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ABSTRACT

Traditional relational data interfaces require precise structured
queries over potentially complex schemas. These rigid data re-
trieval mechanisms pose hurdles for non-expert users, who typi-
cally lack language expertise and are unfamiliar with the details of
the schema. Query by Example (QBE) methods offer an alternative
mechanism: users provide examples of their intended query output
and the QBE system needs to infer the intended query. However,
these approaches focus on the structural similarity of the examples
and ignore the richer context present in the data. As a result, they
typically produce queries that are too general, and fail to capture the
user’s intent effectively. In this paper, we present SQUID, a sys-
tem that performs semantic similarity-aware query intent discov-
ery. Our work makes the following contributions: (1) We design
an end-to-end system that automatically formulates select-project-
join queries in an open-world setting, with optional group-by ag-
gregation and intersection operators; a much larger class than prior
QBE techniques. (2) We express the problem of query intent dis-
covery using a probabilistic abduction model, that infers a query as
the most likely explanation of the provided examples. (3) We in-
troduce the notion of an abduction-ready database, which precom-
putes semantic properties and related statistics, allowing SQUID to
achieve real-time performance. (4) We present an extensive empir-
ical evaluation on three real-world datasets, including user-intent
case studies, demonstrating that SQUID is efficient and effective,
and outperforms machine learning methods, as well as the state-of-
the-art in the related query reverse engineering problem.

1. INTRODUCTION

Database technology has expanded drastically, and its audience
has broadened, bringing on a new set of usability requirements. A
significant group of current database users are non-experts, such as
data enthusiasts and occasional users. These non-expert users want
to explore data, but lack the expertise needed to do so. Traditional
database technology was not designed with this group of users in
mind, and hence poses hurdles to these non-expert users. Tradi-
tional query interfaces allow data retrieval through well-structured
queries. To write such queries, one needs expertise in the query
language (typically SQL) and knowledge of the, potentially com-
plex, database schema. Unfortunately, occasional users typically
lack both. Query by Example (QBE) offers an alternative retrieval
mechanism, where users specify their intent by providing example
tuples for their query output [45].

Unfortunately, traditional QBE systems [51, 48, 16] for rela-
tional databases make a strong and oversimplifying assumption in
modeling user intent: they implicitly treat the structural similarity
and data content of the example tuples as the only factors specify-
ing query intent. As a result, they consider all queries that contain

Alexandra Meliou
College of Information and Computer Sciences
University of Massachusetts Amherst

ameli@cs.umass.edu

research
academics aid interest
id name 100 | algorithms
100 | Thomas Cormen 101 | data management
101 | Dan Suciu 102 | data mining
102 | Jiawei Han 103 | data management
103 | Sam Madden 103 | distributed systems
104 | James Kurose 104 | computer networks
105 Joseph Hellerstein 105 data management
105 | distributed systems

Figure 1: Excerpt of two relations of the CS Academics database.
Dan Suciu and Sam Madden (in bold), both have research interests
in data management.

the provided example tuples in their result set as equally likely to
represent the desired intent." This ignores the richer context in the
data that can help identify the intended query more effectively.

Example 1.1. In Figure 1, the relations academics and research
store information about CS researchers and their research inter-
ests. Given the user-provided set of examples {Dan Suciu, Sam
Madden}, a human can posit that the user is likely looking for data
management researchers. However, a QBE system, that looks for
queries based only on the structural similarity of the examples, pro-
duces Q1 to capture the query intent, which is too general:

Q1: SELECT name FROM academics
In fact, the QBE system will generate the same generic query Q1
for any set of names from the relation academics. Even though
the intended semantic context is present in the data (by associat-
ing academics with research interest information using the relation
research), existing QBE systems fail to capture it. The more spe-
cific query that better represents the semantic similarity among the
example tuples is Q2:

Q2: SELECT name FROM academics, research

WHERE research.aid = academics.id AND
research.interest = ‘data management’

Example 1.1 shows how reasoning about the semantic similarity
of the example tuples can guide the discovery of the correct query
structure (join of the academics and research tables), as well as the
discovery of the likely intent (research interest in data management).

We can often capture semantic similarity through direct attributes
of the example tuples. These are attributes associated with a tuple
within the same relation, or through simple key-foreign key joins
(such as research interest in Example 1.1). Direct attributes capture
intent that is explicit, precisely specified by the particular attribute
values. However, sometimes query intent is more vague, and not
expressible by explicit semantic similarity alone. In such cases,
the semantic similarity of the example tuples is implicit, captured

'More nuanced QBE systems exist, but typically place additional requirements or sig-
nificant restrictions over the supported queries (Figure 3).
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Figure 2: Partial schema of the IMDb database. The schema con-
tains 2 entity relations: movie, person; and a semantic property re-
lation: genre. The relations castinfo and movietogenre associate
entities and semantic properties.

through deeper associations with other entities in the data (e.g., type
and quantity of movies an actor appears in).

Example 1.2. The IMDb dataset contains a wealth of information
related to the movies and entertainment industry. We query the
IMDb dataset (Figure 2) with a QBE system, using two different
sets of examples:
ET1={Arnold Schwarzenegger
Sylvester Stallone Jim Carrey
Dwayne Johnson} Robin Williams}
ET1 contains the names of three actors from a public list of “physi-
cally strong” actors®; ET2 contains the names of three actors from a
public list of “funny” actors®. ET1 and ET2 represent different query
intents (strong actors and funny actors, respectively), but a standard
QBE system produces the same generic query for both:
Q3: SELECT person.name FROM person
Explicit semantic similarity cannot capture these different intents,

ET2={Eddie Murphy

as there is no attribute that explicitly characterizes an actor as “strong”

or “funny”. Nevertheless, the database encodes these associations
implicitly, in the number and type of movies an actor appears in
(“strong” actors frequently appear in action movies, and “funny”
actors in comedies).

Standard QBE systems typically produce queries that are too gen-
eral, and fail to capture nuanced query intents, such as the ones in
Examples 1.1 and 1.2. Some prior approaches attempt to refine the
queries based on additional, external information, such as external
ontologies [38], provenance information of the example tuples [16],
and user feedback on multiple (typically a large number) system-
generated examples [12, 37, 18]. Other work relies on a closed-
world assumption* to produce more expressive queries [37, 57, 65]
and thus requires complete examples of input databases and output
results. Providing such external information is typically complex
and tedious for a non-expert.

In contrast with prior approaches, in this paper, we propose a
method and present an end-to-end system for discovering query in-
tent effectively and efficiently, in an open-world setting, without
the need for any additional external information, beyond the ini-
tial set of example tuples.> SQUID, our semantic similarity-aware
query intent discovery framework [23], relies on two key insights:
(1) It exploits the information and associations already present in
the data to derive the explicit and implicit similarities among the
provided examples. (2) It identifies the significant semantic simi-
larities among them using abductive reasoning, a logical inference
mechanism that aims to derive a query as the simplest and most
likely explanation for the observed results (example tuples). We
explain how SQUID uses these insights to handle the challenging
scenario of Example 1.2.

2https://www.imdb.com/list/1s050159844

3https ://www.imdb.com/1ist/1s000025701

“In the closed-world setting, a tuple not specified as an example output is assumed to
be excluded from the query result.

3 Figure 3 provides a summary exposition of prior work, and contrasts with our contri-
butions. We detail this classification and metrics in Appendix F and discuss the related
work in Section 8.
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Figure 3: SQUID captures complex intents and more expressive
queries than prior work in the open-world setting.

Example 1.3. We query the IMDb dataset with SQUID, using the
example tuples in ET2 (Example 1.2). SQUID discovers the fol-
lowing semantic similarities among the examples: (1) all are Male,
(2) all are American, and (3) all appeared in more than 40 Comedy
movies. Out of these properties, Male and American are very com-
mon in the IMDb database. In contrast, a very small fraction of
persons in the dataset are associated with such a high number of
Comedy movies; this means that it is unlikely for this similarity to be
coincidental, as opposed to the other two. Based on abductive rea-
soning, SQUID selects the third semantic similarity as the best ex-
planation of the observed example tuples, and produces the query:
Q4: SELECT person.name
FROM person, castinfo, movietogenre, genre
WHERE person.id = castinfo.person_id
AND castinfo.movie_id = movietogenre.movie_id
AND movietogenre.genre_id = genre.id
AND genre.name = ‘Comedy’
GROUP BY person.id
HAVING count(*) >= 40

In this paper, we make the following contributions:

e We design an end-to-end system, SQUID, that automatically for-
mulates select-project-join queries with optional group-by ag-
gregation and intersection operators (SPJar) based on few user-
provided example tuples. SQUID does not require the users to
have any knowledge of the database schema or the query lan-
guage. In contrast with existing approaches, SQUID does not
need any additional user-provided information, and achieves very
high precision with very few examples in most cases.

o SQUID infers the semantic similarity of the example tuples, and
models query intent using a collection of basic and derived se-
mantic property filters (Section 3). Some prior work has ex-
plored the use of semantic similarity in knowledge graph re-
trieval tasks [66, 43, 29]. However, these prior systems do not
directly apply to the relational domain, and do not model im-
plicit semantic similarities, derived from aggregating properties
of affiliated entities (e.g., number of comedy movies an actor
appeared in).
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e We express the problem of query intent discovery using a proba-
bilistic abduction model (Section 4). This model allows SQUID
to identify the semantic property filters that represent the most
probable intent given the examples.

e SQUID achieves real-time performance through an offline strat-
egy that pre-computes semantic properties and related statistics
to construct an abduction-ready database (Section 5). During the
online phase, SQUID consults the abduction-ready database to
derive relevant semantic property filters, based on the provided
examples, and applies abduction to select the optimal set of fil-
ters towards query intent discovery (Section 6). We prove the
correctness of the abduction algorithm in Theorem 1.

e Our empirical evaluation includes three real-world datasets, 41
queries covering a broad range of complex intents and struc-
tures, and three case studies (Section 7). We further compare
with TALOS [55], a state-of-the-art system that captures very
expressive queries, but in a closed-world setting. We show that
SQUID is more accurate at capturing intent and produces bet-
ter queries, often reducing the number of predicates by orders of
magnitude. We also empirically show that SQUID outperforms
a semi-supervised machine learning system [21], which learns
classification models from positive examples and unlabeled data.

2. SQUID OVERVIEW

In this section, we first discuss the challenges in example-driven
query intent discovery and highlight the shortcomings of existing
approaches. We then formalize the problem of query intent dis-
covery using a probabilistic model and describe how SQUID in-
fers the most likely query intent using abductive reasoning. Fi-
nally, we present the system architecture for SQUID, and provide
an overview of our approach.

2.1 The Query Intent Discovery Problem

SQUID aims to address three major challenges that hinder exist-
ing QBE systems:

Large search space. Identifying the intended query given a
set of example tuples can involve a huge search space of potential
candidate queries. Aside from enumerating the candidate queries,
validating them is expensive, as it requires executing the queries
over potentially very large data. Existing approaches limit their
search space in three ways: (1) They often focus on project-join
(PJ) queries only. Unfortunately, ignoring selections severely limits
the applicability and practical impact of these solutions. (2) They
assume that the user provides a large number of examples or in-
teractions, which is often unreasonable in practice.  (3) They
make a closed-world assumption, thus needing complete sets of
input data and output results. In contrast, SQUID focuses on a
much larger and more expressive class of queries, select-project-
Jjoin queries with optional group-by aggregation and intersection
operators (SPJa1)°, and is effective in the open-world setting with
very few examples.

