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Abstract

Automatic image captioning refers to the problem of constructing natural language
description of an image. This is an important problem with practical significance
that involves two major artificial intelligence domains — computer vision and
natural language processing. In this project, we used multi-task learning to solve
the automatic image captioning problem. In the proposed multi-task learning
setting, the primary task is to construct caption of an image and the auxiliary task is
to recognize the activities in the image. The two tasks share a latent representation
of images and it is empirically shown that introducing the auxiliary task helps
improving the shared layer representation and thus improves the performance of
the original task. The novelty in this project relies in incorporating the auxiliary
task of activity recognition in a multi-task learning framework for solving the
original task of generating captions of images. We evaluate the proposed multi-task
learning model on publicly available benchmark Microsoft COCO dataset and the
experiments show the effectiveness of the model.

1 Introduction

Automatic image captioning refers to the problem of constructing a natural language description of an
image. This task is challenging than the image classification and object recognition task, because it
not only requires detection of objects within the image, but also requires detection of their relationship,
expression, and activity presented in the image. Furthermore, the perceived information must be
translated to some human understandable natural language. The main obstacle is the task of detecting
the salient visual information that comes naturally to human. An important application for automatic
image captioning system is in aiding visually impaired persons by providing them information about
the content of the image in natural language. Another application is in search engines where images
can be searched by sentence fragments. Apart from the practical applications, image captioning
requires the machine learning model to learn image understanding which is a significant computer
vision challenge. The image captioning model can be further extended to video captioning which
also has many practical applications including alert systems for enhancing security.

Key steps of image captioning task include extracting salient high level features from an image,
detecting objects from those features, detecting salient visual information (relationship, interaction,
expression, activity) involving those objects, and finally generating a natural language description
as a sequence of words to express the content of an image. Some existing works [5, 10] address
the image captioning problem by concatenating modules that solve these steps. More recent line of
works [16, 15] aims to build an end to end system that uses Convolutional Neural Network (CNN)
for salient feature detection and on top of that a Recurrent Neural Network (RNN) that generates
sequential words to construct image captions. Several recent methods [18, 19] also proposed semantic
attention based neural models for image captioning.

Our approach is different from the existing approaches since we model the image captioning problem
as a multi-task learning problem with image activity detection as the auxiliary task. Unlike previous
work [19], our approach does not explicitly fuse the semantic output to the RNN hidden layers,
instead, through the auxiliary task of activity detection within an image, a bias is induced to the RNN.
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In other words, the auxiliary task forces the shared layer to represent certain features significant for
image captioning that might have been ignored if the auxiliary task was not included. To the best
of our knowledge, there exists no such multi-task learning framework for image captioning in the
existing literature.

Attention based approaches [18, 19] are designed to put attention on objects, rather than the activities.
Our approach is also novel in a sense that it tries to capture the features of an image that can represent
certain activities. This is certainly more challenging than simple object detection task. Since the
caption of an image usually describes some event happening in that image, the features that represent
activities are of primary importance. In this project, we aim to develop a system that will solve two
tasks in parallel in a multi-task learning framework. The shared layer is responsible for extracting
intermediate salient features from an image and forward those features as input to both tasks —
primary task of caption generation and auxiliary task of activity detection. Formally, the primary
task is: given an image I and a predefined set of words V , generate an ordered subset of words
C =< c1, c2, ..., cn >, where ∀1≤i≤n ci ∈ V and the sentence constructed from the sequence
of words describes the content of the image. The auxiliary task is a simple multi-label multi-class
classification problem for activity detection. Our proposed model uses a CNN to generate high level
features from an image that are used as input to the shared feature extractor. The output of this shared
layer is used as input features to both learning tasks.

In our experiment, we measure performance under different settings of the multi-task learning
framework. BLEU score [13] is used as similarity metric to measure similarity between ground
truth captions and generated captions. The experiments show that incorporating the auxiliary task
improves caption prediction. The rest of the report is organized as follows: Section 2 describes
the related works and contrasts our proposed approach with them. In Section 3, we describe our
proposed framework. We present the dataset, experiment design, and results in Sections 4, 5, and 6,
respectively and conclude the report in Section 7.

