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ARTICLE INFO ABSTRACT

Keywords: Traditional relational data interfaces require precise structured queries over potentially complex schemas.
Query by example These rigid data retrieval mechanisms pose hurdles for nonexpert users, who typically lack programming
Abd"m:f reasoning language expertise and are unfamiliar with the details of the schema. Existing tools assist in formulating
User studies

queries through keyword search, query recommendation, and query auto-completion, but still require some
technical expertise. An alternative method for accessing data is query by example (QBE), where users express
their data exploration intent simply by providing examples of their intended data and the system infers the
intended query. However, existing QBE approaches focus on the structural similarity of the examples and
ignore the richer context present in the data. As a result, they typically produce queries that are too general,
and fail to capture the user's intent effectively. In this article, we present SQuID, a system that performs
semantic-similarity-aware query intent discovery from user-provided example tuples.

Our work makes the following contributions: (1) We design SQuID: an end-to-end system that automatically
formulates select-project-join queries with optional group-by aggregation and intersection operators — a much
larger class than what prior QBE techniques support — from user-provided examples, in an open-world setting.
(2) We express the problem of query intent discovery using a probabilistic abduction model that infers a query
as the most likely explanation of the provided examples. (3) We introduce the notion of an abduction-ready
database, which precomputes semantic properties and related statistics, allowing SQuID to achieve real-time
performance. (4) We present an extensive empirical evaluation on three real-world datasets, including user
intent case studies, demonstrating that SQuID is efficient and effective, and outperforms machine learning
methods, as well as the state of the art in the related query reverse engineering problem. (5) We contrast
SQuID with traditional SQL querying through a comparative user study, which demonstrates that users with
varying expertise are significantly more effective and efficient with SQuID than SQL. We find that SQuID
eliminates the barriers in studying the database schema, formalizing task semantics, and writing syntactically
correct SQL queries, and, thus, substantially alleviates the need for technical expertise in data exploration.

1. Introduction the broad availability of data has the potential to fundamentally impact
the way domain experts conduct their work. Unfortunately, while

The proliferation of computational resources and data sharing plat- data is broadly available, data access is seldom unfettered. Existing
forms has reached an ever-growing base of users without technical systems tYPi':allY_ cater to users ':""ith sound technical cor.nputi.ng.and
computing expertise, who wish to peruse, analyze, and understand programming skills, posing significant hurdles to technical novices,

who do not have strong technical background. Democratization of com-
putational systems demands equal access to people of different skills
and backgrounds [1,2].

data. From astronomers and scientists who need to analyze data to
validate their hypotheses, all the way to computational journalists who
need to peruse datasets to validate claims and support their reporting,
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academics

id name

100 Thomas Cormen
101 Dan Suciu

102 Jiawei Han

103 Sam Madden
104 James Kurose

105 Joseph Hellerstein

research

aid interest

100 algorithms

101 data management
102 data mining

103 data management
103 distributed systems
104 computer networks
105 data management

105 distributed systems

Fig. 1. Excerpt of two relations of the C3 Academics database. Dan Suciu and Sam Madden (in bold), both have research interests in data management.

Like many computational systems, traditional database technology
was not designed with the group of nonexpert users in mind, and,
hence, poses hurdles to them. Traditional query interfaces allow data
retrieval through well-structured queries, and to write such queries, one
needs expertise in the query language (typically SQL) and knowledge
of the potentially complex database schema. Unfortunately, nonex-
pert users typically lack both. Example-based interactions have been
explored as a method to bridge the usability gap of computational
systems that typically require precise programs from users. Under the
programming by example (PBE) paradigm (also known as programming
by demonstration), instead of writing a precise program to specify their
intent, users only need to provide a few examples of the mechanism or
result they desire [3-6].

Example-driven interactions have also been explored in the context
of retrieving and exploring relational data, which led to the develop-
ment of query by example (QBE) systems [7-9]. QBE offers an alter-
native data retrieval mechanism, where users specify their intent by
providing example tuples for their query output [10]. Unfortunately,
traditional QBE systems [7-9] for relational databases make a strong
and oversimplified assumption in modeling user intent: they implicitly
treat the structural similarity and data content of the example tuples as
the only factors specifying query intent. As a result, they consider all
queries that contain the provided example tuples in their result set as
equally likely to represent the desired intent. This ignores the richer
context in the data that can help identify the intended query more
accurately. While more nuanced QBE systems exist, they typically place
additional requirements or significant restrictions over the supported
queries (Fig. 3 & Section 10.2).

Example 1.1. In Fig. 1, the relations academics and research store
information about CS researchers and their research interests. Given the
user-provided set of examples {Dan Suciu, Sam Madden}, a human can
posit that the user is likely looking for researchers in the area of data
management. However, a QBE system that looks for queries only based
on the structural similarity of the examples produces Q1 to capture the
query intent, which is too general:
Q1: SELECT name FROM academics
In fact, the QBE system will generate the same generic query Q1
for any set of names from the relation academics. Even though the
intended semantic context is present in the data (by associating aca-
demics with research interest information using the relation research),
existing QBE systems fail to capture it. A more specific query that better
represents the semantic similarity among the example tuples is Q2:
Q2: SELECT name FROM academics, research
WHERE research.aid = academics.id
AND research.interest = ‘data management’

Example 1.1 shows how reasoning about the semantic similarity
of the example tuples can guide the discovery of the correct query
structure (join of the academics and research tables), as well as the
discovery of the likely intent (research interest in data management).

We can often capture semantic similarity through direct attributes of
the example tuples. These are attributes associated with a tuple within
the same relation, or through simple key-foreign key joins (such as
research interest in Example 1.1). Direct attributes capture intent that is
explicit, precisely specified by the particular attribute values. However,
sometimes query intent is more vague, and is not expressible by explicit
semantic similarity alone. In such cases, the semantic similarity of
the example tuples is implicit, which can be captured through deeper
associations with other entities in the data (e.g., genre and number of
movies an actor appears in).

Example 1.2. The IMDb dataset contains a wealth of information
related to the film and entertainment industry. We query the IMDb
dataset (Fig. 2) with a traditional QBE system (e.g., [7]), using two
different sets of examples:

ET1 = {Arnold Schwarzenegger,
Sylvester Stallone,
Dwayne Johnson}

ET2 = {Eddie Murphy,
Jim Carrey,
Robin Williams}

ET1 contains the names of three actors from a public list of “physically
strong” actors’; ET2 contains the names of three actors from a public
list of “funny” actors.” ET1 and ET2 represent different query intents
(“strong” actors and “funny” actors, respectively), but a standard QBE
system produces the same generic query for both:

Q3: SELECT person.name FROM person

Explicit semantic similarity cannot capture these different intents, as
there is no attribute that explicitly characterizes an actor as “strong” or
“funny”. Nevertheless, the database encodes these associations implic-
itly, in the number and genre of movies an actor appears in (“strong”
actors frequently appear in action movies, and “funny” actors in come-
dies).

Standard QBE systems typically produce queries that are too gen-
eral, and, thus, fail to capture nuanced query intents, such as the
ones in Examples 1.1 and 1.2. Some prior approaches attempt to
refine the queries based on additional external information, such as
external ontologies [11], provenance information of the example tu-
ples [9], and user feedback on multiple (typically a large number of)
system-generated examples [12-14]. Other work relies on a closed-
world assumption — where a tuple not specified as an example output
is assumed to be excluded from the query result — to produce more
expressive queries [13,15,16], and, thus, requires complete examples of
input databases and output results. Providing such external information
is typically complex and tedious for nonexperts.