Distinguishing candidate queries. In most cases, a set of ex-
ample tuples does not uniquely identify the target query, i.e., there
are multiple valid queries that contain the example tuples in their
results. Most existing QBE systems do not distinguish among the
valid queries [51] or only rank them according to the degree of in-
put containment, when the example tuples are not fully contained
by the query output [48]. In contrast, SQUID exploits the semantic
context of the example tuples and ranks the valid queries based on
a probabilistic abduction model of query intent.

The SPJas queries derived by SQUID limit joins to key-foreign key joins, and con-
junctive selection predicates of the form attribute OP value, where OP €
{=, >, <} and value is a constant.
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Figure 4: SQUID’s operation includes an offline module, which
constructs an abduction-ready database (aDB) and precomputes
statistics of semantic properties.  During normal operation,
SQUID’s query intent discovery module interacts with the aDB

to identify the semantic context of the provided examples and ab-
duces the most likely query intent.

Complex intent. A user’s information need is often more com-
plex than what is explicitly encoded in the database schema (e.g.,
Example 1.2). Existing QBE solutions focus on the query structure
and are thus ill-equipped to capture nuanced intent. While SQUID
still produces a structured query in the end, its objectives focus
on capturing the semantic similarity of the examples, both explicit
and implicit. SQUID thus draws a contrast between the traditional
query-by-example problem, where the query is assumed to be the
hidden mechanism behind the provided examples, and the query
intent discovery problem that we focus on in this work.

We proceed to formalize the problem of query intent discovery.
We use D to denote a database, and Q (D) to denote the set of tuples
in the result of query @) operating on D.

Definition 2.1 (Query Intent Discovery). For a database D and
a user-provided example tuple set E, the query intent discovery
problem is to find an SPJ; query @) such that:

e £ECQ(D)

® Q = argmax, Pr(q|E)

More informally, we aim to discover an SPJa; query @ that con-
tains £ within its result set and maximizes the query posterior, i.e.,
the conditional probability Pr(Q|E).

2.2 Abductive Reasoning

SQUID solves the query intent discovery problem (Definition 2.1)
using abduction. Abduction or abductive reasoning [42, 32, 11, 5]
refers to the method of inference that finds the best explanation
(query intent) of an often incomplete observation (example tuples).
Unlike deduction, in abduction, the premises do not guarantee the
conclusion. So, a deductive approach would produce all possible
queries that contain the example tuples in their results, and it would
guarantee that the intended query is one of them. However, the set
of valid queries is typically extremely large, growing exponentially
with the number of properties and the size of the data domain. In
our work, we model query intent discovery as an abduction prob-
lem and apply abductive inference to discover the most likely query
intent. More formally, given two possible candidate queries, ) and
Q’, we infer () as the intended query if Pr(Q|E) > Pr(Q'|E).

Example 2.1. Consider again the scenario of Example 1.1. SQUID
identifies that the two example tuples share the semantic context
interest = data management. Q1 and Q2 both contain the example
tuples in their result set. However, the probability that two tuples
drawn randomly from the output of Q1 would display the identi-
fied semantic context is low ((£)* ~ 0.18 in the data excerpt).
In contrast, the probability that two tuples drawn randomly from
the output of Q2 would display the identified semantic context is
high (1.0). Assuming that Q1 and Q2 have equal priors (Pr(Q1) =
Pr(Q2)), then from Bayes’ rule Pr(Q2|E) > Pr(Q1|E).
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Figure 5: A genre value (e.g., genre=Comedy) is a basic semantic
property of a movie (through the movietogenre relation). A person
is associated with movie entities (through the castinfo relation);
aggregates of basic semantic properties of movies are derived se-
mantic properties of person, e.g., the number of comedy movies
a person appeared in. The aDB stores the derived property in the
new relation persontogenre. (For ease of exposition, we depict
attributes genre and person instead of genre.id and person.id.)

2.3 Solution Sketch

At the core of SQUID is an abduction-ready database, «DB
(Figure 4). The aDB (1) increases SQUID’s efficiency by stor-
ing precomputed associations and statistics, and (2) simplifies the
query model by reducing the extended family of SPJar queries on
the original database to equivalent SPJ queries on the aDB.

Example 2.2. The IMDb database has, among others, relations
person and genre (Figure 2). SQUID’s aDB stores a derived se-
mantic property that associates the two entity types in a new rela-
tion, persontogenre (person.id, genre.id, count), which stores
how many movies of each genre each person appeared in. SQUID
derives this relation through joins with castinfo and movietogenre,
and aggregation (Figure 5). Then, the SPJar query Q4 (Example 1.3)
is equivalent to the simpler SPJ query Q5 on the aDB:
Q5: SELECT person.name
FROM person, persontogenre, genre
WHERE person.id = persontogenre.person_id AND
persontogenre.genre_id = genre.id AND
genre.name = ‘Comedy’ AND persontogenre.count >= 40

By incorporating aggregations in precomputed, derived relations,
SQUID can reduce SPJa1 queries on the original data to SPJ queries
on the aDB. SQUID starts by inferring a PJ query, @™, on the «DB
as a query template; it then augments Q™ with selection predicates,
driven by the semantic similarity of the examples. Section 3 for-
malizes SQUID’s model of query intent as a combination of the
base query Q™ and a set of semantic property filters. Then, Sec-
tion 4 analyzes the probabilistic abduction model that SQUID uses
to solve the query intent discovery problem (Definition 2.1).

After the formal models, we describe the system components of
SQUID. Section 5 describes the offline module, which is respon-
sible for making the database abduction-ready, by precomputing
semantic properties and statistics in derived relations. Section 6
describes the query intent discovery module, which abduces the
most likely intent as an SPJ query on the aDB.

3. MODELING QUERY INTENT

SQUID’s core task is to infer the proper SPJ query on the aDB.
‘We model an SPJ query as a pair of a base query and a set of seman-
tic property filters: Q¥=(Q", ). The base query Q" is a project-
join query that captures the structural aspect of the example tuples.

SQUID can handle examples with multiple attributes, but, for ease
of exposition, we focus on example tuples that contain a single at-
tribute of a single entity (name of person).

In contrast to existing approaches that derive PJ queries from
example tuples, the base query in SQUID does not need to be min-
imal with respect to the number of joins: While a base query on
a single relation with projection on the appropriate attribute (e.g.,
Q1 in Example 1.1) would capture the structure of the examples,
the semantic context may rely on other relations (e.g., research,
as in Q2 of Example 1.1). Thus, SQUID considers any number of
joins among aDB relations for the base query, but limits these to
key-foreign key joins.

We discuss a simple method for deriving the base query in Sec-
tion 6.2. SQUID’s core challenge is to infer ¢, which denotes a set
of semantic property filters that are added as conjunctive selection
predicates to Q. The base query and semantic property filters for
Q2 of Example 1.1 are:

Q* — SELECT name FROM academics, research
WHERE research.aid = academics.id
¢ = { research.interest = ‘data management’}

3.1 Semantic Properties and Filters

Semantic properties encode characteristics of an entity. We dis-
tinguish semantic properties into two types. (1) A basic semantic
property is affiliated with an entity directly. In the IMDb schema
of Figure 2, gender=Male is a basic semantic property of a person.
(2) A derived semantic property of an entity is an aggregate over a
basic semantic property of an associated entity. In Example 2.2, the
number of movies of a particular genre that a person appeared in is
a derived semantic property for person. We represent a semantic
property p of an entity from a relation R as a triple p = (A, V, 6).
In this notation, V denotes a value’ or a value range for attribute A
associated with entities in R. The association strength parameter
0 quantifies how strongly an entity is associated with the property.
It corresponds to a threshold on derived semantic properties (e.g.,
the number of comedies an actor appeared in); it is not defined for
basic properties (0 = L).

A semantic property filter ¢, is a structured language represen-
tation of the semantic property p. In the data of Figure 6, the fil-
ters @ (gender,Mate, L) AN P(age,[50,00], L) TEPresent two basic seman-
tic properties on gender and age, respectively. Expressed in rela-
tional algebra, filters on basic semantic properties map to standard
selection predicates, €.2., Ogender=Male(person) and Tsp<age<go(per-
son). For derived properties, filters specify conditions on the asso-
ciation across different entities. In Example 2.2, for person en-
tities, the filter @ (genre,comeay,30y denotes the property of a person
being associated with at least 30 movies with the basic property
genre=Comedy. In relational algebra, filters on derived properties
map to selection predicates over derived relations in the DB, e.g.,

O genre=ComedyAcount >30 (Persontogenre).

3.2 Filters and Example Tuples

To construct Q¥, SQUID needs to infer the proper set of seman-
tic property filters given a set of example tuples. Since all example
tuples should be in the result of Q¥  cannot contain filters that the
example tuples do not satisfy. Thus, we only consider valid filters
that map to selection predicates that all examples satisfy.

Definition 3.1 (Filter validity). Given a database D, an example
tuple set F, and a base query Q*, a filter ¢ is valid if and only if

QY (D) D E, where Q1) = (Q*, {¢}).

7SQUID can support disjunction for categorical attributes (e.g., gender=Male or
gender=Female), so V' could be a set of values. However, for ease of exposition
we keep our examples limited to properties without disjunction.




person
id name gender |age

I [Tom Cruise Male |50 Example tuples
2 |Clint Eastwood |Male | 90 Column 1

3 |Tom Hanks Male |60 Tom Cruise

4 |Julia Roberts |Female| 50 Clint Eastwood
5 |[Emma Stone |Female| 29

6

Julianne Moore|Female | 60

Figure 6: Sample database with example tuples

Figure 6 shows a set of example tuples over the relation person.
Given the base query Q" =SELECT name FROM person, the filters
@ (genderMale, L) ANd P (age [50,90], 1) ON Telation person are valid, be-
cause all of the example entities of Figure 6 are Male and fall in the
age range [50, 90].

Lemma 3.1. (Validity of conjunctive filters). The conjunction (¢1 A
$2A. .. )ofasetof filters ® = {¢1, p2, ... }isvalid, i.e., Q¥ (D) D
E, if and only if V¢; € @ ¢; is valid.

Relaxing a filter (loosening its conditions) preserves validity. For
example, if @ (age, [50,90], L) 18 Valid, then ¢ (o [20,120], 1) 18 also valid.
Out of all valid filters, SQUID focuses on minimal valid filters,
which have the tightest bounds.®

Definition 3.2 (Filter minimality). A basic semantic property filter
®(a,v,1y is minimal if it is valid, and YV'CV, ¢4 v+ 1y is not
valid. A derived semantic property filter ¢(4,v,g) is minimal if it is
valid, and Ve > 0, ¢(4,v,9+¢) is not valid.

In the example of Figure 6, ¢ (age,[50,90], 1) is @ minimal filter and
®(age,[40,90], L) 18 NOL.

4. PROBABILISTIC ABDUCTION MODEL

We now revisit the problem of Query Intent Discovery (Defini-
tion 2.1), and recast it based on our model of query intent (Sec-
tion 3). Specifically, Definition 2.1 aims to discover an SPJa1 query
Q; this is reduced to an equivalent SPJ query Q¥ on the aDB (as
in Example 2.2). SQUID’s task is to find the query Q¥ that max-
imizes the posterior probability Pr(Q¥|E), for a given set E of
example tuples. In this section, we analyze the probabilistic model
to compute this posterior, and break it down to three components.

