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Abstract

Data wrangling continues to be the most time-consuming task in
the data science pipeline and wireless network data is no exception.
Prior approaches for automatic or assisted data-wrangling primar-
ily target unordered, single-table data. However, unlike traditional
datasets where rows in a table are unordered and assumed to be
independent of each other, wireless network datasets are often col-
lected across multiple measurement devices, producing multiple,
temporally ordered tables that must be integrated for obtaining the
complete dataset. For instance, to create a dataset of the signal qual-
ity of 5G cell towers within a geographic region, GPS data collected
by cellphones must be joined with radio-frequency measurements
of the corresponding cell towers. However, the join key timestamp
typically exhibits mismatched sampling periods, causing a misalign-
ment. Data-wrangling techniques for generic time-series datasets
also fail here, since they lack knowledge of domain-specific data
semantics—often defined by network protocols and system con-
figurations. To aid in wrangling wireless network datasets, we
demonstrate WN-WRANGLE, an interactive wrangling assistant—
tailored to the wireless network domain—that suggests the top-k
next-best wrangling operations, along with rich, domain-specific
explanations. Under the hood, WN-WRANGLE enforces temporal-
constraints- and a wireless-network-semantics-aware mechanism
to score and rank an extended set of wrangling operators to improve
the data quality. We demonstrate how WN-WRANGLE identifies
elusive data-quality issues specific to the wireless network domain
and suggests accurate wrangling steps over datasets obtained from
the widely used POWDER city-scale wireless testbed.

Link to demo video: https://users.cs.utah.edu/~afariha/wnwrangle.mp4

1 Introduction

The fifth generation (5G) of mobile networks is expected to serve
nearly 3 billion users worldwide by 2026, with over 65% of fixed
wireless access connections projected to be provided via 5G by
2025 [9]. Supporting this scale demands intelligent service monitor-
ing, provisioning, and network planning, all of which increasingly
rely on data-driven AI/ML techniques. For instance, Vodafone re-
ported reducing data-ingestion latency from 36 hours to 25 minutes
by leveraging insights from 70 petabytes of user-collected data [1].
However, a critical prerequisite for learning from such data is mak-
ing it analysis-ready, which in practice requires extensive and rou-
tine data wrangling of large-scale wireless network (WN) datasets.
Data wrangling, in general, is often a tedious and time-consuming
process. Data scientists reportedly spend up to 60% of their time
on tasks such as cleaning, imputing, transforming, and organizing
data [7]. This has motivated the development of assistant tools for
data wrangling (DW), such as CoWrangler [7] and Wrangler [12],
which can suggest relevant operations to expedite the DW process.
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However, existing general-purpose and context-agnostic DW as-
sistants fall short when applied to WN datasets for several reasons.
First, they assume that rows within a dataset are unordered and
unrelated, often suggesting simple mean or mode imputation or
even dropping rows with missing values. WN datasets, however,
are inherently temporal, with measurements recorded sequentially
or cyclically over time and often at fixed sampling rates. Applying
generic imputation to such data can result in loss of temporal pat-
terns or distort periodic signals. Second, generic DW tools typically
operate on a single table at a time, which can fail catastrophically
when multiple tables need to be joined, especially if they are mis-
aligned [6] due to different measurement periods. Third, existing
DW assistants are domain-agnostic and ignore crucial semantics
of WN data. For instance, logarithmic units such as decibels must
be converted to linear units before aggregation. We proceed to
highlight these issues in Example 1.

ExaMPpLE 1. Naomi is collecting data to train an intelligent network
configuration management system (Figure 1). This system requires
per-second, complete radio frequency (RF) measurements across all fre-
quency channels, with corresponding GPS coordinates. She uses two de-
vices for data collection: an RF measurement device that records data in
the format<timestamp, frequency, RSRP>! asshownin A, anda
smartphone that records data in the format <timestamp, latitude,
longitude> as shown in B. Her goal is to generate a dataset in the
schema<timestamp, frequency, RSRP, latitude, longitude>
(shown in D) by joining A and B over the join key timestamp.