In contrast with prior approaches, in this article, we propose a
method and present an end-to-end system for discovering query in-
tent effectively and efficiently, in an open-world setting, without the

! Physically strong actors: https://www.imdb.com/list/1s050159844
2 Funny actors: https://www.imdb.com/list/1s000025701
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Fig. 2. Partial schema of the IMDb database. The schema contains two entity relations: movie and person; and a semantic property relation: genre. The relations

castinfo and movietogenre associate entities and semantic properties.
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Fig. 3. SQuID captures complex intents and more expressive queries than prior work in the open-world setting. Details are in Section 10.2.

need for any additional external information beyond the initial set of
example tuples. While Fig. 3 provides a summary exposition of prior
work, and contrasts with our contributions, we detail this classification
and metrics and discuss the related work in Section 10. SQuID, our
semantic-similarity-aware query intent discovery framework, relies on
two key insights: (1) It exploits the information and associations al-
ready present in the data to derive the explicit and implicit similarities
among the provided examples. (2) It identifies the significant semantic
similarities among them using abductive reasoning, a logical inference
mechanism that aims to derive a query as the simplest and most likely
explanation of the observation (example tuples). We proceed to explain
how SQuID uses these insights to handle the challenging scenario of
Example 1.2 next.

Example 1.3. We query the IMDb dataset with SQuID, using the
example tuples of ET2 (Example 1.2). SQuID discovers the following
semantic similarities among the examples: (1) all are Male, (2) all are
American, and (3) all appeared in more than 40 Comedy movies. Out
of these properties, Male and American are very common in the IMDb
database. In contrast, a very small fraction of persons in the dataset
are associated with such a high number of Comedy movies; this means
that it is unlikely for this similarity to be coincidental, as opposed to
the other two. Based on abductive reasoning, SQuID selects the third
semantic similarity as the best explanation of the observed example
tuples, and produces the query:

Q4: SELECT person.name
FROM person, castinfo, movietogenre, genre

WHERE person.id = castinfo.person_id AND
castinfo.movie_id = movietogenre.movie_id AND
movietogenre.genre_id = genre.id AND genre.name =

‘Comedy’
GROUP BY person.id
HAVING count (*) >= 40

In this article, we make the following contributions:

* We design SQuID: an end-to-end system that automatically for-
mulates select-project-join queries with optional group-by ag-
gregation and intersection operators (SPJ,;) based on few user-
provided example tuples (Section 2). SQuID does not require the
users to have any knowledge of the database schema or the query
language. Unlike existing approaches, SQuID does not require any
additional information from the user, beyond the example tuples.

SQuID infers semantic similarities of the examples and models
query intent using a collection of basic and derived semantic
property filters (Section 3). While some prior work explored the
use of semantic similarity in knowledge graphs [17-19], they do
not directly apply to the relational domain, as they do not model
implicit semantic similarities derived from aggregating properties
of affiliated entities (e.g., number of comedy movies an actor
appears in).

We express the problem of query intent discovery using a prob-
abilistic abduction model (Section 4). This model allows SQuID
to identify the semantic property filters that represent the most
likely intent, given the examples.
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+ SQuID achieves real-time performance through an offline strategy
that precomputes semantic properties and related statistics to
construct an abduction-ready database (Section 5). During the
online phase, SQuID consults the abduction-ready database to
derive relevant semantic property filters, based on the provided
examples, and applies abduction to select the optimal set of filters
towards query intent discovery (Section 6).

Our empirical evaluation includes three real-world datasets, 41
queries covering a broad range of complex intents and structures,
and three case studies (Section 7). We further compare SQuID
with TALOS [20], a state-of-the-art query reverse engineering
system that supports very expressive queries, but in a closed-
world setting. We show that SQuID is more accurate at capturing
intents and infers better queries, often reducing the number of
predicates by orders of magnitude. We also empirically show
that SQuID outperforms a semi-supervised positive and unlabeled
learning system [21].

We present results of two comparative user studies — a controlled
experiment study and an interview study — contrasting SQulD
with the traditional SQL querying (Section 8). Our analysis of
the controlled experiment study shows that participants were
significantly more effective (achieved more accurate results) and
efficient (required less time and fewer attempts) over a diverse
set of data-exploration tasks using SQuID than SQL. Qualitative
feedback of the interviewees confirms that SQuID eliminates SQL
challenges and assists the users in effective data exploration.
While our results validate some findings of prior studies over
other PBE approaches [22], we contribute new empirical insights
gained from our studies that indicate that even a limited level
of domain expertise (knowledge of a small subset of the de-
sired data) can substantially help overcome the lack of technical
expertise (knowledge of SQL and schema) in data exploration.
Finally, in light of the findings from the comparative user studies,
we identify three key challenges that SQL poses to the users:
(1) familiarizing oneself with the database schema, (2) formally
expressing the semantics of the tasks, and (3) writing syntactically
correct queries; and discuss how SQuID can effectively eliminate
these challenges. We further discuss how SQuID and traditional
SQL interface complement each other, under what circumstances
the users prefer one over the other, and how the QBE tools should
be expanded to achieve more user acceptance (Section 9).

2. Soum overview

In this section, we first discuss the challenges in example-driven
query intent discovery and highlight the shortcomings of existing ap-
proaches. We then formalize the problem of query intent discovery us-
ing a probabilistic model and describe how SQuID infers the most likely
query intent using abductive reasoning. Finally, we present the system
architecture for SQuID, and provide an overview of our approach.

2.1. The query intent discovery problem

SQuID tackles three key limitations of existing QBE systems:

Large search space. Identifying the intended query, given a set of
example tuples, can involve a huge search space of potential candidate
queries. Aside from enumerating the candidate queries, validating them
is expensive, as it requires executing the queries over potentially very
large data. Existing approaches limit their search space in three ways:
(1) They often focus on project-join (PJ) queries only. Unfortunately,
ignoring selections severely limits the applicability and practical impact
of these solutions. (2) They assume that the user provides a large num-
ber of examples or interactions, which is often unreasonable in practice.
(3) They make a closed-world assumption, thus needing complete sets
of input data and output results. In contrast, SQuID focuses on a much

larger and more expressive class of queries, select-project-join queries
with optional group-by aggregation and intersection operators (SPJ4;),* and
is effective in the open-world setting with very few examples.

Distinguishing candidate queries. In most cases, a set of example tuples
does not uniquely identify the target query, i.e., there are multiple valid
queries that contain the example tuples in their results. Most existing
QBE systems do not distinguish among the valid queries [7] or only
rank them according to the degree of input containment, when the
example tuples are not fully contained by the query output [8]. In
contrast, SQuID exploits the semantic context of the example tuples
and ranks the valid queries based on a probabilistic abduction model
of query intent.

Complex intent. A user’s information need is often more complex than
what is explicitly encoded in the database schema (e.g., Example 1.2).
Existing QBE solutions focus on the query structure, and, thus, are
ill-equipped to capture nuanced intents. While SQuID still produces a
structured query in the end, its objectives focus on capturing the seman-
tic similarity of the examples, both explicit and implicit. SQuID thus
draws a contrast between the traditional query-by-example problem,
where the query is assumed to be the hidden mechanism behind the
provided examples, and the query intent discovery problem, which is our
focus.

We proceed to formalize the problem of query intent discovery. We
use D to denote a database, and Q(D) to denote the set of tuples in the
result of query Q operating on D.