4.1 Notations and Preliminaries

Semantic context . Observing a semantic property in a set of
10 examples is more significant than observing the same property
in a set of 2 examples. We denote this distinction with the se-
mantic context © = (p,|E|), which encodes the size of the set
(|E|) where the semantic property p is observed. We denote with
X = {x1,2,...} the set of semantic contexts exhibited by the
set of example tuples £. Candidate SPJ query Q¥. Let & =
{¢1, d2, . .. } be the set of minimal valid filters®, from hereon sim-
ply referred to as filters, where ¢; encodes the semantic context x;.
Our goal is to identify the subset of filters in ® that best captures
the query intent. A set of filters ¢ C & defines a candidate query
QY = (Q", ), and Q¥ (D) D E (from Lemma 3.1).

Filter event (5 A filter ¢ € ® may or may not appear in a candi-
date query Q¥. With slight abuse of notation, we denote the filter’s
presence (¢ € ) with ¢ and its absence (¢ & ) with ¢. We use qg
to represent the occurrence event of ¢ in Q.

~ if ¢ €
Thus: ¢ = (? . oEw
o ifop g
8Bounds can be derived in different ways, potentially informed by the result set cardi-

nality. However, we found that the choice of the tightest bounds works well in practice.
9We omit (A, V, 6) in the filter notation when the context in clear.

Notation Description

p=(A,V,0) Semantic property defined by attribute A,
value V/, and association strength 6

¢bp Or P Semantic property filter for p

D = {¢1,¢2,...} | Setof minimal valid filters

QY = (Q*, ) SPJ query with semantic property filters ¢ C @
applied on base query Q*

z = (p,|El|) Semantic context of E for p

X = {x1,x2,...} | Setof semantic contexts

Figure 7: Summary of notations

4.2 Modeling Query Posterior
We first analyze the probabilistic model for a fixed base query Q*
and then generalize the model in Section 4.3. We use Pr.(a) as a
shorthand for Pr(a|Q™). We model the query posterior Pr.(Q¥|E),
using Bayes’ rule:
Pr.(E|Q7) Pr.(Q%)
Pr.(E)

By definition, Pr.(X|E) = 1; therefore:
Pr.(E, X|Q7)Pr.(Q%)
Pr.(E)
_ Pr(EX, Q%) Pr.(X|Q%) Pr.(Q7)
N Pr.(E)

Pr.(Q|E) =

Pr.(Q7|E) =

Using the fact that Pr.(X|E) = 1 and applying Bayes’ rule on
the prior Pr.(E), we get:

Pr.(E|X, Q%) Pr.(X|Q7)Pr.(QF)
Pr.(E|X)Pr.(X)

Finally, F is conditionally independent of Q¥ given the semantic
context X, i.e., Pr.(E|X,Q¥)=Pr.(E|X). Thus:

Pr.(X|Q7)Pr.(Q7)
Pr.(X)

In Equation 1, we have modeled the query posterior in terms of three
components: (1) the semantic context prior Pr.(X), (2) the query
prior Pr.(Q¥), and (3) the semantic context posterior, Pr. (X |Q%).
We proceed to analyze each of these components.

Pr.(Q?|E) =

Pr.(Q*|E) = (D

4.2.1 Semantic Context Prior

The semantic context prior Pr.(X’) denotes the probability that
any set of of example tuples of size | F’| exhibits the semantic con-
texts X'. This probability is not easy to compute analytically, as it
involves computing a marginal over a potentially infinite set of can-
didate queries. In this work, we model the semantic context prior as

proportional to the selectivity 1(®) of ® = {1, P2, ...}, where
¢; € ® is a filter that encodes context x; € X:
Pr.(X) o (®) @)

Selectivity 1 (¢). The selectivity of a filter ¢» denotes the portion
of tuples from the result of the base query Q™ that satisfy ¢:

o) 129
|Q*(D)|
Similarly, for a set of filters ®, ¢(®) = 1Q%(D)| Intuitively,

D]
a selectivity value close to 1 means that the |ﬁQlteE,r i‘s not very se-
lective and most tuples satisfy the filter; selectivity value close to
0 denotes that the filter is highly selective and rejects most of the
tuples. For example, in Figure 6, ¢ (gender,maie, 1) 1S more selective
than ¢ (age, s0,00], 1) With selectivities 3 and 2, respectively.
Selectivity captures the rarity of a semantic context: uncommon
contexts are present in fewer tuples and thus appear in the output of



[ Case A | Case B |

¢1 ¢ (genre, Comedys 30) ¢1 ¢ (genre, Comedy, 12)
®2 | ®(genre, SciFi, 25) ®2 | ®(genre, SciFi, 10)
¢3 (genre, Drama, 3) ¢3 (genre, Drama, 10)
¢4 (genre, Action, 2) ¢4 (:Zs(genre7 Action, 9)
¢5 (genre, Thriller, 1) ¢5 (genre, Thriller, 9

Figure 8: Two cases for derived semantic property filters. Top two
filters of Case A are interesting, whereas no filter is interesting in
Case B.

fewer queries. Intuitively, a rare context has lower prior probability
of being observed, which supports the assumption of Equation 2.

4.2.2  Query Prior

The query prior Pr.(Q¥) denotes the probability that Q¥ is the
intended query, prior to observing the example tuples. We model
the query prior as the joint probability of all filter events 5, where
¢ € ®. By further assuming filter independence'®, we reduce the
query prior to a product of probabilities of filter events:

Pr.(Q%) = Pro(Nyco 8) = [yeo Pre(9) 3)

The filter event prior Pr.(¢) denotes the prior probability that
filter ¢ is included in (if ¢ = @) or excluded from (if ¢ = @) the
intended query. We compute Pr.(¢) for each filter as follows:

Pr.(¢) =p-6(¢) - a(¢)  A(¢) and Pr.(¢) =1 Pr.(¢)

Here, p is a base prior parameter, common across all filters, and
represents the default value for the prior. The other factors (§, a,
and \) reduce the prior, depending on characteristics of each filter.
We describe these parameters next.
Domain selectivity impact §(¢). Intuitively, a filter that covers a
large range of values in an attribute’s domain is unlikely to be part
of the intended query. For example, if a user is interested in actors
of a certain age group, that age group is more likely to be narrow
(@ (age, [a1,45], 1)) than broad (@ age,[a1,90], 1)) We penalize broad fil-
ters with the parameter 6 € (0, 1]; d(¢) is equal to 1 for filters that
do not exceed a predefined ratio in the coverage of their domain,
and decreases for filters that exceed this threshold.'!
Association strength impact a(¢). Intuitively, a derived filter
with low association strength is unlikely to appear in the intended
query, as the filter denotes a weak association with the relevant enti-
ties. For example, ¢(genre,Comedy,1) is less hkely than ¢<genre,Comedy,30>
to represent a query intent. We label filters with 6 lower than a
threshold 7 as insignificant, and set a(¢) = 0. All other filters,
including basic filters, have a(¢) = 1.
Outlier impact A(¢). While a(¢) characterizes the impact of
association strength on a filter individually, A(¢) characterizes its
impact in consideration with other derived filters over the same at-
tribute. Figure 8 demonstrates two cases of derived filters on the
same attribute (genre), corresponding to two different sets of ex-
ample tuples. In Case A, ¢1 and ¢2 are more significant than the
other filters of the same family (higher association strength). In-
tuitively, this corresponds to the intent to retrieve actors who ap-
peared in mostly Comedy and SciFi movies. In contrast, Case B
does not have filters that stand out, as all have similar association
strengths: The actors in this example set are not strongly associated
with particular genres, and thus, intuitively, this family of filters is
not relevant to the query intent.

We model the outlier impact A(¢) of a filter using the skewness
of the association strength distribution within the family of derived

IOReasoning about database queries commonly assumes independence across selection
predicates, which filters represent, even though it may not hold in general.
"' Details on the computation of §(¢) and A(¢) are in the Appendix.

filters sharing the same attribute. Our assumption is that highly-
skewed, heavy-tailed distributions (Case A) are likely to contain
the significant (intended) filters as outliers. We set A(¢) = 1 for a
derived filter whose association strength is an outlier in the associ-
ation strength distribution of filters of the same family. We also set
A(¢) = 1 for basic filters. All other filters get A(¢) = 0."!

4.2.3 Semantic Context Posterior

The semantic context posterior Pr..(X|Q¥) is the probability
that a set of example tuples of size | E|, sampled from the output of
a particular query Q¥, exhibits the set of semantic contexts X':

Pr.(X|Q¥) = zn|Q%)

Two semantic contexts x;,z; € X are conditionally independent
given QQ¥. Therefore:

Pr.(X|Q%) =TI\, Pro(@:|Q%) =TT\, Pr«( x1|¢1,¢2,...)

Recall that ¢; encodes the semantic context x; (Section 4.1). We
assume that x; is conditionally independent of any ¢;, ¢ # j, given
¢; (this always holds for ¢; = ¢;):

Pr(X|Q7) =

Pr.(z1,z2, ...,

" Pro(zi|i) )

For each ;, we compute Pr., (xl|qz52) based on the state of the
filter event (gf)Z ¢; or ¢)1 @:):
Pr.(x;:|¢i): By definition, all tuples in Q{#¢}(D) exhibit the
property of ;. Hence, Pr.(zi|¢:) = 1.
Pr.(x:|$:): This is the probability that a set of | F| tuples drawn
uniformly at random from Q* (D) (¢; is not applied to the base
query) exhibits the context z;. The portion of tuples in Q* (D)
that exhibit the property of x; is the selectivity 1(¢;). Therefore,
Pra(zilé:) = v(e:) F.

Using Equations (1)—(4), we derive the final form of the query
posterior (where K is a normalization constant):

Pr(@°18) = gy T (Pro@)r(add)

%) 11 Pree)Proilo)) [] Pre(di)Pre(ailés) (5

Pi€p DiEe

1/)(

4.3 Generalization

So far, our analysis focused on a fixed base query. Given an
SPJ query %, the underlying base query Q™ is deterministic, i.e.,
Pr(Q*|Q¥) = 1. Hence:

Pr(Q°|E) = Pr(Q”,Q|E) = Pr(Q*|Q", E)Pr(Q"|E)
= Pr.(Q7|E)Pr(Q"|E)

We assume Pr(Q*|E) to be equal for all valid base queries, where
Q" (D) O E. Then we use Pr.(Q?|E) to find the query @ that
maximizes the query posterior Pr(Q|E).

S. OFFLINE ABDUCTION PREPARATION

In this section, we discuss system considerations to perform query
intent discovery efficiently. SQUID employs an offline module
that performs several pre-computation steps to make the database
abduction-ready. The abduction-ready database (aDB) augments
the original database with derived relations that store associations
across entities and precomputes semantic property statistics. Deriv-
ing this information is relatively straightforward; the contributions
of this section lie in the design of the aDB, the information it main-
tains, and its role in supporting efficient query intent discovery. We
describe the three major functions of the aDB.



Entity lookup. SQUID’s goal is to discover the most likely query,
based on the user-provided examples. To do that, it first needs to
determine which entities in the database correspond to the exam-
ples. SQUID uses a global inverted column index [51], built over
all text attributes and stored in the aDB, to perform fast lookups,
matching the provided example data to entities in the database.