2 Related Work

Recent methods for object detection and recognition have significantly motivated the image captioning
problem. One of the early non-neural approaches on describing images was done by Farhadi et al.
[5] who proposed a method based on multi-label Markov random field involving an intermediate
meaning space to generate short descriptive sentences from images. The proposed approach works
in two phases — mapping the image to a meaning space in the format of <object, action, scene>,
and mapping the meaning space to a sentence using some predefined templates. Kulkarni et al. [10]
also proposed a template based text generation method for describing images. The limitation in this
approach is that it only describes the relative position of various objects detected in an image. Hence,
the method is only capable of capturing the spatial relationship among objects. Being a neural model,
our approach has much more capacity than these non-neural models and is able to learn from the
provided captions to produce versatile captions.

More recent line of works on image captioning involves a deep convolutional neural network layer
for high level feature extraction from images. Vinyals et al. [15, 16] proposed Neural Image Caption
(NIC) — a generative model based on deep recurrent architecture that maximizes the likelihood of
generating the target caption given an input image. In NIC, CNN is used as an image encoder to
produce a fixed length feature vector to represent high level features of the input images. The idea
is to chop off the final output layer of a CNN based image classification task and use the output
of the last hidden layer as input to the caption generator recurrent network for sequence modeling.
NIC combines pre-trained sub-networks for vision and language models. Our approach shares some
similarity in the lower level of NIC, however, NIC model is an end-to-end single objective task,
where our approach involves multi-task learning. Moreover, NIC makes use of language model that
is trained from external corpora where we do not assume such external knowledge.

We use a slightly modified version of NIC as our baseline approach. We describe NIC model in
detail here. NIC uses a probabilistic model to maximize the probability of the correct caption. The
formulation is provided in Equation 1. Here θ denotes the model parameters, I is the input image and
S is the corresponding target caption. The tuple (I, S) denotes a training image and caption pair.

θ∗ = argmax
θ

∑
(I,S)

logP (S|I; θ) (1)
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Since S denotes a sequence of words < S0, S1, ..., SN > of length N , the joint probability P (S|I; θ)
can be expressed using chain rule as shown in Equation 2.

logP (S|I; θ) =
t=N∑
t=1

logP (St|I, S0, S1, ..., St−1; θ) (2)

For image representation NIC uses CNN and for word representation word embedding model is used.
For modeling the structure in Equation 2, NIC uses Long Short Term Memory (LSTM) [6], which is
very suitable for sequence prediction. For training, the output of t-th LSTM is fed as the input to
(t+ 1)-th LSTM. For prediction, the authors mention two approaches — (1) Sampling words from
the probability distribution obtained in the LSTM output layer at each time step, and (2) BeamSearch
that generates top k sentences at time t− 1 to generate sentences at time t and keeps top-k among
them. The modified approach we use as the baseline in this report uses the ground truth captions
instead of previous time step’s LSTM output as input to the LSTM at next time step.

Karpathy et al. [8, 9] proposed a model that is built with a combination of CNN, bi-directional RNN,
and a structured objective. Unlike other approaches that limit the image description to a sentence, the
proposed approach aims at generating dense description of images. The key idea in their approach
is to align sentence fragments in image description to corresponding image regions to better learn
visual information in images. For text generation from input images, they introduced a multimodal
RNN architecture. This model is particularly useful to generate description of previously unseen
combination of known image regions. Instead of image regions, our proposed approach focuses on
activity of an image that is overlooked by many state-of-the art approaches.

Xu et al. [18] and You et al. [19] proposed attention based image captioning models for better
describing content of images. The approach in [18] focuses on spatial attention and the authors have
shown visually how the trained model can fix its gaze on salient objects while generating sentences
as captions. The model consists of CNN for extracting salient image features and RNN for learning
word sequence generation. The key idea in this approach is incorporating attention that mimics
human visual system while constructing the caption. Unlike the static features that are generated at
once from the CNN, the attention allows features to be produced dynamically. Since the RNN is
capable of accepting sequential inputs, the dynamic salient features can improve sentence generation
as the RNN can attend different objects during different temporal steps. The approach described in
[19] can attend multiple salient objects with differently assigned weights and dynamically switch
attention among objects. A shortcoming of such attention based models is that they mostly attend
to objects, but not activities within an image. Since objects will dominate activities in an image,
without explicit supervision, it is unlikely that the salient features will represent activities. However,
activities play an important role when it comes to caption generation. Our proposed approach can be
augmented to such attention based models to attend activities.