Definition 2.1 (Query Intent Discovery). For a database D and a user-
provided example tuple set E, the query intent discovery problem is to
find an SPJ,; query Q such that:

« EC QD)

* Q =argmax, Pr(q| E)

More informally, we aim to discover an SPJ,; query Q that contains
E within its result set and maximizes the query posterior, i.e., the
conditional probability Pr(Q | E).

2.2. Abductive reasoning

SQuID solves the query intent discovery problem (Definition 2.1)
using abduction. Abduction or abductive reasoning [23-26] refers to
the method of inference that finds the best explanation (query intent) of
an often incomplete observation (example tuples). Unlike deduction, in
abduction, the premises do not guarantee the conclusion. A deductive
approach would produce all possible queries that contain the example
tuples in their results, guaranteeing that the intended query is one
of them. However, the set of valid queries can be extremely large,
growing exponentially with the number of properties and the size of the
data domain. Hence, we model query intent discovery as an abduction
problem and apply abductive inference to discover the most likely
query intent. For example, given two possible candidate queries, O and
Q', we infer Q as the intended query if Pr(Q | E) > Pr(Q' | E).

Example 2.1. In the scenario of Example 1.1, SQuID identifies that
the two example tuples share the semantic context interest = ‘data
management’. While Q1 and Q2 both contain the examples tuples in
their result set, the probability that two tuples drawn randomly from
the output of Q1 would display the identified semantic context is low
{(%)3 ~ 0.18 in the data excerpt). In contrast, the probability that two
tuples drawn randomly from the output of Q2 would display the same
semantic context is high (1.0). Assuming equal priors for Q1 and Q2,
from Bayes’ rule: Pr(Q2 | E) > Pr(Q1 | E).

* The SPJ,; queries derived by SQuID limit joins to key-foreign key joins,
and conjunctive selection predicates of the form attribute OP value, where
0P € {=,>,<} and value is a constant.
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Fig. 5. A genre value (e.g., genre=Comedy) is a basic semantic property of a movie (through the movietogenre relation). A person is associated with movie
entities (through the castinfo relation); aggregates of basic semantic properties of movies are derived semantic properties of person, e.g., the number of comedy
movies a person appeared in. The aDB stores the derived property in the new relation persontogenre. (For ease of exposition, we depict attributes genre and

person instead of genre.id and person.id.)
2.3. Solution sketch

At the core of SQuID is an abduction-ready database, aDB (Fig. 4).
The aDB serves two purposes: (1) it increases SQuID’s efficiency by
storing precomputed associations and statistics, and (2) it simplifies the
query model by reducing the extended family of SPJ,; queries on the
original database to equivalent SPJ queries on the aDB.

Example 2.2. The IMDb database has, among others, relations
person and genre (Fig. 2). SQuID’s aDB stores a derived seman-
tic property that associates the two entity types in a new relation,
persontogenre (person.id, genre.id, count), which stores the num-
ber of movies of each genre each person appeared in. SQuID derives
this relation through joins with castinfo and movietogenre, followed
by aggregation (Fig. 5). Then, the SPJ,; query Q4 (Example 1.3) is
equivalent to the simpler SPJ query Q5 on the aDB:

Q5: SELECT person.name
FROM person, persontogenre, genre
WHERE person.id = persontogenre.person_id AND
persontogenre.genre_id = genre.id AND
genre.name = ‘Comedy’ AND persontogenre.count >= 40

By incorporating aggregations in precomputed, derived relations,
SQuID can reduce SPJ,; queries on the original data to SPJ queries on
the aDB. SQuID starts by inferring a PJ query, O*, on the «DB as a
query template; it then augments 0 with selection predicates, driven
by the semantic similarity of the examples.

Organization. Section 3 formalizes SQuID’s model of query intent as
a combination of the base query 0* and a set of semantic property
filters. Section 4 analyzes the probabilistic abduction model that SQuID

uses to solve the query intent discovery problem (Definition 2.1). Then
we describe SQuID’s system components. Section 5 describes the offline
module, which is responsible for making the database abduction-ready,
by precomputing semantic properties and statistics in derived relations.
Section 6 describes the query intent discovery module, which abduces
the most likely intent as an SPJ query on the aDB.

3. Modeling query intent

SQuID’s core task is to infer the proper SPJ query on the aDB. We
model an SPJ query as a pair of a base query and a set of semantic
property filters: 09=(Q*, ). The base query Q* is a project-join query
that captures the structural aspect of the example tuples. SQuID can
handle examples with multiple attributes, but, for ease of exposition,
we focus on example tuples that contain a single attribute of a single
entity (name of person). In contrast to existing approaches that derive
PJ queries from example tuples, the base query in SQuID does not
need to be minimal with respect to the number of joins: while a base
query on a single relation with projection on the appropriate attribute
(e.g., Q1 in Example 1.1) would capture the structure of the examples,
the semantic context may rely on other relations (e.g., research, as
in Q2 of Example 1.1). Thus, SQuID considers any number of joins
among aDB relations for the base query, but limits these to key-foreign-
key joins. We discuss a simple method for deriving the base query
in Section 6.2. SQuID’s core challenge is to infer ¢, which denotes a
set of semantic property filters that are added as conjunctive selection
predicates to O*. The base query and semantic property filters for Q2
of Example 1.1 are:

(* = SELECT name FROM academics, research
WHERE research.aid = academics.id
@ = { research.interest = ‘data management’}
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Sample database Example tuples

id name gender age Column 1

1  Tom Cruise Male 50 Tom Cruise

2 Clint Eastwood Male 90 Clint Eastwood

3 Tom Hanks Male 60

4 Julia Roberts Female 50

5 Emma Stone Female 29

6  Julianne Moore Female 60

Fig. 7. Sample database (left) with example tuples (right).

3.1. Semantic properties and filters

Semantic properties encode characteristics of an entity. We distin-
guish semantic properties into two types. (1) A basic semantic property
is affiliated with an entity directly. In the IMDb schema of Fig. 2,
"gender = Male" is a basic semantic property of a person. (2) A derived
semantic property of an entity is an aggregate over a basic semantic
property of an associated entity. In Example 2.2, the number of movies
of a particular genre that a person appeared in is a derived semantic
property for person. We represent a semantic property p of an entity
from a relation R as a triple p = (A, ¥, 8). In this notation, V' denotes
a value or a value range for attribute A associated with entities in R.*
The association strength parameter 8 quantifies how strongly an entity is
associated with the property. It corresponds to a threshold on derived
semantic properties (e.g., the number of comedies an actor appeared
in); it is not defined for basic properties (6§ = 1). In this work, we
consider association strength to be an absolute number. However, an
alternative is to consider it as a relative number (e.g., ratio of comedy
movies compared to total movies).

A semantic property filter ¢, is a structured language representation
of the semantic property p. In Fig. 7, the filters ¢ cnger pare, 1) and
®(age,[50,50),1) Tepresent two basic semantic properties on gender and
age, respectively. Expressed in relational algebra, filters on basic se-
mantic properties map to standard selection predicates, e.g., 6ycnger—yaie
(person) and ogg<,z.<g0(person). For derived properties, filters specify
conditions on the association across different entities. In Example 2.2,
for person entities, the filter ¢yzcpre coneay,20) denotes the property
of a person being associated with at least 30 movies with the basic
property "genre = Comedy". In relational algebra, filters on derived
properties map to selection predicates over derived relations in the

aDB, e.g., Tgenre=Comedyacount=30 (Persontogenre}'

3.2. Filters and example tuples

To construct 0%, SQuID needs to infer the proper set of semantic
property filters given a set of example tuples. Since all example tuples

4 SQuID can support disjunction for categorical attributes (e.g., "gender =
Male" OR "gender = Female"), so V¥ could be a set of values. However, for ease
of exposition we keep our examples limited to properties without disjunction.

should be in the result of 0%, ¢ cannot contain filters that the example
tuples do not satisfy. Thus, we only consider valid filters that map to
selection predicates that all example tuples satisfy.