Semantic property discovery. To reason about intent, SQUID first
needs to determine what makes the examples similar. SQUID looks
for semantic properties within entity relations (e.g., gender appears
in table person), other relations (e.g., genre appears in a separate
table joining with movie through a key-foreign-key constraint), and
other entities, (e.g., the number of movies of a particular genre
that a person has appeared in). The aDB precomputes and stores
such derived relations (e.g., persontogenre), as these frequently
involve several joins and aggregations and performing them at run-
time would be prohibitive.'> For example, SQUID computes the
persontogenre relation (Figure 5) and stores it in the aDB with
the SQL query below:
Q6: CREATE TABLE persontogenre as

(SELECT person_id, genre_id, count(*) AS count

FROM castinfo, movietogenre

WHERE castinfo.movie_id = movietogenre.movie_id

GROUP BY person-id, genre_id)

For the aDB construction, SQUID only relies on very basic
information to understand the data organization. It uses (1) the
database schema, including the specification of primary and for-
eign key constraints, and (2) additional meta-data, which can be
provided once by a database administrator, that specify which ta-
bles describe entities (e.g., person, movie), and which tables and
attributes describe direct properties of entities (e.g., genre, age).
SQUID then automatically discovers fact tables, which associate
entities and properties, by exploiting the key-foreign key relation-
ships. SQUID also automatically discovers derived properties up
to a certain pre-defined depth, using paths in the schema graph, that
connect entities to properties. Since the number of possible values
for semantic properties is typically very small and remains con-
stant as entities grow, the DB grows linearly with the data size. In
our implementation, we restrict the derived property discovery to
the depth of two fact-tables (e.g., SQUID derives persontogenre
through castinfo and movietogenre). SQUID can support deeper
associations, but we found these are not common in practice. SQUID
generally assumes that different entity types appear in different re-
lations, which is the case in many commonly-used schema types,
such as star, galaxy, and fact-constellation schemas. SQUID can
perform inference in a denormalized setting, but would not be able
to produce and reason about derived properties in those cases.

Smart selectivity computation. For basic filters involving cate-
gorical values, SQUID stores the selectivity for each value. How-
ever, for numeric ranges, the number of possible filters can grow
quadratically with the number of possible values. SQUID avoids
wasted computation and space by only precomputing selectivities
1/1(¢(A,[mva ], 1y) forall v € Vi, where Vaa is the set of values
of attribute A in the corresponding relation, and miny, is the min-
imum value in V4. The aDB can derive the selectivity of a filter
with any value range as:

Y(Dea,an1, 1) = V(i iminy, 1, 1)) — V(D fminy, 1,1))

In case of derived semantic properties, SQUID precomputes selec-
tivities ¥ (¢pa,0,0)) forallv € Va,0 € ©4,,, where O 4, is the
set of values of association strength for the property “A = v”.

2The data cube [26] can serve as an alternative mechanism to model the DB data,
but is much less efficient compared to the aDB (details are in Appendix F.4).

6. QUERY INTENT DISCOVERY

During normal operation, SQUID receives example tuples from
a user, consults the DB, and infers the most likely query intent
(Definition 2.1). In this section, we describe how SQUID resolves
ambiguity in the provided examples, how it derives their semantic
context, and how it finally abduces the intended query.

6.1 Entity and Context Discovery

SQUID’s probabilistic abduction model (Section 4) relies on the
set of semantic contexts X and determines which of these contexts
are intended vs coincidental, by the inclusion or exclusion of the
corresponding filters in the inferred query. To derive the set of se-
mantic contexts from the examples, SQUID first needs to identify
the entities in the DB that correspond to the provided examples.

6.1.1 Entity disambiguation

User-provided examples are not complete tuples, but often single-
column values that correspond to an entity. As a result, there may
be ambiguity that SQUID needs to resolve. For example, sup-
pose the user provides the examples: {Titanic, Pulp Fiction,
The Matrix}. SQUID consults the precomputed inverted column
index to identify the attributes (movie.title) that contain all the
example values, and classifies the corresponding entity (movie) as
a potential match. However, while the dataset contains unique en-
tries for Pulp Fiction (1994) and The Matrix (1999), there are
4 possible mappings for Titanic: (1) a 1915 Italian film, (2) a 1943
German film, (3) a 1953 film by Jean Negulesco, and (4) the 1997
blockbuster film by James Cameron.

The key insight for resolving such ambiguities is that the pro-
vided examples are more likely to be alike. SQUID selects the
entity mappings that maximize the semantic similarities across the
examples. Therefore, based on the year and country information,
it determines that Titanic corresponds to the 1997 film, as it is
most similar to the other two (unambiguous) entities. In case of
derived properties, e.g., nationality of actors appearing in a film,
SQUID aims to increase the association strength (e.g., the number
of such actors). Since the examples are typically few, SQUID can
determine the right mappings by considering all combinations.

6.1.2 Semantic context discovery

Once SQUID identifies the right entities, it then explores all the
semantic properties stored in the aDB that match these entities
(e.g., year, genre, etc.). Since the aDB precomputes and stores
the derived properties, SQUID can produce all the relevant proper-
ties using queries with at most one join. For each property, SQUID
produces semantic contexts as follows:

Basic property on categorical attribute. If all examples in £ con-
tain value v for the property of attribute A, SQUID produces the
semantic context ((A,v, L), |E]|). For example, a user provides
three movies: Dunkirk, Logan, and Taken. The attribute genre
corresponds to a basic property for movies, and all these movies
share the values, Action and Thriller, for this property. SQUID
generates two semantic contexts: ({genre,Action, l},3) and
((genre, Thriller, 1), 3).

Basic property on numerical attribute. If v, and Vmaes
are the minimum and maximum values, respectively, that the
examples in E demonstrate for the property of attribute A,
SQUID creates a semantic context on the range [vmm,vmaz}:
((A, [Vmin, Vmas], L), |E|). For example, if E contains three
persons with ages 45, 50, and 52, SQUID will produce the context
((age, [45,52], 1), 3).

Derived property. If all examples in E contain value v for the de-
rived property of attribute A, SQUID produces the semantic con-



Algorithm 1: QueryAbduction (E, Q*, ®)

Input: set of entities F, base query Q*, set of minimal valid filters ®
Output: Q¥ such that Pr« (Q¥|E) is maximized

1 X = {11,{[2,...} semantic contexts n E
20=10

3 foreach ¢; € ® do

4 includeg, = Prs(¢;)Pra(x;|¢;) from Equation (5)
5 6ZClud€¢i = PT*(‘f;z)Pr*(wz‘d;z) from Equation (5)
6 if includey, > excludey, then

7 L ¢=wU{di}

8 return Q¥

text ((A, v, Omin), | E|), where i is the minimum association
strength for the value v among all examples. For example, if £
contains two persons who have appeared in 3 and 5 Comedy movies,
SQUID will produce the context ((genre, Comedy, 3), 2).

6.2 Query Abduction

SQUID starts abduction by constructing a base query that cap-
tures the structure of the example tuples. Once it identifies the en-
tity and attribute that matches the examples (e.g., person.name), it
forms the minimal PJ query (e.g., SELECT name FROM person). It
then iterates through the discovered semantic contexts and appends
the corresponding relations to the FROM clause and the appropriate
key-foreign key join conditions in the WHERE clause. Since the aDB
precomputes and stores the derived relations, each semantic context
will add at most one relation to the query.

The number of candidate base queries is typically very small. For
each base query Q*, SQUID abduces the best set of filters ¢ C &
to construct SPJ query Q¥, by augmenting the WHERE clause of Q*
with the corresponding selection predicates. (SQUID also removes
from Q¥ any joins that are not relevant to the selected filters ¢).

While the number of candidate SPJ queries grows exponentially
in the number of minimum valid filters (2'4"), we prove that we can
make decisions on including or excluding each filter independently.
Algorithm 1 iterates over the set of minimal valid filters ® and de-
cides to include a filter only if its addition to the query increases
the query posterior probability (lines 6-7). Our query abduction al-
gorithm has O(|®|) time complexity and is guaranteed to produce
the query Q¥ that maximizes the query posterior.

Theorem 1. Given a base query Q™, a set of examples F, and a
set of minimal valid filters ®, Algorithm 1 returns the query Q%,
where ¢ C @, such that Pr,(Q¥|E) is maximized.

7. EXPERIMENTS

In this section, we present an extensive experimental evaluation
of SQUID over three real-world datasets, with a total of 41 bench-
mark queries of varying complexities. Our evaluation shows that
SQUID is scalable and effective, even with a small number of
example tuples. Our evaluation extends to qualitative case stud-
ies over real-world user-generated examples, which demonstrate
that SQUID succeeds in inferring the query intent of real-world
users. We further demonstrate that when used as a query-reverse-
engineering system in a closed-world setting SQUID outperforms
the state-of-the-art. Finally, we show that SQUID is superior to
semi-supervised PU-learning in terms of both efficiency and effec-
tiveness.

7.1 Experimental Setup

We implemented SQUID in Java and all experiments were run
on a 12x2.66 GHz machine with 16GB RAM running CentOS 6.9
with PostgreSQL 9.6.6.
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Figure 9: Average abduction time over the benchmark queries in
(a) IMDb (top), DBLP (bottom), and (b) 4 versions of the IMDb
dataset in different sizes.

Datasets and benchmark queries. Our evaluation includes
three real-world datasets and a total of 41 benchmark queries, de-
signed to cover a broad range of intents and query structures. We
summarize the datasets and queries below and provide detailed de-
scription in Appendix D.

IMDDb (633 MB): The dataset contains 15 relations with informa-
tion on movies, cast members, film studios, etc. We designed a set
of 16 benchmark queries ranging the number of joins (1 to 8 rela-
tions), the number of selection predicates (0 to 7), and the result
cardinality (12 to 2512 tuples).

DBLP (22 MB): We used a subset of the DBLP data [2], with 14
relations, and 16 years (2000-2015) of top 81 conference publica-
tions. We designed 5 queries ranging the number of joins (3 to 8
relations), the number of selection predicates (2 to 4), and the result
cardinality (15 to 468 tuples).

Adult (4 MB): This is a single relation dataset containing census
data of people and their income brackets. We generated 20 queries,
randomizing the attributes and predicate values, ranging the num-
ber of selection predicates (2 to 7) and the result cardinality (8 to
1404 tuples).

Case study data. We retrieved several public lists (sources listed
in Appendix D) with human-generated examples, and identified the
corresponding intent. For example, a user-created list of “115 fun-
niest actors” reveals a query intent (funny actors), and provides us
with real user examples (the names in the list). We used this method
to design 3 case studies: funny actors (IMDDb), 2000s Sci-Fi movies
(IMDb), and prolific database researchers (DBLP).

Metrics. We report query discovery time as a metric of efficiency.
We measure effectiveness using precision, recall, and f-score. If
Q is the intended query, and Q' is the query inferred by SQUID,
precision is computed as % and recall as %;
f-score is their harmonic mean. We also report the total number
of predicates in the produced queries and compare them with the
actual intended queries.

Comparisons. To the best of our knowledge, existing QBE tech-
niques do not produce SPJ queries without (1) a large number of
examples, or (2) additional information, such as provenance. For
this reason, we can’t meaningfully compare SQUID with those ap-
proaches. Removing the open-world requirement, SQUID is most
similar to the QRE system TALOS [55] with respect to expressive-
ness and capabilities (Figure 3). We compare the two systems for
query reverse engineering tasks in Section 7.5. We also compare
SQUID against PU-learning methods [21] in Section 7.6.