However, while trying to join A and B, Naomi observes that the
measurements are logged at different temporal granularities: A con-
tains multiple entries within a second while B has missing entries
for some seconds. Furthermore, there is no exact match between the
timestamp attributes of the two tables. To fix these issues, Naomi
must temporally align the two datasets. Existing wrangling assistants
like CoWrangler [7] cannot help Naomi here, rather, it exacerbates the
situation by providing incorrect suggestions: (1) It suggests dropping
the row a7 from A due to the missing RSRP, which results in losing
the only entry for the corresponding timestamp and frequency. This
is due to CoWrangler not considering Naomi’s goal—performing a
join between A and B. (2) CoWrangler further suggests imputing
a7 [RSRP] with the arithmetic mean of the attribute, which is incorrect
as well, because the unit for RSRP is logarithmic (decibel-milliwatts).

To join A and B, Naomi must ensure that (1) each frequency
channel has exactly one RSRP reading per second, as in A,,; (2) exactly
one geo-location entry exists per second in the GPS data, as in B,,;
and (3) the values in timestamp in A & B match exactly. To achieve
this, the following wrangling steps are essential:

IRSRP (Reference Signal Received Power) measures the power of the reference signal
received by a device from a cell tower, typically expressed in dBm, a logarithmic unit.
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Figure 1: (A : RF measurement data sample, (B : GPS data sample,

Step 1: Forward-fill the missing RSRP in a; using the value from as,

but not ag since the frequency channels are different.

Step 2: (a) Merge rows a1, a3, and a4 using techniques appropriate for

logarithmic units—which ensures a per-second periodicity in A,, —and

(b) round down timestamps to the nearest second.

Step 3: (a) Insert two empty rows between by and b, to fill the miss-

ing seconds and achieve a per-second periodicity in B,,, followed by

(b) forward-fill the location values in the newly inserted rows, because

smartphones suspend GPS logging while stationary to conserve power.
Naomi had to spend 20 minutes writing and validating the mun-

dane code snippet below—a disproportionate time cost despite her

domain expertise—to obtain the desired dataset D = Aw > Bw.

# (Step 1) Forward-fill RSRP per frequency

AL"RSRP"] = A.groupby("frequency")["RSRP"].ffill()

# (Step 2) Per-second log-aware RF aggregation
Al"sec"] = A["timestamp"].dt.floor("S")
AL"RSRP_Lin"] = 10%x(A["RSRP"1/10)

A = A.groupby(["sec", "frequency"]).agg({"RSRP_lin" :
AL"RSRP"] = 10*A["RSRP_1in"].apply(log1@)
A.drop(columns = "RSRP_lin", inplace=True)

"mean"3})

# (Step 3) Per-second GPS forward-fill
B = B.set_index("timestamp").asfreq("1S").ffill().reset_index()

A wrangling assistant for wireless network data. Example 1 demon-

strates several wrangling operations that are specific to WN domain
and are typically overlooked by generic wrangling assistants. This
observation motivates the need for a specialized WN wrangling
assistant that can proactively suggest domain-relevant wrangling
operations. Such an assistant must satisfy the following require-
ments: (i) respect temporal constraints, such as ensuring periodicity
and completeness (Step 1, Step 2 (a), & Step 3); (ii) support auto-
matic alignment across tables through downsampling (Step 2 (a)),
upsampling (Step 3 (a)), and homogenization (casting timestamp
to the nearest second in Step 2 (b)); (iii) exploit inter-row relation-
ships, including appropriate imputation strategies (forward-filling
in Step 1 and Step 3 (b)); and (iv) preserve domain-specific semantic
correctness, such as using imputation methods suitable for logarith-
mic units (Step 2 (a)). Finally, to encourage broad adoption, a WN
wrangling assistant should additionally provide (v) rich explana-
tions for its suggested operations; and (vi) interactive controls that
allow users to inspect, customize, and guide the wrangling process.