Definition 3.1 (Filter validity). Given a database D, an example tuple
set E, and a base query Q*, a filter ¢ is valid if 0'¢}(D) 2 E, where
Ol = (0%, {¢)).

Example 3.1. Fig. 7 shows a set of example tuples over the relation
person. Given the base query QO* = SELECT name FROM person, the
filters dypender Mare, 1) ANA Page[50,90),1) ON relation person are valid,
because all of the example entities of Fig. 7 are Male and fall in the
age range [50, 90].

Lemma 3.1 (Validity of Conjunctive Filters).. The conjunction (¢, A¢,A...)
of a set of filters @ = {¢,. 5, ... } is valid, i.e, Q®(D) 2 E, if and only if
Ve, € @ ¢, is valid.

Example 3.2, If (‘b{a.ge.lsﬁ,g[)],l) is valid, then ¢(age,[40.12[)],J.} is also valid.

The above example shows that relaxing a filter (loosening its con-
ditions) preserves validity. Among all valid filters, SQuID focuses on
minimal valid filters, which have the tightest bounds. Bounds can be de-
rived in other ways, e.g., informed by the result cardinality. However,
we found the choice of the tightest bounds to work well in practice.

Definition 3.2 (Filter Minimality). A basic semantic property filter
$ay.1y is minimal if it is valid, and YV'CV ¢,y 1y is invalid. A
derived semantic property filter ¢4y g, is minimal if it is valid, and
Ve > 0 ¢y 1 g4y 1s invalid.

For Fig. 7, ¢iage,(50,901,1) is @ minimal filter and ¢,z 40,90),1) is not.

4. Probabilistic abduction model

We now revisit the problem of query intent discovery (Defini-
tion 2.1), and recast it based on our model of query intent (Section 3).
Specifically, Definition 2.1 aims to discover an SPJ,; query Q, which
is then reduced to an equivalent SPJ query 0¥ on the aDB (as in
Example 2.2). SQuID’s task is to find the query Q0¥ that maximizes
the posterior probability Pr(Q¥ | E), for a given set E of example
tuples. In this section, we analyze the probabilistic model to compute
this posterior, and break it down to three components.
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4.1. Notations and preliminaries

Semantic context x. Observing a semantic property in a set of 10
examples is more significant than observing the same property in a
set of 2 examples. We denote this distinction with the semantic context
x = (p, | E|), which encodes the size of the set | E|, where the semantic
property p is observed. We denote with X = {x;,x,,...} the set of
semantic contexts exhibited by the set of example tuples E.

Candidate SPJ query QY. Let @ = {¢,, ¢, ... } be the set of minimal
valid filters, from hereon simply referred to as filters, where ¢; encodes
the semantic context x;. We omit (A, V, 8} in the filter notation when
the context in clear. Our goal is to identify the subset of filters in @ that
best captures the query intent. A set of filters ¢ C @ defines a candidate
query 0¥ = (Q*, ¢), and Q¥(D) 2 E (from Lemma 3.1).

Filter event ¢. A filter ¢ € & may or may not appear in a candidate
query Q%. With slight abuse of notation, we denote the filter’s presence
(¢ € @) with ¢ and its absence (¢ & @) with ¢. We use 5 to represent
the occurrence event of ¢ in Q%.

Thus: $= ? ifgce
¢ ifdge

4.2. Modeling query posterior

We first analyze the probabilistic model for a fixed base query O and
then generalize the model in Section 4.3. We use Pr,(a) as a shorthand
for Pr(a | O*). We model the query posterior Pr,(Q¥ | E), using Bayes’
rule:

Pr,(E| Q%) Pr.(Q%)
Pr.(E)
By definition, Pr (X | E) = 1; therefore:
Pr,(E,X | Q?)- Pr.(Q%)
Pr.(E)
_ Pr(E|X,Q°)Pr,(X| Q%) Pr,(0%)
B Pr,(E)

Pr.(Q¥ | E) =

Pr QY| E)=

Using the fact that Pr, (X | E) = 1 and applying Bayes’ rule on the
prior Pr (E), we get:
Pr(E| X,Q°)Pr (X | Q%) Pr,(Q%)

Pr (0% | E)= Pr.(E|X) Pr,(X)

Finally, E is conditionally independent of Q% given the semantic
context X, i.e., Pr (E | X,0%)=Pr,(E | X). Thus:
Pr, (X | Q%) Pr,(0%)

Pr(Q% | E) = Pr.(X) (1

Eq. (1) models the query posterior in terms of three components:
(1) the semantic context prior Pr,(X), (2) the query prior Pr,(Q%), and
(3) the semantic context posterior Pr (X | 0¢). We proceed to analyze
these components.

4.2.1. Semantic context prior

The semantic context prior Pr,(X) denotes the probability that any
set of example tuples of size | E| exhibits the semantic contexts X. This
probability is not easy to compute analytically, as it involves computing
a marginal over a potentially infinite set of candidate queries. In this
work, we model the semantic context prior as proportional to the
selectivity w(@) of @ = {¢,, ¢,, ... }, where ¢, € @ is a filter that encodes
context x; € X

Pr(X) « y (@) (2)

Selectivity y(¢). Selectivity of filter ¢ denotes the portion of tuples
from the result of the base query O that satisfy ¢:

_ o)
ViD= o)

td
Similarly, for a set of filters @, yw(®) = |Gx$;||. Intuitively, a

selectivity value close to 1 means that the filter is not very selective
and most tuples satisfy the filter; selectivity value close to 0 denotes
that the filter is highly selective and rejects most of the tuples. For
example, in Fig. 7, d’{ge.nder,[{ale, 1) is more selective than & 2ge,[50,901, 1)

with selectivities % and SE, respectively. Selectivity captures the rarity
of a semantic context: uncommon contexts are present in fewer tuples,
and, thus, appear in the output of fewer queries. Intuitively, a rare
context has lower prior probability of being observed, which supports

the assumption of Eq. (2).

4.2.2. Query prior

The query prior Pr,(Q¥) denotes the probability that Q¢ is the
intended query, prior to observing the example tuples. We model the
query prior as the joint probability of all filter events &, where ¢ € .
By further assuming filter independence,” we reduce the query prior to
a product of probabilities of filter events:

Pr,(0%) = Pr,(Nyeo ® = [1yco Pr.( 3)

The filter event prior Pr, (¢) denotes the prior probability that filter
¢ is included in (if ¢ = ¢), or excluded from (if ¢ = ¢), the intended
query. We compute Pr,(¢) for each filter as follows:

Pr(¢)=p-5(¢)-a(¢)- A(¢) and Pr (¢)=1- Pr.(¢)

Here, p is a base prior parameter, common across all filters, and
represents the default value for the prior. The other factors (4, a, and
A) reduce the prior, depending on characteristics of each filter. We
describe these parameters next.