7.2 Scalability

In our first set of experiments, we examine the scalability of
SQUID against increasing number of examples and varied dataset
sizes. Figure 9(a) displays the abduction time for the IMDb and
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Figure 11: SQUID rarely produces queries that are slower than the original with respect to query runtime.

DBLP datasets as the number of provided examples increases, av-
eraged over all benchmark queries in each dataset. Since SQUID
retrieves semantic properties and computes context for each exam-
ple, the runtime increases linearly with the number of examples,
which is what we observe in practice.

Figure 9(b) extends this experiment to datasets of varied sizes.
We generate three alternative versions of the IMDb dataset: (1) sm-
IMDb (75 MB), a downsized version that keeps 10% of the origi-
nal data; (2) bs-IMDb (1330 MB), doubles the entities of the orig-
inal dataset and creates associations among the duplicate entities
(person and movie) by replicating their original associations; (3) bd-
IMDb (1926 MB), is the same as bs-IMDb but also introduces as-
sociations between the original entities and the duplicates, creating
denser connections.”> SQUID’s runtime increases for all datasets
with the number of examples, and, predictably, larger datasets face
longer abduction times. Query abduction involves point queries to
retrieve semantic properties of the entities, using B-tree indexes.
As the data size increases, the runtime of these queries grows loga-
rithmically. SQUID is slower on bd-IMDb than on bs-IMDb: both
datasets include the same entities, but bd-IMDb has denser associ-
ations, which results in additional derived semantic properties.

7.3 Abduction Accuracy

Intuitively, with a larger number of examples, abduction accu-

racy should increase: SQUID has access to more samples of the
query output, and can more easily distinguish coincidental from in-
tended similarities. Figure 10 confirms this intuition, and precision,
recall, and f-score increase, often very quickly, with the number of
examples for most of our benchmark queries. We discuss here a
few particular queries.
IQ4 & 1Q11: These queries include a statistically common prop-
erty (USA movies), and SQUID needs more examples to confirm
that the property is indeed intended, not coincidental; hence, the
precision converges more slowly.

3 Details of the data generation process are in Appendix D.
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Figure 12: Effect of disambiguation on IMDb

1Q6: In many movies where Clint Eastwood was a director, he was
also an actor. SQUID needs to observe sufficient examples to dis-
cover that the property role:Actor is not intended, so recall con-
verges more slowly.

1Q10: SQUID performs poorly for this query. The query looks
for actors appearing in more than 10 Russian movies that were re-
leased after 2010. While SQUID discovers the derived properties
“more than 10 Russian movies” and “more than 10 movies released
after 20107, it cannot compound the two into “more than 10 Rus-
sian movies released after 2010”. This query is simply outside of
SQUID’s search space, and SQUID produces a query with more
general predicates than was intended, which is why precision drops.
1Q3: The query is looking for actresses who are Canadian and
were born after 1970. SQUID successfully discovers the prop-
erties gender:Female, country:Canada, and birth year > 1970;
however, it fails to capture the property of “being an actress”, cor-
responding to having appeared in at least 1 film. The reason is that
SQUID is programmed to ignore weak associations (a person asso-
ciated with only 1 movie). This behavior can be fixed by adjusting
the association strength parameter to allow for weaker associations.

Execution time. While the accuracy results demonstrate that
the abduced queries are semantically close to the intended queries,
SQUID could be deriving a query that is semantically close, but
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Figure 14: Both systems achieve perfect f-score on Adult (not
shown). SQUID produces significantly smaller queries, often by
orders of magnitude, and is often much faster.

more complex and costly to compute. In Figures 11(a) and 11(b)
we graph the average runtime of the abduced queries and the ac-
tual benchmark queries. We observe that in most cases the abduced
queries and the corresponding benchmarks are similar in execution
time. Frequently, the abduced queries are faster because they take
advantage of the precomputed relations in the aDB. In few cases
(1Q1, 195, and 1Q7) SQUID discovered additional properties that,
while not specified by the original query, are inherent in all in-
tended entities. For example, in 1Q5, all movies with Tom Cruise
and Nicole Kidman are also English language movies and released
between 1990 and 2014.

Effect of entity disambiguation. Finally, we found that entity
disambiguation never hurts abduction accuracy, and may signifi-
cantly improve it. Figure 12 displays the impact of disambiguation
for five IMDb benchmark queries, where disambiguation signifi-
cantly improves the f-score.

7.4 Qualitative Case Studies

In this section, we present qualitative results on the performance

of SQUID, through a simulated user study. We designed 3 case
studies, by constructing queries and examples from human-generated,
publicly-available lists.
Funny actors (IMDb). We created a list of names of 211 “funny ac-
tors”, collected from human-created public lists and Google Knowl-
edge Graph (sources are in Appendix D), and used these names as
examples of the query intent “funny actors.” Figure 13(a) demon-
strates the accuracy of the abduced query over a varying number of
examples. Each data point is an average across 10 different random
samples of example sets of the corresponding size. For this ex-
periment, we tuned SQUID to normalize the association strength,
which means that the relevant predicate would consider the fraction
of movies in an actor’s portfolio classified as comedies, rather than
the absolute number.
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2000s Sci-Fi movies (IMDb). We used a user-created list of 165
Sci-Fi movies released in 2000s as examples of the query intent
“2000s Sci-Fi movies”. Figure 13(b) displays the accuracy of the
abduced query, averaged across 10 runs for each example set size.
Prolific database researchers (DBLP). We collected a list of data-
base researchers who served as chairs, group leaders, or program
committee members in SIGMOD 2011-2015 and selected the top
30 most prolific. Figure 13(c) displays the accuracy of the abduced
query averaged, across 10 runs for each example set size.

Analysis. In our case studies there is no (reasonable) SQL query
that models the intent well and produces an output that exactly
matches our lists. Public lists have biases, such as not including
less well-known entities even if these match the intent.'* In our pro-
lific researchers use case, some well-known and prolific researchers
may happen to not serve in service roles frequently, or their com-
mitments may be in venues we did not sample. Therefore, it is not
possible to achieve high precision, as the data is bound to contain
and retrieve entities that don’t appear on the lists, even if the query
is a good match for the intent. For this reason, our precision num-
bers in the case studies are low. However our recall rises quickly
with enough examples, which indicates that the abduced queries
converge to the correct intent.

7.5 Query Reverse Engineering

We present an experimental comparison of SQUID with TA-
LOS [55], a state-of-the-art Query Reverse Engineering (QRE) sys-
tem.'> QRE systems operate in a closed-world setting, assuming
that the provided examples comprise the entire query output. In
contrast, SQUID assumes an open-world setting, and only needs a
few examples. In the closed-world setting, SQUID is handicapped
against a dedicated QRE system, as it does not take advantage of
the closed-world constraint in its inference.

For this evaluation under the QRE setting, we use the IMDb and
DBLP datasets, as well as the Adult dataset, on which TALOS was
shown to perform well [55]. For each dataset, we provided the
entire output of the benchmark queries as input to SQUID and TA-
LOS. Since there is no need to drop coincidental filters for query
reverse engineering, we set the parameters so that SQUID behaves
optimistically (e.g., high filter prior, low association strength thresh-
old, etc.).!'® We adopt the notion of instance equivalent query (IEQ)
from the QRE literature [55] to express that two queries produce the
same set of results on a particular database instance. A QRE task is
successful if the system discovers an IEQ of the original query (f-
score=1). For the IMDb dataset, SQUID was able to successfully
reverse engineer 11 out of 16 benchmark queries. Additionally, in
4 cases where exact IEQs were not abduced, SQUID queries gen-
erated output with > 0.98 f-score. SQUID failed only for 1q10,
which is a query that falls outside the supported query family, as
discussed in Section 7.3. For the DBLP and Adult datasets, SQUID
successfully reverse-engineered all benchmark queries.

Comparison with TALOS. We compare SQUID to TALOS
on three metrics: number of predicates (including join and selection
predicates), query discovery time, and f-score.

Adult. Both SQUID and TALOS achieved perfect f-score on the
20 benchmark queries. Figure 14 compares the systems in terms
of the number of predicates in the queries they produce (top) and
query discovery time (bottom). SQUID almost always produces

14 To counter this bias, our case study experiments use popularity masks (derived from
public lists) to filter the examples and the abduced query outputs (Appendix D).
1>Other related methods either focus on more restricted query classes [33, 64] or do not
scale to data sizes large enough for this evaluation [65, 57] (overview in Figure 3).
1°Details on the system parameters are in Appendix E.
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Figure 15: SQUID produces queries with significantly fewer predicates than TALOS and is more accurate on both IMDb and DBLP. SQUID

is almost always faster on IMDb, but TALOS is faster on DBLP.

simpler queries, close in the number of predicates to the original
query, while TALOS queries contain more than 100 predicates in
20% of the cases.

SQUID is faster than TALOS when the input cardinality is low

(~100 tuples), and becomes slower for the largest input sizes (>
700 tuples). SQUID was not designed as a QRE system, and in
practice, users rarely provide large example sets. SQUID’s focus is
on inferring simple queries that model the intent, rather than cover
all examples with potentially complex and lengthy queries.
IMDb. Figure 15(a) compares the two systems on the 16 bench-
mark queries of the IMDb dataset. SQUID produced better queries
in almost all cases: in all cases, our abduced queries where signif-
icantly smaller, and our f-score is higher for most queries. SQUID
was also faster than TALOS for most of the benchmark queries. We
now delve deeper into some particular cases.

For 1Q1 (cast of Pulp Fiction), TALOS produces a query with
f-score = 0.7. We attempted to provide guidance to TALOS through
a system parameter that specifies which attributes to include in the
selection predicates (which would give it an unfair advantage). TA-
LOS first performs a full join among the participating relations
(person and castinfo) and then performs classification on the de-
normalized table (with attributes person, movie, role). TALOS
gives all rows referring to a cast member of Pulp Fiction a posi-
tive label (based on the examples), regardless of the movie that row
refers to, and then builds a decision tree based on these incorrect
labels. This is a limitation of TALOS, which SQUID overcomes
by looking at the semantic similarities of the examples, rather than
treating them simply as labels.

SQUID took more time than TALOS in 1Q4, 1Q7, and 1Q15. The
result sets of 1Q4 and 1Q15 are large (> 1000), so this is expected.
1Q7, which retrieves all movie genres, does not require any selec-
tion predicate. As a decision tree approach, TALOS has the advan-
tage here, as it stops at the root and does not need to traverse the
tree. In contrast, SQUID retrieves all semantic properties of the ex-
ample tuples only to discover that either there is nothing common
among them, or the property is not significant. While SQUID takes
longer, it still abduces the correct query. These cases are not rep-
resentative of QBE scenarios, as users are unlikely to provide large
number of example tuples or have very general intents (PJ queries
without selection).

DBLP. Figure 15(b) compares the two systems on the DBLP dataset.

Here, SQUID successfully reverse engineered all five benchmark
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Figure 16: (a) PU-learning needs a large fraction (> 70%) of the
query results (positive data) as examples to achieve accuracy com-
parable to SQUID. (b) The total required time for training and pre-
diction in PU-learning increases linearly with the data size. In con-
trast, abduction time for SQUID increases logarithmically.

queries, but TALOS failed to reverse engineer two of them. TA-
LOS also produced very complex queries, with 100 or more pred-
icates for four of the cases. In contrast, SQUID’s abductions were
orders of magnitude smaller, on par with the original query. On this
dataset, SQUID was slower than TALOS, but not by a lot.