Chen et al. [3] proposed a method for bidirectional mapping between images and captions using RNN.
The model aims at both generating description from input image and reconstructing visual features
from given description. Johnson et al. [7] proposed a dense captioning model that both localizes and
describes salient image regions via producing rich annotations of objects. Lu et al. [12] proposed a
modified version of attention based captioning where the model is not forced to always attend the
visual features. There exists several other notable works in image captioning [1, 14, 11, 17, 4] that
include attention based mechanism, nearest neighbor based approach, bidirectional LSTM etc. Our
proposed approach is novel in two ways — (1) it incorporates multi-task learning with a relevant
and well suited auxiliary task of activity detection, and (2) it addresses the issue of extracting salient
features representing activities within an image that was not addressed by any of the previous works.

3 Methodology

In this project, we propose a multi-task learning framework to solve the image caption construction
problem. The model aims at solving two different objectives — activity detection and caption
generation. Both of the activities share a common layer. Our primary objective is to learn caption
generation and activity detection is an auxiliary task. When the model tries to solve the auxiliary task,
which is related to the primary task, it learns to generalize better to perform the original task. This
happens due to the fact that the auxiliary task requires domain specific features which is often helpful
to represent high level related features for the original task. Since both of the tasks share the learned
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Figure 1: Multi-task learning architecture for image captioning

features, learning useful features for solving the auxiliary task can in turn help to solve the original
task. Through training the model to solve the auxiliary task, we are “forcing” the model to solve the
original task by making use of the features more suitable for solving the auxiliary task. This can
be compared with the regularization technique. When we regularize a machine learning model, we
force the model to learn weights under certain constraints (e.g., minimize the L2 norm of the weight
vector). Similarly, in multi-task learning with auxiliary task, we force the model to learn to make use
of the features better suitable for the auxiliary task.

The multi-task learning framework is shown in Figure 1. The framework can be divided into 5
components — (1) CNN layer for learning rich features from raw images, (2) Shared layer for
learning features for optimizing two parallel tasks, (3) Word embedding layer for learning how to
represent words in terms of feature vectors, (4) Multi-label multi-class classification module for
solving the activity detection task, and (5) Long short term memory (LSTM) for caption generation.
We discuss each of the components below.

3.1 CNN Layer

For generating high level features from the raw image, we have used VGG-16 — a deep pre-trained
CNN model. We have extracted features from fc7 layer of that model. Te details is provided in
Section 4. Using principal component analysis, a compressed representation of the high level features
of dimension 512 is used. We did not take output of deeper layer since they tend to lose information
that are not relevant for the task they were originally designed to solve. Most tasks tend to solve the
image classification or object detection problem and do not focus on the activity expressed in the
image. Hence, we use shared layers to learn features representing activities inside an image and we
discuss that next.
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3.2 Shared Layers

The high level features extracted from the VGG-16 fc7 layer is a vector of 512 elements and is fed
as the input to the hidden layer 1. This hidden layer converts the input to a vector of 256 elements.
ReLU non-linearity is applied to the output of this hidden layer and fed as input to the second hidden
layer, hidden layer 2. This layer further compresses the 256 element vector to 128 element vector.
Another ReLU non-linearity is applied to the hidden layer 2 output. Up to this point, the learning is
shared among two parallel tasks. This 128 element feature vector is fed as input to both the activity
detection module and the caption generation module. The reason for designing these two shared
hidden layers is to make the model learn salient features for activity detection so that it can aid in
caption generation. The shared layers aim at minimizing loss from both of the learning tasks in the
proposed multi-task learning setting.

3.3 Word Embedding

For encoding the captions, we have produced a one-hot-vector representation of each word within
the vocabulary of 1004 words. We allowed the caption length to be at most 30. If the caption length
is less than 30, a special word <NULL> is assigned to fill up the empty slots. We also used two
special words <START> and <END> for indicating the start and end of a caption, respectively. For each
caption, we generated a 30×1004 matrix to represent the caption. Each row in that matrix represents
one word and exactly one column in each row is set to 1. For vector representation of words, we have
used Word2Vec1. We first trained the Word2Vec model with all captions available in the dataset. This
results in a mapping between each word in the vocabulary to a feature vector of length 128. Using
the weight vectors learned from the word embedding model, we can map the one-hot-vector of 1004
elements to a vector of 128 elements. Since our caption is encoded by a 30×1004 matrix, the word
embedding layer converts it to a 30×128 matrix.