Domain selectivity impact 6(¢). Intuitively, a filter that covers a large
range of values in an attribute’s domain is unlikely to be part of the
intended query. For example, if a user is interested in actors of a certain
age group, that age group is more likely to be narrow (¢.gc 41,45,1))
than broad (¢, (a1 901,1))- We penalize broad filters with the parameter
6 € (0,1]. The value (¢) is 1 for filters that do not exceed a predefined
ratio in the coverage of their domain, and decreases for filters that
exceed this threshold. We use the notion of domain coverage of a filter
¢4y to denote the fraction of values of A’s domain that V' covers.
For example, for attribute age, suppose that the domain consists of
values in the range [1, 100], then the filter ¢, (41 507, 1) has 50% domain
coverage and the filter ¢, (41 45),1) has 5% domain coverage. We use a
threshold # > 0 to specify how much domain coverage does not reduce
the domain selectivity impact 6. Once the threshold is exceeded, then &
decreases as domain coverage increases. We use another parameter y >
0 that states how strongly we want to penalize a filter for having large
domain coverage. The value of y = 0 implies that we do not penalize at

all, i.e., all filters will have &(¢p) = 1. As y increases, we reduce § more

1
demainCoverage(l)
’ n

for larger domain coverages. Thus: 6(¢b 4y g)) =

maxi1 }'v

Association strength impact a(¢). Intuitively, a derived filter with low
association strength is unlikely to appear in the intended query, as
the filter denotes a weak association with the relevant entities. For
example, ¢.c.,c coneqy,1) 15 less likely than ¢, . coneay 30) tO represent
a query intent. We label filters with # lower than a threshold 7, as
insignificant, and set a(¢) = 0. All other filters, including basic filters,
have a(¢) = 1.

Outlier impact A(¢). While a(¢) characterizes the impact of association
strength on a filter individually, A(¢) characterizes its impact in

5 Reasoning about database queries commonly assumes independence
across selection predicates, which filters represent, although it may not hold
in general.
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Case A
(fJ'l (rb{genre, Comedy» 30)
(f_JZ (fl){genre, SciFi» 25}
(1;)'3 d){genre, Dramas 3}
o (/‘){gemre, Actions 2}

()65 (fs{genre, Thrillers 1)

Case B
(rbl (/){genre, Comedy» 12}
02 q{){genre, SciFi» 10}
¢3 (/S{genre: Dramas 10}
4 (/){genre, Actions 9

(}55 ¢{genre, Thriller» 9}

Fig. 8. Top two filters of Case A are interesting, whereas no filter is interesting in Case B.

consideration with other derived filters over the same attribute. Fig. 8
demonstrates two cases of derived filters on the same attribute (genre),
corresponding to two different sets of example tuples. In Case A, ¢,
and ¢, are more significant than the other filters of the same family
(higher association strength). Intuitively, this corresponds to the intent
to retrieve actors who appeared in mostly Comedy and SciFi movies. In
contrast, Case B does not have filters that stand out, as all have similar
association strengths: The actors in this example set are not strongly
associated with particular genres, and, thus, intuitively, this family of
filters is not relevant to the query intent.

We model the outlier impact i(¢) of a filter using the skewness of
the distribution of the association strengths within the family of derived
filters sharing the same attribute. Our assumption is that highly skewed,
heavy-tailed distributions (Case A) are likely to contain the significant
(intended) filters as outliers. We set A(¢) = 1 for a derived filter whose
association strength is an outlier in the association strength distribution
of filters of the same family. We also set i(¢) = 1 for basic filters.
All other filters get i(¢) = 0. Towards computing outlier impact of a
filter ¢4y gy, we first compute skewness of the association strength
distribution @, within the family of derived filters involving attribute
A; and then check whether # is an outlier among them. We compute

sample skewness of @, = (a;,a,....,q,), with sample mean a and
sample standard deviation s, using the standard formula:

n Y (a; —a)
skewness(@,) = M

Sn-Dn-2)

A distribution is skewed if its skewness exceeds a threshold r,. For
outlier detection, we use the mean and standard deviation method. For
sample mean a, sample standard deviation s, and a constant k > 2,
a; is an outlier if (a; — @) > ks. For n < 3, skewness is not defined
and we assume all elements to be outliers. We compute outlier impact

Al sy o))

1 8 =1v(skewness(0,) > 1, Aoutlier(d))

Albayey) = {

0 otherwise

4.2.3. Semantic context posterior

The semantic context posterior Pr, (X | Q%) is the probability that
a set of example tuples of size |E|, sampled from the output of a
particular query Q%, exhibits the set of semantic contexts X

Pr (X | Q%) = Pr.(x},%3,....%, | Q%)

Two semantic contexts x;, x; € X' are conditionally independent, given
Q%. Therefore:

Pr.x | Q%) =TI, Pr.(x, 1 0*) =TI, Pr.(x; | b1, ..)

Recall that ¢; encodes the semantic context x; (Section 4.1). We assume
that x, is conditionally independent of any ¢ i # j, given @, (this
always holds for ¢; = ¢,):

Pr (0% =TIIL, Pr.(x; | &) )

For each x;, we compute Pr (x; | ‘3,-) based on the state of the filter

event ((;,- =g, or ¢, =)

Pr(x, | ¢,): By definition, all tuples in Q{%:}(D) exhibit the property
of x;. Hence, Pr.(x; | ¢;) = 1.

Pr,(x; | ¢,): This is the probability that a set of |E| tuples drawn
uniformly at random from Q*(D) (¢, is not applied to the base query)
exhibits the context x;. The portion of tuples in O*(D) that exhibit the
property of x; is the selectivity w(¢,). Therefore, Pr (x, | ¢,) = t,v(qbr.)w I

Using Egs. (1)-(4), we derive the final form of the query posterior
(where K is a normalization constant):

Pr.@® 1 B)= — ] (Pr.@)- Prx, 15))

w(P) oo
= [1(Pr.@) Prcx14))

v(®) Ep B Ep

(Pr@)- Pr.x 1))
(5)
4.3. Generalization

So far, our analysis focused on a fixed base query. Given an SPJ
query Q%, the underlying base query Q* is deterministic, i.e., Pr(Q* |
Q%) = 1. Hence:

Pr(Q% | E) = Pr(Q¥,Q" | E)
=Pr(Q“| Q" E)- Pr(Q* | E)
= Pr,(Q% | E) - Pr(Q" | E)

We assume Pr(Q* | E) to be equal for all valid base queries, where
Q*(D) 2 E. Then we use Pr,(Q¥ | E) to find the query Q that
maximizes the query posterior Pr(Q | E).

5. Offline abduction preparation

In this section, we discuss system considerations to perform query
intent discovery efficiently. SQuID employs an offline module that
performs several precomputation steps to make the database abduction-
ready. The abduction-ready database («DB) augments the original
database with derived relations that store associations across entities
and precomputes semantic property statistics. Deriving this information
is relatively straightforward; the contributions of this section lie in
the design of the «DB, the information it maintains, and its role in
supporting efficient query intent discovery. We describe the three major
functions of the aDB.

5.1. Entity lookup

SQuID’s goal is to discover query intent based on the user-provided
examples. To do that, it first needs to determine which entities in
the database correspond to the examples. SQuID uses a global inverted
column index [7], built over all text attributes and stored in the «DB,
to perform fast lookups, matching the provided examples to database
entities.