7.6 Comparison with learning methods

Query intent discovery can be viewed as a one-class classifica-
tion problem, where the task is to identify the tuples that satisfy the
desired intent. Positive and Unlabeled (PU) learning addresses this
problem setting by learning a classifier from positive examples and
unlabeled data in a semi-supervised setting. We compare SQUID
against an established PU-learning method [21] on 20 benchmark
queries of the Adult dataset. The setting of this experiment con-
forms with the technique’s requirements [21]: the dataset com-
prises of a single relation and the examples are chosen uniformly at
random from the positive data.

Figure 16 (a) compares the accuracy of SQUID and PU-learning
using two different estimators, decision tree (DT) and random for-
est (RF). We observe that PU-learning needs a large fraction (>
70%) of the query result to achieve f-score comparable to SQUID.
PU-learning favors precision over recall, and the latter drops signif-
icantly when the number of examples is low. In contrast, SQUID
achieves robust performance, even with few examples, because it
can encode problem-specific assumptions (e.g., that there exists an
underlying SQL query that models the intent, that some filters are
more likely than other filters, etc.); this cannot be done in straight-
forward ways for machine learning methods.



To evaluate scalability, we replicated the Adult dataset, with a
scale factor up to 10x. Figure 16 (b) shows that PU-learning be-
comes significantly slower than SQUID as the data size increases,

whereas SQUID’s runtime performance remains largely unchanged.

This is due to the fact that, SQUID does not directly operate on the
data outside of the examples (unlabeled data); rather, it relies on
the DB, which contains a highly compressed summary of the se-
mantic property statistics (e.g., filter selectivities) of the data. In
contrast, PU-learning builds a new classifier over all of the data for
each query intent discovery task. We provide more discussion on
the connections between SQUID and machine learning approaches
in Section 8.

8. RELATED WORK

Query-by-Example (QBE) was an early effort to assist users
without SQL expertise in formulating SQL queries [67]. Existing
QBE systems [51, 48] identify relevant relations and joins in situa-
tions where the user lacks schema understanding, but are limited to
project-join queries. These systems focus on the common structure
of the example tuples, and do not try to learn the common semantics
as SQUID does. QPlain [16] uses user-provided provenance of the
example tuples to learn the join paths and improve intent inference.
However, this assumes that the user understands the schema, con-
tent, and domain to provide these provenance explanations, which
is often unrealistic for non-experts.

Set expansion is a problem corresponding to QBE in Knowl-
edge Graphs [66, 58, 60]. SPARQLBYE [17], built on top of a
SPARQL QRE system [4], allows querying RDF datasets by anno-
tated (positive/negative) example tuples. In semantic knowledge
graphs, systems address the entity set expansion problem using
maximal-aspect-based entity model, semantic-feature-based graph
query, and entity co-occurrence information [38, 29, 27, 43]. These
approaches exploit the semantic context of the example tuples, but
they cannot learn new semantic properties, such as aggregates in-
volving numeric values, that are not explicitly stored in the knowl-
edge graph, and they cannot express derived semantic properties
without exploding the graph size.'”

Interactive approaches rely on relevance feedback on system-
generated tuples to improve query inference and result delivery [1,
12, 18, 24, 37]. Such systems typically expect a large number of
interactions, and are often not suitable for non-experts who may not
be sufficiently familiar with the data to provide effective feedback.

Query Reverse Engineering (QRE) [59, 6] is a special case of
QBE that assumes that the provided examples comprise the com-
plete output of the intended query. Because of this closed-world
assumption, QRE systems can build data classification models on
denormalized tables [55], labeling the provided tuples as positive
examples and the rest as negative. Such methods are not suitable
for our setting, because we operate with few examples, under an
open-world assumption. While few QRE approaches [33] relax
the closed world assumption (known as the superset QRE prob-
lem) they are also limited to PJ queries similar to the existing QBE
approaches. Most QRE methods are limited to narrow classes of
queries, such as PJ [64, 33], aggregation without joins [53], or top-k
queries [47]. REGAL+[54] handles SPJA queries but only consid-
ers the schema of the example tuples to derive the joins and ignores
other semantics. In contrast, SQUID considers joining relations
without attributes in the example schema (Example 1.1).

A few QRE methods do target expressive SPJ queries [65, 57],
but they only work for very small databases (< 100 cells), and do

"o represent “appearing in more than K comedies”, the knowledge graph would re-
quire one property for each possible value of K.

not scale to the datasets used in our evaluation. Moreover, the user
needs to specify the data in their entirety, thus expecting complete
schema knowledge, while SCYTHE [57] also expects hints from
the user towards precise discovery of the constants of the query
predicates.

Machine learning methods can model QBE settings as classifi-
cation problems, and relational machine learning targets relational
settings in particular [25]. However, while the provided examples
serve as positive labels, QBE settings do not provide explicit nega-
tive examples. Semi-supervised statistical relational learning tech-
niques [61] can learn from unlabeled and labeled data, but require
unbiased sample of negative examples. There is no straightforward
way to obtain such a sample in our problem setting without signif-
icant user effort.

Our problem setting is better handled by one-class classifica-
tion [40, 34], more specifically, Positive and Unlabeled (PU) learn-
ing [62, 39, 10, 21, 9, 44], which learns from positive examples
and unlabeled data in a semi-supervised setting [14]. Most PU-
learning methods assume denormalized data, but relational PU-
leaning methods do exist. However, all PU-learning methods rely
on one or more strong assumptions [10] (e.g., all unlabeled entities
are negative [46], examples are selected completely at random [21,
8], positive and negative entities are naturally separable [62, 39,
52], similar entities are likely from the same class [35]). These
assumptions create a poor fit for our problem setting where the ex-
ample set is very small, it may exhibit user biases, response should
be real-time, and intents may involve deep semantic similarity.

Other approaches that assist users in query formulation involve
query recommendation based on collaborative filtering [20], query
autocompletion [36], and query suggestion [22, 19, 31]. Another
approach to facilitating data exploration is keyword-based search [3,
28, 63]. User-provided examples and interactions appear in other
problem settings, such as learning schema mappings [50, 49, 13].
The query likelihood model in IR [41] resembles our technique, but
does not exploit the similarity of the input entities.

9. SUMMARY AND FUTURE DIRECTIONS

In this paper, we focused on the problem of query intent discov-
ery from a set of example tuples. We presented SQUID, a sys-
tem that performs query intent discovery effectively and efficiently,
even with few examples in most cases. The insights of our work
rely on exploiting the rich information present in the data to dis-
cover similarities among the provided examples, and distinguish
between those that are coincidental and those that are intended. Our
contributions include a probabilistic abduction model and the de-
sign of an abduction-ready database, which allow SQUID to cap-
ture both explicit and implicit semantic contexts. Our work in-
cludes an extensive experimental evaluation of the effectiveness
and efficiency of our framework over three real-world datasets, case
studies based on real user-generated examples and abstract intents,
and comparison with the state-of-the-art in query reverse engineer-
ing (a special case of query intent discovery) and with PU-learning.
Our empirical results highlight the flexibility of our method, as it
is extremely effective in a broad range of scenarios. Notably, even
though SQUID targets query intent discovery with a small set of a
examples, it outperforms the state-of-the-art in query reverse engi-
neering in most cases, and is superior to learning techniques.

There are several possible improvements and research directions
that can stem from our work, including smarter semantic context in-
ference using log data, example recommendation to increase sam-
ple diversity and improve abduction, techniques for adjusting the
depth of association discovery, on-the-fly aDB construction, and
efficient DB maintenance for dynamic datasets.
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APPENDIX
A. DOMAIN SELECTIVITY IMPACT

We use the notion of domain coverage of a filter ¢4, v, to de-
note the fraction of values of A’s domain that V' covers. As an ex-
ample, for attribute age, suppose that the domain consists of values
in the range (0, 100], then the filter ¢ (age,(40,90], 1) has 50% domain
coverage and the filter ¢ (,ge, (40,45], 1y has 5% domain coverage. We
use a threshold 17 > 0 to specify how much domain coverage does
not reduce the domain selectivity impact §. After that threshold, as
domain coverage increases, ¢ decreases. We use another parameter
~v > 0 which states how strongly we want to penalize a filter for
having large domain coverage. The value of v = 0 implies that
we do not penalize at all, i.e., all filters will have §(¢) = 1. As
~ increases, we reduce & more for larger domain coverages. We
compute the domain selectivity impact using the equation below:

1
domainCoverage(V) )"/
n

(Pa,v,0)) =

max(1,

B. OUTLIER IMPACT

Towards computing outlier impact of a filter ¢4 vy, We first
compute skewness of the association strength distribution © 4 within
the family of derived filters involving attribute A; and then check
whether 6 is an outlier among them. We compute sample skewness
of ©®4 = (a1, a2, ..., an), with sample mean @ and sample standard
deviation s, using the standard formula:

ny i (ai— a)®
s3(n—1)(n — 2)

A distribution is skewed if its skewness exceeds a threshold 7.
For outlier detection, we use the mean and standard deviation method.
For sample mean @, sample standard deviation s, and a constant
k > 2, a; is an outlier if (a; — @) > ks. For n < 3, skewness is
not defined and we assume all elements to be outliers. We compute
outlier impact A(¢ (4, v,0)):

skewness(©4) =

1 6=1V (skewness(0©a)>7s A outlier(0))
0 otherwise

A((b(A,V,G)) = {

C. PROOF OF THEOREM 1

Proof. We will prove Theorem 1 by contradiction. Suppose that
@ is the optimal set of filters, i.e., Q¥ is the most likely query.
Additionally, suppose that ¢ is the minimal set of filters for obtain-
ing such optimality, i.e., A’ such that |¢'| < ¢ A PT(Q‘”/ |E) =
Pr(Q?|E). Now suppose that, Algorithm 1 returns a sub-optimal
query Q¥ ie., PT(Q“’I |E) < Pr(Q?|E). Since Q¥ is subopti-
mal, ¢’ # (; therefore at least one of the following two cases must
hold:

Case 1: 3¢ such that p € o A ¢ € ¢'. Since Algorithm 1 did not
include ¢, it must be the case that includey < excludey. There-
fore, we can exclude ¢ from ¢ to obtain ¢ — {¢} and according to
Equation 5, Pr(Q*¢~¢}|E) > Pr(Q¥|E) which contradicts with
our assumption about the optimality and minimality of .