A, & By, :desired wrangled datasets, D : desired complete dataset.

We demonstrate WN-WRANGLE, an interactive Wireless Net-
work data-Wrangling assistant that suggests top-k relevant wran-

gling operations in a multi-table setting, tailored for WN datasets,
satisfying the above six requirements. The key idea behind WN-

WRANGLE is temporal-constraint-aware scoring of WN-specific wran-

gling operations, which builds on the notion of temporal functional
dependencies [5] to identify periodicity violations in the data.

Related work. Prior works in the databases community [7, 12] mainly

target unordered relational datasets and thus fail on WN datasets,

which are temporal in nature. Tools for cleaning temporal data us-

ing temporal integrity constraints [5] assume that domain-specific

rules can be discovered from the data itself, which does not hold
for the WN domain, where rules are often dictated by network pro-

tocols or system configurations. Recent works on time-series data

wrangling [13] are domain-agnostic and fail to provide alignment-

related wrangling suggestions such as upsampling, downsampling,
or homogenizing (as shown in Example 1). While wrangling code

generation systems [11] and foundation models have achieved par-

tial success due to their ability to understand data semantics, they
still struggle with complex tasks such as joining multiple incomplete
datasets with misaligned join keys. For instance, when asked to join

the datasets A and B while ensuring one record per second, Chat-

GPT made several mistakes, including incorrect RSRP imputation,

incorrect frequency aggregation, and failing to up/downsample [2].

Commercial tools for time-series data [8] primarily target enterprise
data sources and require extensive manual configuration.

Demonstration. In our demonstration, participants will observe

how WN-WRANGLE identifies temporal inconsistencies in two real-

world datasets collected using the POWDER [10] city-scale wireless
testbed, and suggests accurate wrangling steps in an explainable and

interactive manner. We will showcase how a user can customize the

suggestions in two WN data analysis scenarios—one to improve the
readability of radio-frequency readings on a map interface, and the

other to improve an ML model’s performance on the collected data.

We provide an overview of WN-WRANGLE’s inner working in
Section 2, and a walkthrough of the demonstration scenario based
on Example 1 in Section 3.
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2 System overview

WN-WRANGLE targets multiple WN tables that share a context that
allows their joint use via join or union. While we focus on the tem-
poral context in this demonstration, WN-WRANGLE supports other
contexts such as frequency channels, spatial proximity, or device
identity, by leveraging the corresponding alignment semantics.

Challenges. We identify the following key challenges towards build-
ing WN-WRANGLE: (C1) How to model WN-specific constraints and
detect their violations in the data? (C2) Which WN-specific wran-
gling operations should be considered as candidates for repairing
the constraint violations? (C3) How to quantify the effectiveness of
candidate wrangling operations—i.e., score and rank them—to en-
able accurate top-k suggestions automatically? (C4) How to gener-
ate domain-aware explanations for the suggestions, while allowing
users to (optionally) guide the wrangling process interactively?

Overview. To address these challenges, WN-WRANGLE comprises
five components: (§2.1) a semantic profiler that profiles the data
attributes; (§2.2) a constraint discovery module that discovers WN-
specific constraints; (§2.3) a Domain Specific Language (DSL) tailored
towards WN data; (§2.4) a scoring method that evaluates effective-
ness of candidate wrangling operations; and (§2.5) an explanation
module that generates explanations for the suggestions.

2.1 Semantic profiler. WN-WRANGLE must understand the data

characteristics to model WN-specific constraints (C1), support scor-

ing of wrangling operations (C3), and provide explanations (C4). To

this end, WN-WRANGLE employs a semantic profiler that analyzes

each data attribute over a small sample to infer the following:

e its data type (e.g., numerical, categorical, ordinal);

e its semantic type, measurement unit, and scale (e.g., RSRP mea-
sures signal power in dBm, a logarithmic scale);

e semantically correct aggregation strategies (e.g., converting to
linear scale before averaging logarithmic values);

e semantic-type- and domain-aware imputation strategies (e.g.,
forward-filling GPS locations); and

e semantic dependencies between attributes (e.g., RSRP is typically
measured per frequency channel).