5.2. Semantic property discovery

To reason about intent, SQuID first needs to determine what makes
the examples similar. SQuID looks for semantic properties within
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entity relations (e.g., gender appears in table person), other relations
(e.g., genre appears in a separate table joining with movie through
a key-foreign-key constraint), and other entities, (e.g., the number of
movies of a particular genre that a person has appeared in). The aDB
precomputes and stores such derived relations (e.g., persontogenre),
as these frequently involve several joins and aggregations and per-
forming them at runtime is prohibitive. E.g., SQuID computes the
persontogenre relation (Fig. 5) and stores it in the aDB with the SQL
query below:

Q6: CREATE TABLE persontogenre as
(SELECT person_id, genre_id, count(*) AS count
FROM castinfo, movietogenre
WHERE castinfo.movie_id = movietogenre.movie_id
GROUP BY person_id, genre_id)

For the aDB construction, SQuID only relies on very basic infor-
mation to understand the data organization: (1) the database schema,
including the specification of primary- and foreign-key constraints, and
(2) additional meta-data, which can be provided once by a database
administrator, that specify which tables describe entities (e.g., person,
movie), and which tables and attributes describe direct properties of
entities (e.g., genre, age). SQuID then automatically discovers fact
tables, which associate entities and properties, by exploiting the key-
foreign-key relationships. SQuID also automatically discovers derived
properties up to a certain predefined depth, using paths in the schema
graph that connect entities to properties. Since the number of possible
values for semantic properties is typically very small and remains
constant as entities grow, the aDB grows linearly with the data size. In
our implementation, we restrict the derived property discovery to the
depth of two fact tables (e.g., SQuID derives persontogenre through
castinfo and movietogenre). SQuID can support deeper associations,
but those are rare in practice. SQulD assumes that different entity types
appear in different relations, which is the case in many commonly
used schema types, such as star, galaxy, and fact-constellation schemas.
SQuID can perform inference in a denormalized setting, but would not
be able to produce and reason about derived properties in those cases.

5.3. Smart selectivity computation

For basic filters involving categorical values, SQuID stores the se-
lectivity for each value. However, for numeric ranges, the number of
possible filters can grow quadratically with the number of possible val-
ues. SQuID avoids wasted computation and space by only precomputing
selectivities w (¢, Aminy,, 0], 1y) for all v € V1, where V), is the set of values
of attribute A in the corresponding relation, and miny, is the minimum
value in V. The aDB can derive the selectivity of a filter with any value
range as:

widiaunn) = W(f.b{,*.,[mmm.m,u) - W(‘P(A_[mr'ny’t,r].l})

In case of derived semantic properties, SQuID precomputes selectivities
w(dapp) for all v € V.0 € 6, ,, where 8, , is the set of values of
association strength for the property “A = v”.

6. Query intent discovery

During normal operation, SQuID receives example tuples from a
user, consults the DB, and infers the most likely query intent (Defi-
nition 2.1). In this section, we describe how SQuID resolves ambiguity
in the provided examples, how it derives their semantic context, and
how it finally abduces the intended query.

6.1. Entity and context discovery

SQuID’s probabilistic abduction model (Section 4) relies on the set
of semantic contexts X and determines which of these contexts are

intended vs coincidental, by the inclusion or exclusion of the corre-
sponding filters in the inferred query. To derive the set of semantic
contexts from the examples, SQuID first needs to identify the entities
in the aDB that correspond to the provided examples.

6.1.1. Entity disambiguation

User-provided examples are not complete tuples, but often single-
column values that correspond to an entity. As a result, there may
be ambiguity that SQuID needs to resolve. For example, suppose the
user provides the examples: {Titanic, Pulp Fiction, The Matrix}.
SQuID consults the precomputed inverted column index to identify the
attributes (movie.title) that contain all the example values, and clas-
sifies the corresponding entity (movie) as a potential match. However,
while the dataset contains unique entries for Pulp Fiction (1994) and
The Matrix (1999), there are 4 possible mappings for Titanic: (1) a
1915 Italian film, (2) a 1943 German film, (3) a 1953 film by Jean
Negulesco, and (4) the 1997 blockbuster film by James Cameron.

While there is a rich line of work dedicated for entity disambigua-
tion [27], they do not trivially extend to our case. Entity disambigua-
tion typically works on a pair of entities in isolation. In contrast,
here, we can leverage the accompanying example tuples as a useful
context. The key insight for resolving ambiguities here is that the
provided examples are more likely to be alike. SQuID selects the entity
mappings that maximize the semantic similarities across the examples.
Therefore, based on the year and country information, it determines
that Titanic corresponds to the 1997 film, as it is most similar to
the other two (unambiguous) entities. In case of derived properties,
e.g., nationality of actors appearing in a film, SQuID aims to increase
the association strength (e.g., the number of such actors). Since the
number of examples are typically small, SQuID can determine the right
mappings by considering all combinations.

6.1.2. Semantic context discovery

Once SQuID identifies the right entities, it then explores all the se-
mantic properties stored in the aDB that match these entities (e.g., year,
genre, etc.). Since the aDB precomputes and stores the derived proper-
ties, SQuID can produce all the relevant properties using queries with
at most one join. For each property, SQuID produces semantic contexts
as follows:

Basic property on categorical attribute. If all examples in E contain
value v for the property of attribute A, SQuID produces the semantic
context ({A,v,L1),|E|). For example, a user provides three movies:
Dunkirk, Logan, and Taken. The attribute genre corresponds to a
basic property for movies, and all these movies share the values,
Action and Thriller, for this property. SQuID generates two semantic
contexts: ({(genre, Action, 1),3) and ({genre, Thriller, 1},3).

Basic property on numerical attribute. If v,,;, and v,,,, are the minimum
and maximum values, respectively, that the examples in E demonstrate
for the property of attribute A, SQuID creates a semantic context on the
range [Upins Umaxl: ((As [Upins Umax)s L)+ | E]). For example, if E contains
three persons with ages 45, 50, and 52, SQuID will produce the context
({age, [45,52], 1), 3).

Derived property. If all examples in E contain value v for the derived
property of attribute A, SQuID produces the context ({4,v,6,,,).|E|),
where 6,,, is the minimum association strength for the value v among
all examples. For example, if E contains two persons who appeared in
3 and 5 Comedy movies, SQuID will produce ({genre, Comedy, 3}, 2).

6.2. Query abduction

SQuID starts abduction by constructing a base query that captures
the structure of the example tuples. Once it identifies the entity and
attribute that matches the examples (e.g., person.name), it forms the
minimal PJ query (e.g., SELECT name FROM person). It then iterates
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Algorithm 1: QueryAbduction (E, Q*, @)
Input: set of entities E, base query Q*, set of minimal valid filters &
Output: 0% such that Pr,(Q¥ | E) is maximized

X ={x), %5} // semantic contexts in E
p=40
foreach ¢, € @ do
include, = Pr,(¢)Pr,(x, | ¢,) // from Equation (5)
exclude, = Pr,(@)Pr.(x,| §) // from Equation (5)
if includey > exclude, then
| e=0uis)
return Q¥

through the discovered semantic contexts and appends the correspond-
ing relations to the FROM clause and the appropriate key-foreign-key
join conditions in the WHERE clause. Since the aDB precomputes and
stores the derived relations, each semantic context will add at most one
relation to the query.

The number of candidate base queries is typically very small. For
each base query Q*, SQuID abduces the best set of filters ¢ C @ to
construct SPJ query 0%, by augmenting the WHERE clause of 0* with the
corresponding selection predicates. SQuID also removes from Q¢ any
joins that are not relevant to the selected filters g. While the number of
candidate SPJ queries grows exponentially in the number of minimum
valid filters (2'“"), we prove that we can make decisions on including
or excluding each filter independently. Algorithm 1 iterates over the
set of minimal valid filters @ and decides to include a filter only if
its addition to the query increases the query posterior (lines 6-7). Our
abduction algorithm has O(|@|) time complexity and is guaranteed to
produce the query Q¢ that maximizes the query posterior.

