest HealthTelementry

# Interventions

Adaptive GT AID

AID’s pruning reduces #Interventions
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Theoretical analyses

CPD: Causal Path Discovery
GT: Group Testing
AID: Adaptive Interventional Debugging
TAGT: Traditional Adaptive Group Testing



Usability

Explainability

Trust

Dissertation outline
Query by Example (QBE)

[VLDB 2019]
[SIGMOD 2018] (demo)

Data Summarization 
by Example

[VLDB 2020] (demo)

Comparative User Study: 
QBE vs SQL

[CHI 2020]*

Adaptive Interventional 
Debugging
[SIGMOD 2020]

Data Change 
Explanation

Explaining Tuple 
Non-conformance

[SIGMOD 2019] (demo)

Conformance 
Constraints: Trusted ML

[SIGMOD 2021]*

* under submission/revision 143/147



Part 4: 
Proposed Contributions
& Tentative Timeline

Data Change 
Explanation



How did my data change over last couple years?
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• Existing approaches mostly focus on syntactic changes.

• Fail to provide consumable summary of changes.

Prior work
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• Provide a consumable summary of semantic changes 
that explains how two databases differ.

• Explains database evolution.

• Reveals patterns in data change.

Our goal
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• Data collection

• Tuning SuDocu’s learning algorithm

• Evaluation
• Against ground-truth summaries
• Comparison with other baselines
• User study

Evaluating SuDocu
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Usability

Explainability

Trust

Query by Example (QBE)
[VLDB 2019]

[SIGMOD 2018] (demo)

Data Summarization 
by Example

[VLDB 2020] (demo)

Comparative User Study: 
QBE vs SQL

[CHI 2020]*

Adaptive Interventional 
Debugging
[SIGMOD 2020]

Data Change 
Explanation

Explaining Tuple 
Non-conformance

[SIGMOD 2019] (demo)

Conformance 
Constraints: Trusted ML

[SIGMOD 2021]*

Current status

* under submission/revision 149/147



• October 2020: proposal defense

• November – December 2020: evaluating SuDocu
• January 2020: submit to VLDB 2021

• January – June 2021: work on Data Change Explanation Framework
• July 2021: submit to SIGMOD 2022

• June – August 2021: work on dissertation
• August 2021: final defense

Tentative timeline
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• Fair classifiers: experiment 
and evaluation

• Data profile debugger

• Data sampling by example

Other project affiliations
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