3.4 Multi-label Multi-class Classification for Activity Detection

The problem of activity detection from images is a multi-class problem since there are a number of
different possible activities that an image can represent. We have found 78 activities from the captions
of the dataset. This is also a multi-label problem since one image can represent multiple activities.
For example, in Figure 1, the sample image represents two activities — dancing and looking. The
activity detection layer takes a 128 element vector as its input and produces a 78 element vector as its
output. Each element of this output vector can be interpreted as class score of the activities. Since it
is a multi-label problem, we use sigmoid logistic function to map the scores to probability values for
better interpretability. For activity prediction, we use a threshold of 0.5 to decide whether a certain
activity is represented by an image or not. The pipeline for activity detection from input image I is
expressed using Equations 3 – 7. We compute the loss using binary cross entropy loss as shown in
Equation 8 where yA is a 0-1 vector with 1 at correct class labels and ŷA is a vector with probability
scores for each activity label. We use C to represent the set of all possible activity labels.

X1 = CNN(I) (3)
H1 = ReLU(w1X1 + b1) (4)
H2 = ReLU(w2H1 + b2) (5)
H3 = w3H2 + b3 (6)

ŷA =
1

1 + e−H3
(7)

loss(ŷA, yA) = − 1

|C|
∑
c∈C

(
yAc log ŷAc + (1− yAc ) log(1− ŷAc )

)
(8)

3.5 LSTM for Caption Generation

We have used LSTM for caption generation since it is a sequence prediction task and LSTM is very
well suited for it. The input of each time step of LSTM is the 128 element feature vector for word
at the previous time step. For training, we use the words from ground truth captions. However,

1code.google.com/archive/p/word2vec/
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for the actual prediction task, we will not have any ground truth caption available. Hence, in that
case, output word from the LSTM at previous time step is fed as input to the LSTM at next time
step. The initial hidden layer of the LSTM at first time step consists of the 128 element feature
vector representing the image. Note that, this feature vector is shared with the activity detection
task. LSTM uses the hidden state and input to compute cell state and propagates both the hidden
state and the cell state to the LSTM at next time step. The output of the LSTM at each time step is
decoded using a word decoding layer that maps 128 element vector to a 1004 element vector. Since
this is a single-label multi-class problem (i.e., at each time step, we expect exactly one word), we
use softmax function to obtain normalized probability on the 1004 element vector. Then we pick the
word with maximum probability as the predicted word. The computation inside LSTM at time step
t is presented in Equations 9 – 16. Sc denotes the cell state and Sh denotes the hidden state of the
LSTM. Ai, Af , Ag , and Ao denote the input, forget, block, and output gates respectively.

X2 = WordEmbedding(Caption) (9)

S−1h = H2 (10)

Ati = σ(WiiX
t
2 + bii +WhiS

t−1
h + bhi) (11)

Atf = σ(WifX
t
2 + bif +WhfS

t−1
h + bhf ) (12)

Atg = tanh(WigX
t
2 + big +WhgS

t−1
h + bhg) (13)

Ato = σ(WioX
t
2 + bio +WhoS

t−1
h + bho) (14)

Stc = Atf × Stc +Ati ×Atg (15)

Sth = Ato × tanh(Stc) (16)

We perform word decoding using Equation 17. The loss function for caption generation is defined
using Equation 18 using cross entropy loss. Here yC is the one-hot-vector representation of words for
ground truth caption and ŷC denotes the normalized probability score for each word in the vocalbulary
V .

ŷC = softmax(w4Ao + b4) (17)

loss(ŷC , yC) = − 1

|V |
∑
v∈V

yCv log(ŷCv ) (18)

3.6 Multi-Task Learning

We use a trade-off parameter α to decide on relative weight on the losses obtained by two different
tasks. The final loss is computed using Equation 19. We have used Adam as the optimizer. We have
used gypsum cluster for the experiments and our implementation is written using PyTorch 2 in Python
3.6.

loss = α× loss(ŷC , yC) + (1− α)× loss(ŷA, yA) (19)

In the next sections, we discuss the dataset, experiment design and present the experimental results.