Theorem 1. Given a base query Q*, a set of examples E, and a set of
minimal valid filters @, Algorithm 1 returns the query Q¥, where ¢ C @,
such that Pr, (Q% | E) is maximized.

Proof. We prove Theorem 1 by contradiction. Suppose that ¢ is the
optimal set of filters, i.e., 0¥ is the most likely query. Additionally,
suppose that ¢ is the minimal set of filters for obtaining such optimal-
ity, i.e., A¢' such that |¢'| < @ APHQ¥ | E) = Pr(Q? | E). Now suppose
that, Algorithm 1 returns a sub-optimal query Q*”, ie., Pr(Q“’J | E) <
Pr(Q% | E). Since Q*" is suboptimal, ¢’ # ¢; therefore at least one of
the following two cases must hold:

Case 1: 3¢ such that ¢ € ¢ A ¢ € ¢'. Since Algorithm 1 did not
include ¢, it must be the case that include, < exclude,. Therefore,
we can exclude ¢ from ¢ to obtain ¢ — {¢} and according to Eq. (5),
Pr(Q* 9} | E) > Pr(Q” | E) which contradicts with our assumption
about the optimality and minimality of ¢.

Case 2: 3¢ such that ¢ & ¢ A ¢ € ¢'. Since Algorithm 1 included ¢, it
must be the case that include, > exclude,. Therefore, we can add ¢ to
¢ to obtain ¢ U {¢} and according to Eq. (5), PrQ%¢) | E)> PrQ? |
E) which again contradicts with our assumption about the optimality
of ¢.

Hence, 0% cannot be suboptimal and this implies that Algorithm 1
returns the most likely query. [J

In a special case where include, = excludey, Algorithm 1 drops
the filter using Occam’s razor principle to keep the query as simple as
possible. However, this does not return any query that is strictly less
likely than the best query.

7. Experiments

In this section, we present an extensive experimental evaluation of
SQuID over three real-world datasets, with a total of 41 benchmark

queries of varying complexities. Our evaluation shows that SQuID is
scalable and effective, even with a small number of example tuples.
Our evaluation extends to qualitative case studies over real-world,
user-generated examples, which demonstrate that SQuID succeeds in
inferring the query intent of real-world users. We further demonstrate
that when used as a query reverse engineering system in a closed-
world setting, SQuID outperforms the state of the art. Finally, we show
that SQuID is superior to semi-supervised PU-learning in terms of both
efficiency and effectiveness.

7.1. Experimental setup

We implemented SQuID in Java and all experiments were run on
a 12 x 2.66 GHz machine with 16 GB RAM running CentOS 6.9 with
PostgreSQL 9.6.6.

Datasets and Benchmark Queries. Our evaluation includes three real-
world datasets and a total of 41 benchmark queries, designed to cover a
broad range of intents and query structures. We summarize the datasets
and queries below and provide detailed description in Appendix.

IMDb (633 MB): The dataset contains 15 relations with information
on movies, cast members, film studios, etc. We designed a set of 16
benchmark queries ranging the number of joins (1 to 8 relations), the
number of selection predicates (0 to 7), and the result cardinality (12
to 2512 tuples).

DBLP (22 MB): We used a subset of the DBLP data [28], with 14
relations, and 16 years (2000-2015) of top 81 conference publications.
We designed 5 queries ranging the number of joins (3 to 8 relations),
the number of selection predicates (2 to 4), and the result cardinality
(15 to 468 tuples).

Adult (4 MB): This is a single relation dataset containing census
data of people and their income brackets. We generated 20 queries,
randomizing the attributes and predicate values, ranging the number
of selection predicates (2 to 7) and the result cardinality (8 to 1404
tuples).

Case Study Data. We retrieved several public lists (sources are listed
in Appendix) with human-generated examples, and identified the cor-
responding intent. For example, a user-created list of “115 funniest
actors” reveals a query intent (funny actors), and provides us with real
user examples (the names in the list). We used this method to design
3 case studies: funny actors (IMDb), 2000s Sci-Fi movies (IMDb), and
prolific database researchers (DBLP).

Metrics. We report query discovery time as a metric of efficiency.
We measure effectiveness using precision, recall, and f-score. If Q is
the intended query, and Q' is the query inferred by SQuID, precision
is computed as ¢'orom and recall as W f-score is their
harmonic mean. We aLlso report the total num%er of predlcates in the
produced queries and compare them with the actual intended queries.

Comparisons. To the best of our knowledge, existing QBE techniques
do not produce SPJ queries without (1) a large number of examples,
or (2) additional information, such as provenance. For this reason, we
cannot meaningfully compare SQuID with those approaches. Removing
the open-world requirement, SQuID is most similar to the QRE system
TALOS [20] with respect to expressiveness and capabilities (Fig. 3).
We compare the two systems for query reverse engineering tasks in
Section 7.5. We also compare SQuID against PU-learning methods [21]
in Section 7.6.

7.2. Scalability
In our first set of experiments, we examine the scalability of SQuID

against increasing number of examples and varied dataset sizes. Fig.
9(a) displays the abduction time for the IMDb and DBLP datasets as the
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Fig. 9. Average abduction time over the benchmark queries in (a) IMDb (top), DBLP (bottom), and (b) 4 versions of the IMDb dataset in different sizes.

number of provided examples increases, averaged over all benchmark
queries in each dataset. Since SQuID retrieves semantic properties and
computes context for each example, the runtime increases linearly with
the number of examples, which is what we observe.

Fig. 9(b) extends this experiment to datasets of varied sizes. We
generate three alternative versions of the IMDb dataset: (1) sm-IMDb
(75 MB), a downsized version that keeps 10% of the original data;
(2) bs-IMDb (1330 MB), doubles the entities of the original dataset
and creates associations among the duplicate entities (person and
movie) by replicating their original associations; (3) bd-IMDb (1926
MB), is the same as bs-IMDDb but also introduces associations between
the original entities and the duplicates, creating denser connections.®
SQuID’s runtime increases for all datasets with the number of examples,
and, predictably, larger datasets face longer abduction times. Query
abduction involves point queries to retrieve semantic properties of the
entities, using B-tree indexes. As the data size increases, the runtime
of these queries grows logarithmically. SQuID is slower on bd-IMDb
than on bs-IMDb: both datasets include the same entities, but bd-IMDb
has denser associations, which results in additional derived semantic
properties.

7.3. Abduction accuracy

Intuitively, with a larger number of examples, abduction accuracy
should increase: SQuID has access to more samples of the query output,
and can more easily distinguish coincidental from intended similari-
ties. Fig. 10 confirms this intuition, and precision, recall, and f-score
increase, often very quickly, with the number of examples for most of
our benchmark queries. We discuss here a few particular queries.

IQ4 & IQ11: These queries include a statistically common property
(USA movies), and SQuID needs more examples to confirm that the
property is indeed intended, not coincidental; hence, the precision
converges more slowly.

IQ6: In many movies where Clint Eastwood was a director, he was
also an actor. SQuID needs to observe sufficient examples to discover
that the property role:Actor is not intended, so recall converges more
slowly.