To obtain the above information, WN-WRANGLE queries a general-
purpose LLM (GPT-5), eliminating the need for manual input from
a domain expert. While a general-purpose LLM suffices in most
cases, a fine-tuned variant trained on WN-specific documents and
manuals can further improve the semantic profiler.

2.2 Constraint discovery module. To address C1, this module
models WN-specific data constraints (e.g., temporal constraints
requiring per-second measurements) and detects their violations
in the data. Since enforcing these constraints ensures temporal
and informational completeness, they provide guidance for sug-
gesting wrangling operations that reduce constraint violations. To
model temporal constraints, we use the established notion of tem-
poral functional dependencies (TFDs) [5]. For example, TFD; = [A,
frequency] — RSRP denotes the temporal constraint of having “ex-
actly one RSRP record per second per frequency channel”, where
A = 1s denotes a fixed periodicity in timestamp.

Discovering temporal constraints. WN-WRANGLE discovers TFDs

and associated parameters by leveraging semantic data profiles—
which provide domain knowledge such as RF measurements require
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non-empty RSRP per second —and by analyzing the temporal peri-
odicities in the data tables under consideration. Specifically, WN-
WRANGLE identifies a common periodicity A that can be achieved
across the data tables without impacting too many tuples (mini-
mizing side-effects). While TFD discovery [5] is fully automated,
WN-WRANGLE supports optional user input to validate A and to
specify custom TFDs, thereby addressing C4.

Detecting violating tuples. WN-WRANGLE flags tuples within the
inferred periodicity that violate TFDs. E.g., in Figure 1, a;, a3, and
a4 violate TFD; due to multiple RSRP, while a; due to missing RSRP.

2.3 DSL for WN. To address C2, we need a domain-specific lan-
guage that includes common operators used in WN data analysis. In
this demo, we include frequently used operators identified through
analyzing scripts from members of the POWDER [10] team.

(1) Upsample: Achieves the given temporal granularity by insert-
ing new rows and filling in empty cells (Step 3 of Example 1).

(2) Downsample: Achieves the given temporal granularity by
aggregating existing rows (Step 2 of Example 1).

(3) Impute: Imputes a cell using the given technique such as
forward-fill or backward-fill (Step 1 of Example 1).

(4) Round: Rounds timestamps to the nearest temporal boundary
(e.g., a whole second), based on the specified periodicity (Step 2).

(5) Drop row: Drops rows based on the given conditions.

Remark: The above DSL is specific for handling WN-data issues
and are insufficient to resolve generic issues such as formatting
inconsistencies, for which a generic DW tool [7, 12, 13] can be used.

24 Scoring method. WN-WRANGLE generates a set of candidate
operations by parameterizing the DSL operators with appropriate
parameters. During this step, WN-WRANGLE prunes semantically
invalid candidates, i.e., those that violate WN-specific semantics,
such as using an arithmetic mean as an imputation technique for
RSRP. While this reduces the search space, a key challenge (C3) re-
mains: determining which of these candidates should be suggested
to the user. To this end, WN-WRANGLE employs an efficient scoring
method that estimates the expected improvement in data quality—
i.e., the reduction in constraint violations—if a candidate wrangling
operation were applied to the data.