Case 2: ¢ such that ¢ € o A ¢ € ¢'. Since Algorithm 1 included
¢, it must be the case that includes > excludey. Therefore, we


http://wordgrabbag.com

[ Title ] Source

IMDDb dataset https://datasets.imdbws.com/
DBLP dataset https://data.mendeley.com/datasets/3p9w84tSmr
Adult dataset https://archive.ics.uci.edu/ml/datasets/adult

Physically strong actors https://www.imdb.com/list/1s050159844/

Top 1000 Actors and Actresses http://www.imdb.com/list/Is058011111/

Sci-Fi Cinema in the 2000s http://www.imdb.com/list/Is000097375/

Funny Actors https://www.imdb.com/list/1s000025701/

100 Random Comedy Actors https://www.imdb.com/list/1s000791012/

BEST COMEDY ACTORS https://www.imdb.com/list/1s000076773/

115 funniest actors https://www.imdb.com/list/1s051583078/

Top 35 Male Comedy Actors https://www.imdb.com/list/1s006081748/

Top 25 Funniest Actors Alive https://www.imdb.com/list/1s056878567/

the top funniest actors in holly-|https://www.imdb.com/list/1s007041954/
wood today

Google knowledge graph: Actors: | https://www.google.com/search?q=funny+actors
Comedy

The Best Movies of All Time https://www.ranker.com/crowdranked-list/the-

best-movies-of-all-time

Top H-Index for Computer Science | http://www.guide2research.com/scientists/
& Electronics”

" Used as popularity mask

Figure 17: Source of datasets

IMDb & variations

IMDb bd-IMDb
DB size 633 MB DB size 1926 MB
#Relations 15 #Relations 15
Precomputed DB size 2310 MB Precomputed DB size 5971 MB
Precomputation time 150 min Precomputation time 370 min
person 6,150,949 person 12,301,898
Rel. movie 976,719 ||Rel. movie 1,953,438
Card. castinfo 14,915,325 || Card. castinfo 59,661,300
bs-IMDb sm-IMDb
DB size 1330 MB DB size 75 MB
#Relations 15 #Relations 15
Precomputed DB size 4831 MB Precomputed DB size 317 MB
Precomputation time 351 min Precomputation time 14 min
person 12,301,898 person 65,865
Rel. movie 1,953,438 ||Rel. movie 335,705
Card. castinfo 29,830,650 || Card. castinfo 1,364,890
DBLP Adult
DB size 22 MB DB size 4 MB
#Relations 14 #Relations 1
Precomputed DB size 98 MB Precomputed DB size 5MB
Precomputation time 42 min Precomputation time 3 min
author 126,094
Rel. publication 148,521 || Rel. adult 32,561
Card. authortopub 416,445 || Card.

Figure 18: Description of IMDb, DBLP, and Adult datasets

can add ¢ to ¢ to obtain ¢ U {¢} and according to Equation 5,
Pr(Q?Y1*YE) > Pr(Q¥|E) which again contradicts with our
assumption about the optimality of ¢.

Hence, Q“", cannot be suboptimal and this implies that Algo-
rithm 1 returns the most likely query. O

Note that, in a special case where includey = excludey, Algo-
rithm 1 drops the filter using Occam’s razor principle to keep the
query as simple as possible. But this, however, does not return any
query that is strictly less likely than the best query.

D. DATASETS AND BENCHMARK QUERIES

We collect the datasets from various sources and provide them
in Figure 17. The detailed description of the datasets are given in
Figure 18. We mention the cardinalities of the big relations for
providing a sense of the data and their associations.

D.1 Alternative IMDb Datasets

For the scalability experiment, we generated 3 versions of the
IMDb database. For obtaining a downsized database sm-IMDb,
we dropped persons with less than 2 affiliated movies and/or who

have too many semantic information missing, and movies that have
no cast information. We produced two upsized databases: one with
dense associations bd-IMDb, and the other with sparse associations
bs-IMDb. bd-IMDb contains duplicate entries for all movies, per-
sons, and companies (with different primary keys), and the associ-
ations among persons and movies are duplicated to produce more
dense associations. For example, if P1 acted in M1 in IMDb, i.e.,
(P1,M1) exists in IMDB’s castinfo, we added a duplicate per-
son P2, a duplicate movie M2, and 3 new associations, (P1,M2),
(P2,M2), and (P2,M1), to bd-IMDDb’s castinfo. For bs-IMDb, we
only duplicated the old associations, i.e., we added P2 and M2 in a
similar fashion, but only added (P2,M2) in castinfo.

D.2 Benchmark Queries

We discuss the benchmark queries for all datasets here. Fig-
ures 19 and 20 display benchmark queries that we use to run differ-
ent experiments on the IMDb and DBLP datasets, respectively. The
tables show the query intents, details of the corresponding queries
in SQL (number of joining relations (J) and selection predicates
(S)), and the result set cardinality. Figure 22 shows 20 benchmark
queries along with their result set cardinality for the Adult dataset.

E. SQUID PARAMETERS

We list the four most important SQUID parameters in Figure 21
along with brief description. We now discuss the impact of these
parameters on SQUID and provide few empirical results.

p. The base filter prior parameter p defines SQUID’s tendency
towards including filters. Small p makes SQUID pessimistic about
including a filter, and thus favors recall. In contrast, large p makes
SQUID optimistic about including a filter, which favors precision.
Low p helps in getting rid of coincidental filters, particularly with
very few example tuples. However, with sufficient example tuples,
coincidental filters eventually disappears, and the effect of p di-
minishes. Figure 23 shows effect of varying the value of p for few
benchmark queries on the IMDb dataset. While low p favors some
queries (IQ2, IQ16), it causes accuracy degradation for some other
queries (IQ3, IQ4, IQ11), where high p works better. It is a tradeoff
and we found empirically that moderate value of p (e.g., 0.1) works
best on an average.

~. The domain coverage penalty parameter -y specifies SQUID’s
leniency towards filters with large domain coverage. Low ~ penal-
izes filters with large domain coverage less, and high v penalizes
them more. Figure 24 shows the effect of varying ~. Very low v fa-
vors some queries (IQ3, IQ4, IQ11) but also causes accuracy degra-
dation for some other queries (IQ2, 1Q16), where high « works bet-
ter. Like p, it is also a tradeoff, and empirically we found moderate
values of vy (e.g., 2) to work well on an average.

Ta. The association strength threshold 7, is required to define
the association strength impact a(¢) (Section 4.2.2). Figure 25 il-
lustrates the effect of different values of 7, on the benchmark query
1Q5 on the IMDb dataset. The figure shows that, with very few ex-
ample tuples, high 7, is preferable, since it helps dropping coinci-
dental filters with weak associations. Similar to other parameters,
with increased number of example tuples, the effect of 7, dimin-
ishes.

Ts. The skewness threshold 7, is required to classify an asso-
ciation strength distribution as skewed or not (Appendix B). Fig-
ure 26 illustrates the effect of different values of 75 on the bench-
mark query IQ1 on the IMDb dataset. 7. = N/A refers to the
experiment where outlier impact was not taken into account (i.e.,
A(¢) = 1 for all filters). In this query, there were a number of un-
intended derived filters involving certificate and high 7, helped



[ID ] Task [J]S[#Result]
1IQ1 |Entire cast of Pulp Fiction 3(1 113
1Q2 | Actors who appeared in all of The Lord of the Rings trilogy | 8|7 20
1Q3 |Canadian actresses born after 1970 314 1531
1Q4 | Sci-Fi movies released in USA in 2016 5|3 1374
1Q5 |Movies Tom Cruise and Nicole Kidman acted together 5(2 12
1Q6 |Movies directed by Clint Eastwood 412 36
1Q7 | All movie genres 110 35
1Q8 [Movies by Al Pacino 412 71
1Q9” |Indian actors who acted in at least 15 Hollywood movies |6|4 23
IQIO* Actors who acted in more than 10 Russian movies after |6 |4 84

2010
1Q11 |Hollywood Horror-Drama movies in 2005 — 2008 7|5 291
1Q12 |Movies produced by Walt Disney Pictures 3(1 394
1Q13 | Animation movies produced by Pixar 5(2 57
1Q14 |Sci-Fi movies acted by Patrick Stewart 63 22
1Q15 |Japanese Animation movies 52 2512
1Q16 |Walt Disney Pictures movies with more than 15 American|5|3 207

cast members

* Includes GROUP BY and HAVING clauses

Figure 19: Benchmark queries for the IMDDb dataset

[ ID ] Task [T]S#Result]

DQI | Authors who collaborated with both U Washington and | 5|2 30
Microsoft Research Redmond
DQZ* Authors with at least 10 SIGMOD and at least 10 VLDB | 8 | 4 52
publications
DQ3 | SIGMOD publications in 2010 — 2012 3|3 468
DQ4 |Publications Jiawei Han, Xifeng Yan, and Philip S. Yu[7]|3 15
published together
DQ5 |Publications between USA and Canada 5(2 336
" Includes GROUP BY, HAVING, and INTERSECT
Figure 20: Benchmark queries for the DBLP dataset
Parameter Default value Description
P 0.1 Base filter prior parameter.
o1 2 Domain coverage penalty parameter.
Ta 5 Association strength threshold.
Ts 2.0 Skewness threshold.

Figure 21: List of SQUID parameters with description.

to get rid of those. We also found high 75 to be very useful when
we cannot use high 7, due to the nature of the query intent (e.g.,
1Q3). However, too high 7 is also not desirable, since it will under-
estimate some moderately skewed distributions and drop intended
filters. Empirically, we found that moderate 75 (e.g., 2—4) to work
well on an average.

F. ANALYSIS OF PRIOR ART

We provided a summary of prior work to contrast with SQUID
in the comparison matrix of Figure 3. In this section we explain
the comparison metrics and highlight the key differences among
different classes of query by example techniques and their variants.

We organize the prior work into three categories — QBE (query
by example), QRE (query reverse engineering), and DX (data ex-
ploration). Furthermore, we group QBE methods into two sub-
categories, methods for relational databases, and methods for knowl-
edge graphs. All QRE and DX methods that we discuss are devel-
oped on relational databases.

Finally, we provide an extensive discussion to contrast SQUID
against existing semi-supervised machine learning approaches.

F.1

Comparison Metrics

Query class encodes the expressivity of a query. We use four
primitive SQL operators (join, projection, selection, and aggrega-
tion) as comparison metrics. Although all of these operators are not
directly supported by data retrieval mechanisms (e.g., graph query,
SPARQL) for knowledge graphs, they support similar expressivity
through alternative equivalent operators.

[ SQL Query

] #Result l

SELECT DISTINCT name FROM adult WHERE education
= ‘Bachelors’ AND occupation = ‘Craft-repair’ AND
hoursperweek >= 36 AND hoursperweek <= 40 AND age
>= 46 AND age <= 47

8

SELECT DISTINCT name FROM adult WHERE

race = ‘White’ AND sex = ‘Female’ AND
nativecountry = ‘United-States’ AND
relationship = ‘Other-relative’ AND occupation
= ‘Machine-op-inspct’ AND workclass = ‘Private’

SELECT DISTINCT name FROM adult WHERE occupation
= ‘Craft-repair’ AND workclass = ‘Private’

AND age >= 65 AND age <= 68 AND relationship =
‘Husband’

SELECT DISTINCT name FROM adult WHERE
maritalstatus = ‘Divorced’ AND capitalgain >=
7298 AND capitalgain <= 10520 AND hoursperweek
>= 40 AND hoursperweek <= 44 AND relationship =
‘Not-in-family’

SELECT DISTINCT name FROM adult WHERE capitalgain
>= 4101 AND capitalgain <= 4650 AND workclass =
‘Private’ AND age >= 41 AND age <= 44

SELECT DISTINCT name FROM adult WHERE occupation
= ‘Protective-serv’ AND hoursperweek >= 45 AND
hoursperweek <= 48

i

SELECT DISTINCT name FROM adult WHERE education
= ‘10th’ AND race = ‘White’ AND fnlwgt >= 334113
AND fnlwgt <= 403468

48

SELECT DISTINCT name FROM adult WHERE
nativecountry = ‘United-States’ AND hoursperweek
>= 43 AND hoursperweek <= 45 AND race = ‘White’
AND fnlwgt >= 106541 AND fnlwgt <= 118876

126

SELECT DISTINCT name FROM adult WHERE race

= ‘White’ AND education = ‘Bachelors’ AND
nativecountry = ‘United-States’ AND capitalgain
>= 6097 AND capitalgain <= 7688 AND maritalstatus
= ‘Married-civ-spouse’ AND relationship =
‘Husband’