4 Dataset

The dataset we used is Microsoft COCO3 dataset. It was collected using Amazon’s Mechanical Turk4.
The data collection procedure is described by Chen et al. [2]. The train set consists of 82K images
where the validation set consists of 40K images. Each image is associated with around 5 captions.
Each image caption is expected to have at least 8 words according to the data collection requirement.
The vocabulary consists of 1004 English words. Instead of using the raw images as features, we
have used VGG-165, a 16 layer deep pre-trained CNN model, that was trained on ImageNet6 dataset.
We have extracted features from fc7 layer of that model. Using principal component analysis, a

2http://pytorch.org/
3 http://cocodataset.org/
4https://www.mturk.com/
5www.robots.ox.ac.uk/~vgg/research/very_deep/
6www.image-net.org
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compressed representation of the high level features of dimension 512 is used. The feature is real
valued. We have picked this dataset because it is a very well known benchmark for image captioning
task. There exists a number of existing works that evaluate their approach on this dataset. We have
identified words with the suffix “ing” as activities mentioned in captions. Excluding few non-activity
words (e.g., something, during etc.), we have found 78 activity classes among the dataset.

5 Experiments

We evaluated the proposed model using different experiments on the COCO dataset. To measure the
quality of the captions generated by the system, we have used BLEU [13]. We have chosen BLEU
since it shows high correlation with human judgment and is one of the most popular and inexpensive
sentence similarity metric. We experimented on different values of α within the range [0,1] to
understand the effect of introducing auxiliary task. For α = 0.0, the model ignores the caption
generation objective and for α = 1.0, the model ignores the activity detection objective. Therefore,
we can interpret α = 1.0 model as the baseline where the system is not learning from the auxiliary
task of activity detection. We have investigated several different combinations of hyper-parameters
for the optimizer. For learning rate we have tried the values — [1e-5,1e-4,1e-3,1e-2,1e-1]
and for weight decay we have tried the values — [1e-5,1e-4,1e-3,1e-2,1e-1]. We found the
best set of hyper parameters as follows: learning rate = 1e-4, weight decay = 1e-4. We expect the
model to perform better with 0 < α < 1, i.e., when it attempts to learn from both tasks.
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Figure 2: Left: average BLEU score for different values of α on train set with the ground truth captions as input
to LSTM, Right: average BLEU score for different values of α on train set with the predicted captions as input
to LSTM
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Figure 3: Left: average BLEU score for different values of α on validation set with the ground truth captions
as input to LSTM, Right: average BLEU score for different values of α on validation set with the predicted
captions as input to LSTM

6 Results

Figure 2 depicts the average BLEU score of the captions generated by the proposed multi-task
learning model for different values of α on train set. We can see that for α ∈ [0.1, 0.7], the model
performs better than the baseline model with α = 1. Figure 3 shows similar results for validation
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set. We have predicted the captions in two ways. In both Figures, the left one denotes the case where
prediction was assisted by the ground truth caption, and the right one represents prediction where the
ground truth caption was not provided. In the latter case, output generated from the previous LSTM
was used as input to the next LSTM.

For understanding how performance is affected per activity, we have computed average BLEU score
under few activity classes. Figure 4 shows that performance is better when the image has activities
associated with it. Many images does not have any activity associated with it and that causes lower
average BLUE score.

Figure 4: BLEU score grouped by activities vs. overall average BLEU score

Finally, we present few sample caption generation performance of our system in Figure 5. The ground
truth and predicted captions are presented along with correctly predicted activity labels.

Figure 5: Ground truth and predicted captions with ground truth and predicted activity labels

7 Discussion and Conclusions

We did not implement several extensions to improve the model like batch normalization, drop-out,
attention etc. However, our hypothesis was that under the same setting, multi-task learning with
suitable auxiliary task should outperform the model with single objective of caption generation.
The average BLEU score was pretty low compared to the state of the art approaches. Also, the
performance on validation set was not good and it indicates that the system lacks generalization.
However, techniques used to improve the baseline model is also applicable to the multi-task learning
setting and in future we plan to investigate that. The takeaway from this project is — multi-task
learning can improve generalized performance if the auxiliary task is related to the original task. The
shared layer can learn to represent features more suitable for the original task while attempting to
learn the auxiliary task.
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