Given a dataset D, discovered constraints or rules R, semantic
profiles S, candidate wrangling operations W, and a violation func-
tion V(D, R) that computes the degree of violation by D w.r.t R, the
scoring method applies each w € W to a small sample of the data
D’ to obtain D’,,, where the sampling technique used is aware of the
WN-specific semantics. This enables WN-WRANGLE to efficiently
estimate the expected data-quality improvement when w is applied
over D as V(D’,R) — V(D;,, R). While minimizing constraint vio-
lations is the primary objective, WN-WRANGLE also accounts for
data side effects by ensuring that each of the k suggested wrangling
operations satisfy a predefined data-side-effect budget (e.g., at most
p% cells/rows of the data can be modified).

2.5 Explanation module. Finally, the explanation module com-
bines the information from the semantic profiler, constraints dis-
covered and violations detected by the constraint discovery module,
and the estimated reduction in violation obtained by the scoring
method to generate a human-understandable, natural-language
explanation for each of the suggested wrangling operations.
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Figure 2: WN-WRANGLE interface: @ data upload and preview; (B) progress tracker for the WN-WRANGLE workflow; @ suggested wrangling
operations; @ user-specified threshold on data side effects; @ discovered constraints; ® explanations of the suggestions with interactive
support; @ follow-up clarifications; @ on-demand preview of a selected suggestion; @ editable code synthesized by WN-WRANGLE for the
selected suggestion; @ execution button to apply the suggestion to the full dataset; ® custom user code for joining the wrangled tables.

3 Demonstration

We will demonstrate WN-WRANGLE over real-world POWDER
datasets [3]. We will guide users through eleven steps of Figure 2
impersonating Naomi over the dataset [4] of Example 1.

Step (&) (Data upload and preview). The user uploads two
data files RF. csv and GPS. csv and previews the data. WN-WRANGLE
displays the first five rows. The user can scroll to see more.

Step (B) (Workflow progress tracker). WN-WRANGLE semanti-
cally profiles the data attributes (§2.1); discovers temporal and other
constraints and detects the periodicity parameter A (§2.2), which the
user can refine if they wish to; generates 56 wrangling candidates,
scores, and ranks them (§2.4) to generate the suggestions.

Step (C) (Wrangling suggestions). WN-WRANGLE suggests 4
operations: Wy, W, & W for the RF data and Wj for the GPS data.

Step (D) (Data side-effect). Along with the suggestions, WN-
WRANGLE displays maximum data side-effect incurred (10% rows
were impacted) by any of the suggestions. The user can adjust
the side-effect threshold and WN-WRANGLE ensures that each sug-
gested operation satisfies the user-specified side-effect requirement.

Step (E) (Discovered constraints). WN-WRANGLE lists the
constraints (three in this case) that it used to compute the degree
of violation for scoring the candidate wrangling operations. For
example, the constraint R: “exactly one RSRP record per second per
frequency” applies to the RF data. The user can add new constraints.

Steps (F) & (G) (Explanation and interaction). The user wants
to understand the rationale behind the suggestion W3. WN-WRANGLE
provides an initial explanation—“Ws inserts 7% new rows, satisfying
Rs;”—along with options to Preview its impact, Apply W; to the full
data, or request further Explanation. After selecting “Explain more,”
WN-WRANGLE offers a detailed explanation describing missing
readings across multiple seconds. Satisfied, the user chooses to
Preview the impact of W3 on the GPS data.

Step (H) (Preview suggestion impact). WN-WRANGLE pre-
views the impact of W3 on a small sample of the GPS data, highlight-

« »

ing newly inserted rows by “+”. Satisfied, the user clicks on “Apply”.
Steps (D) & (J) (Automatically generated wrangling code).
WN-WRANGLE inserts an editable code snippet for W; to the user
notebook, and automatically executes it in Step (7). The user accepts
the other three suggestions in a similar way (not shown).
Step (K) (Custom code). Finally, the user successfully joins the
two (now wrangled) datasets as per Example 1.

While WN-WRANGLE applies to any WN data scenario, it is espe-
cially useful for experimental wireless testbeds like POWDER [10],
where hundreds of users generate diverse datasets from 2,000+
yearly experiments, supporting advanced wireless applications.
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