128

SELECT DISTINCT name FROM adult WHERE education
= ‘Bachelors’ AND capitalloss >= 1848 AND
capitalloss <= 1980

182

SELECT DISTINCT name FROM adult WHERE sex =
‘Male’ AND nativecountry = ‘United-States’ AND
capitalloss >= 1848 AND capitalloss <= 1887

203

SELECT DISTINCT name FROM adult WHERE
education = ‘Doctorate’ AND maritalstatus
= ‘Married-civ-spouse’ AND nativecountry =
‘United-States’

223

SELECT DISTINCT name FROM adult WHERE education
= ‘HS-grad’ AND workclass = ‘Private’ AND
hoursperweek >= 45 AND hoursperweek <= 46 AND
relationship = ‘Husband’

241

SELECT DISTINCT name FROM adult WHERE capitalgain
>= 7688 AND capitalgain <= 8614

343

SELECT DISTINCT name FROM adult WHERE education
= ‘Bachelors’ AND maritalstatus = ‘Never-married’
AND workclass = ‘Private’ AND hoursperweek >= 40
AND hoursperweek <= 43 AND race = ‘White’

563

SELECT DISTINCT name FROM adult WHERE education
= ‘HS-grad’ AND nativecountry = ‘United-States’
AND occupation = ‘Machine-op-inspct’ AND race =
‘White’

777

SELECT DISTINCT name FROM adult WHERE
nativecountry = ‘United-States’ AND age >= 60 AND
age <= 62

798

SELECT DISTINCT name FROM adult WHERE fnlwgt >=
271962 AND fnlwgt <= 288781

912

SELECT DISTINCT name FROM adult WHERE
maritalstatus = ‘Married-civ-spouse’ AND fnlwgt
>= 221366 AND fnlwgt <= 259301

1340

SELECT DISTINCT name FROM adult WHERE
maritalstatus = ‘Never-married’ AND fnlwgt >=
185624 AND fnlwgt <= 211177

1404

Figure 22: Benchmark queries for the Adult dataset

Semi-join is a special type of join which is particularly useful
for QBE systems. A system is considered to support semi-join if
it allows inclusion of relations in the output query that have no
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Figure 23: Effect of different values for p for few benchmark
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Figure 24: Effect of different values for v for few benchmark
queries of the IMDb dataset
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Figure 26: Effect of different values for 75 for 1q1 (IMDb)

attribute projected in the input schema (e.g., in Example 1.1, no
attribute of research appears in the input tuples, but Q2 includes
research). While knowledge graph based systems do not directly
support semi-join as defined in the relational database setting, they
support same expressivity through alternative mechanism.

Implicit property refers to the the properties that are not directly
stated in the data (e.g., number of comedies an actor appears in).
In SQUID, we compute implicit properties by aggregating direct
properties of affiliated entities.

Scalability expresses how the system scales when data increases.
While deciding on scalability of a system, we mark a system scal-
able only if it either had a rigorous scalability experiment, or was
shown to perform well on real-world big datasets (e.g., DBpedia).

Thus, we do not consider approaches as scalable if the dataset is
too small (e.g., contains 100 cells).

Open-world assumption states that what is not known to be true
is simply unknown. In QBE and related works, if a system assumes
that tuples that are not in the examples are not necessarily outside
of user interest, follow the open-world assumption. In contrast,
closed-world assumption states that when a tuple is not specified in
the user example, it is definitely outside of user interest.

Apart from the aforementioned metrics, we also report any ad-
ditional requirement of each prior art. We briefly discuss dif-
ferent types of additional requirements here. User feedback in-
volves answering any sort of system generated questions. It ranges
from simply providing relevance feedback (yes/no) to a system sug-
gested tuple to answering complicated questions such as “if the in-
put database is changed in a certain way, would the output table
change in this way?” Another form of requirement involves pro-
viding negative tuples along with positive tuples. Provenance in-
put requires the user to explain the reason why she provided each
example. Some systems require the user to provide the example
tuples sorted in a particular order (top-k), aiming towards reverse
engineering top-k queries. Schema-knowledge is assumed when
the user is supposed to provide provenance of examples or sample
input database along with the example tuples.

F.2 Comparison Summary

QBE methods on relational databases largely focus on project-
join queries. Few knowledge graph-based approaches support at-
tribute value specification, which is analogous to selection predi-
cates in relational databases. However, they are limited to predi-
cates involving categorical attributes or simple comparison opera-
tors (= and #) involving numeric attributes. This is a serious prac-
tical limitation as user intent is often encoded by range predicates
on numeric attributes. Therefore, we mark such limited support
with the special symbol: ‘!”.

While all QBE methods follow open-world assumption, QRE
methods are usually built on the closed-world assumption. How-
ever, few QRE methods also support open-world assumption and
support superset QRE variation. However, such approaches are
limited to PJ queries only. In general, QRE methods cannot support
highly expressive class of queries without severely compromising
scalability.

While almost every QBE and QRE technique supports join and
projection, data exploration techniques usually assume that the tu-
ples reside in a denormalized table and the entire rows of relevant
entities are of user interest; thus data exploration techniques do not
focus on deriving the correct join path or projection columns.

F.3 Contrast with Machine Learning

Existing PU-learning approaches over relational data make some
strong assumptions that do not fit into our problem setting. Under
the SCAR assumption, TIcER [8] estimates label frequency, which
is the sampling rate of examples, to solve the PU-learning problem
in relational data. However, when the number of positive examples
is small, it generates high-precision, but low-recall classifier. Un-
der the separability assumption, few PU-learning approaches [62,
39] infer reliable negative examples from the positive examples and
apply iterative learning to converge to the final classifier, which is
prohibitive for the real-time data exploration setting. Aleph [52]
is a relational rule learning system that allows a PosOnly setting
for PU-learning, based on the separability assumption. However, it
tries to minimize the size of the retrieved data, which results in low-
recall with very few examples. Under the smoothness assumption,
RelOCC [35] uses positive examples and exploits the paths that the



examples take within the underlying relational data to learn dis-
tance measure. However, it does not exploit any aggregated feature
(deep semantic similarity) or feature statistics (selectivity) obtained
from the entire dataset. We summarize the key points to contrast
machine learning (ML) approaches with SQUID below:

Dependency on data volume. SQUID is agnostic to the volume
of unlabeled data as it relies on highly compressed summary of the
feature statistics (e.g., selectivity of the filters), precomputed over
the data. SQUID pushes this summarization task in the offline pre-
processing step and uses the summary during online intent discov-
ery. In contrast, efficiency of ML approaches depends on the sheer
volume of the data as they are data intensive. Sampling is a way to
deal with large volume of data, however, it comes at a cost of infor-
mation loss and reduced accuracy. Moreover, for large data spread
out in diverse classes, it is hard to produce an unbiased sample; it
is even harder to produce such sample in a relational dataset. Ide-
ally, ML approaches are task specific and the large training time is
affordable due to being a one-time requirement. However, a query
intent discovery system is designed for data exploration which de-
mands real-time performance. Each query intent is equivalent to a
new machine-learning task and requires time-consuming training,
which is not ideal in the data exploration setting.

Training effort. For each task, ML approaches require training
a new model, which requires significant effort (e.g., manual hyper-
parameter tuning) to converge to a model. Therefore, ML approaches
would need to rebuild the model every time a new query intent is
posed, or even when the current example set is augmented with
new examples. No single hyper-parameter setting would work for
all tasks where the tasks are unknown a-priori. Under the sepa-
rability assumption, some PU-learning approaches [62] apply iter-
ative learning to converge to the final classifier which is wasteful
for learning each query intent. In contrast, SQUID does not re-
quire hyper-parameter tuning for each task, rather it only requires
one-time manual parameter tuning for the overall intent types (e.g.,
user preference regarding precision-recall tradeoff) on a particular
dataset.

Interpretability. SQUID is a query by example method which is
an instantiation of general programming by example (PBE). One
key difference between PBE and ML is the requirement of inter-
pretability of the underlying model. The goal of PBE technique is
to provide the users the learned model (e.g., SQL query in our case),
not just a black box that separates the intended data from the unin-
tended one. In contrast, the focus of ML approaches is to construct
a model, often extremely complex (e.g., deep neural network), that
separates the positive data from the negative ones.

Handling very few examples. Even though PU-learning approaches
work with only positive examples, they require a fairly large frac-
tion of the positive data as examples. In contrast, SQUID works
on very small set of examples which is natural for data exploration.
This is possible under the strong assumption that the underlying
model, where the user examples are sampled from, is a structured
query. This implies that the user consistently provides semantically
similar examples reflecting their true intent. When the labeled data
is this small, PU-learning approaches result in high-precision, but
low-recall classifiers, which does not help in data exploration.

Assumptions involving model and feature prior. One significant
distinction between SQUID and ML approaches is the assumption
regarding the underlying model. SQUID assumes that there exists
a SQL query with conjunctive selection predicates (features) that is
capable to generate the complete set of positive tuples. In contrast,

ML approaches do not have any such simplified assumption and
attempts to learn a separating criteria based on features. Hence,

it is unlikely for ML systems to drop strongly correlated features
observed within the examples, despite being co-incidental. Addi-
tionally, we exploit two information — (1) data dependent feature
prior (Section 4.2.1), and (2) data-independent feature prior (Sec-
tion 4.2.2) — which is hard to incorporate in ML. As an example,
in Section 4.2.2, we discuss outlier impact, a non-trivial component
of feature prior, which basically indicates whether a set of features
together is likely to be intended. Such assumptions are hard to en-
code in ML approaches.

F.4 Contrast with Data Cube

Data cube [26] can serve as an alternative mechanism to model
the information precomputed in the abduction-ready database. How-
ever, a principal contribution of the aDB is the determination of
which information is needed for SQUID’s inference, rendering it
much more efficient than a data cube solution. We have empir-
ically evaluated data cube’s performance on the IMDb data using
Microsoft SQL Server Analysis Services (SSAS) where we defined
a three-dimensional data cube: (person, movie, genre), deployed
it in Microsoft Analysis Server 14 with process option “Process
Full”, and used MDX queries to extract data. We also ported the
relevant SQUID aDB data (persontogenre) from PostgreSQL into
Microsoft SQL Server 14, and evaluated the corresponding SQL
queries. We found that the data cube performs one to two orders
of magnitude slower than queries over the aDB. One can materi-
alize certain summary-views by applying roll-up operations on the
data cube to expedite query execution, but such materializations
essentially replicate the information materialized in the aDB; and
determining the appropriate data to materialize, i.e., which derived
relations to precompute, is the primary contribution of the aDB.

If one were to materialize all possible roll-up operations to take
advantage of data cube’s generality without the performance penalty,
this would require four orders of magnitude more space compared
to the aDB on the IMDb data. Compression mechanisms exist
to store sparse data cubes efficiently, but such compression would
hurt the query performance even more. The issue here is that the
data cube encodes non-meaningful views (e.g., person-to-movie),
because genre is not an independent dimension with respect to
movie. In contrast, SQUID aggregates out large entity dimen-
sions (e.g., SQUID aggregates out movie while computing person-
togenre) which ensures that the size of the aDB is reasonable
(Figure 18). So, ultimately, even though the data cube does pro-
vide a possible mechanism for encoding the DB data, it is not
well-suited for schemas that do not exhibit the independence of di-
mensions that the data cube inherently assumes, resulting in poor
performance compared to the aDB.