IQ10: SQuID performs poorly for this query. The query looks for
actors appearing in more than 10 Russian movies that were released
after 2010. While SQuID discovers the derived properties “more than
10 Russian movies” and “more than 10 movies released after 20107, it
cannot compound the two into “more than 10 Russian movies released
after 2010”. This query is simply outside of SQuID’s search space, and
SQuID produces a query with more general predicates than intended,
which is why precision drops.

IQ3: The query is looking for actresses who are Canadian and were
born after 1970. SQuID successfully discovers the properties gender:

& Details of the data generation process are in Appendix.

Female, country: Canada, and birth year > 1970; however, it fails
to capture the property of “being an actress”, corresponding to having
appeared in at least 1 film. The reason is that SQuID is programmed to
ignore weak associations (a person associated with only 1 movie). This
behavior can be fixed by adjusting the association strength parameter
to allow for weaker associations.

Generally, missing an intended property results in low precision
and picking an unintended property results in low recall. When SQuID
makes both mistakes at the same time, we see low precision and low
recall.

7.3.1. Execution time

While the accuracy results demonstrate that the abduced queries are
semantically close to the intended queries, SQuID could be deriving
a query that is semantically close, but more complex and costly to
compute. In Figs. 11(a) and 11(b) we graph the average runtime of the
abduced queries and the actual benchmark queries. We observe that in
most cases the abduced queries and the corresponding benchmarks are
similar in execution time. Frequently, the abduced queries are faster
because they take advantage of the precomputed relations in the aDB.
In few cases (IQ1, IQ5, and IQ7) SQuID discovered additional properties
that, while not specified by the original query, are inherent in all
intended entities. For example, in IQ5, all movies with Tom Cruise and
Nicole Kidman are also English language movies and released between
1990 and 2014.

7.3.2. Effect of entity disambiguation

Finally, we found that entity disambiguation never hurts abduc-
tion accuracy, and may significantly improve it. Fig. 12 displays the
impact of disambiguation for five IMDb benchmark queries, where
disambiguation significantly improves the f-score.

7.4. Qualitative case studies

We now present qualitative results on the performance of SQuID,
through a simulated user study. We designed 3 case studies, by con-
structing queries and examples from human-generated, publicly avail-
able lists.

Funny actors (IMDb). We created a list of names of 211 “funny actors”,
collected from human-created public lists and Google Knowledge Graph
(sources are in Appendix), and used these names as examples of the
query intent “funny actors”. Fig. 13(a) demonstrates the accuracy of
the abduced query over a varying number of examples. Each data point
is an average across 10 different random samples of example sets of the
corresponding size. For this experiment, we tuned SQuID to normalize
the association strength, which means that the relevant predicate would
consider the fraction of movies in an actor’s portfolio classified as
comedies, rather than the absolute number.

20008 sci-fi movies (IMDb). We used a user-created list of 165 Sci-
Fi movies released in 2000s as examples of the query intent “2000s
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Sci-Fi movies”. Fig. 13(b) displays the accuracy of the abduced query,
averaged across 10 runs for each example set size.

Prolific database researchers (DBLP). We collected a list of database
researchers who served as chairs, group leaders, or program committee
members in SIGMOD 2011-2015 and selected the top 30 most prolific.

Fig. 13. Precision, recall, and f-score for (a) Funny actors (b) 2000s Sci-Fi
movies (¢) Prolific DB researchers.

Fig. 13(c) displays the accuracy of the abduced query averaged, across
10 runs for each example set size.

7.4.1. Analysis
In our case studies there is no (reasonable) SQL query that models
the intent well and produces an output that exactly matches our lists.
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Public lists have biases, such as not including less well-known entities
even if these match the intent. To counter this bias, we use popularity
masks (derived from public lists) to filter the examples and the abduced
query outputs Appendix. In our prolific researchers use case, some well-
known and prolific researchers may happen to not serve in service
roles frequently, or their commitments may be in venues we did not
sample. Therefore, it is not possible to achieve high precision, as the
data is bound to contain and retrieve entities that do not appear on the
lists, even if the query is a good match for the intent. For this reason,
our precision numbers in the case studies are low. However our recall
rises quickly with enough examples, which indicates that the abduced
queries converge to the correct intent.

7.5. Query reverse engineering

We present an experimental comparison of SQuID with TALOS [20],
a state-of-the-art query reverse engineering (QRE) system. We picked
TALOS because other related methods either focus on more restricted
query classes [29,30] or do not scale to data sizes large enough for
this evaluation [15,16] (Fig. 3). Unlike SQuID, QRE systems operate in
a closed-world setting, assuming that the provided examples comprise
the entire query output. In the closed-world setting, SQuID is handi-
capped against a dedicated QRE system, as it does not take advantage
of the closed-world constraint.

For this evaluation under the QRE setting, we use the IMDb and
DBLP datasets, as well as the Adult dataset, on which TALOS was shown
to perform well [20]. For each dataset, we provided the entire output
of the benchmark queries as input to SQuID and TALOS. Since there

is no need to drop coincidental filters for query reverse engineering,
we set the parameters so that SQuID behaves optimistically (e.g., high
filter prior, low association strength threshold, etc.). We adopt the
notion of instance equivalent query (IEQ) from the QRE literature [20] to
express that two queries produce the same set of results on a particular
database instance. A QRE task is successful if the system discovers an
IEQ of the original query (f-score=1). For the IMDb dataset, SQuID
was able to successfully reverse engineer 11 out of 16 benchmark
queries. Additionally, in 4 cases where exact IEQs were not abduced,
SQuID queries generated output with >0.98 f-score. SQuID failed only
for 1Q10, which is a query that falls outside the supported query family,
as discussed in Section 7.3. For the DBLP and Adult datasets, SQuID
successfully reverse-engineered all benchmark queries. We compare
SQuID to TALOS on three metrics: number of predicates (including join
and selection predicates), query discovery time, and f-score.

Adult. Both SQuID and TALOS achieved perfect f-score on the 20
benchmark queries. Fig. 14 compares the systems in terms of the
number of predicates in the queries they produce (top) and query dis-
covery time (bottom). SQuID almost always produces simpler queries,
close in the number of predicates to the original query, while TALOS
queries contain more than 100 predicates in 20% of the cases. SQuID is
faster than TALOS when the input cardinality is low (~100 tuples), and
becomes slower for the largest input sizes (>700 tuples). SQuID was not
designed as a QRE system, and in practice, users rarely provide large
example sets. SQuID’s focus is on inferring simple queries that model
the intent, rather than cover all examples with potentially complex and

lengthy queries.
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IMDb. Fig. 15(a) compares the two systems on the 16 benchmark
queries over IMDb. SQuID produced better queries in almost all cases:
in all cases, our abduced queries where significantly smaller, and our
f-score is higher for most queries. SQuID was also faster than TALOS
for most of the benchmark queries. We now delve deeper into some
particular cases.

For IQ1 (cast of Pulp Fiction), TALOS produces a query with f-
score = 0.7. We attempted to provide guidance to TALOS through
a system parameter that specifies which attributes to include in the
selection predicates (which would give it an unfair advantage). TALOS
first performs a full join among the participating relations (person and
castinfo) and then performs classification on the denormalized table
(with attributes person, movie, role). TALOS gives all rows referring
to a cast member of Pulp Fiction a positive label (based on the
examples), regardless of the movie that row refers to, and then builds
a decision tree based on these incorrect labels. This is a limitation of
TALOS, which SQuID overcomes by looking at the semantic similarities
of the examples, rather than treating them simply as labels.

SQuID took more time than TALOS in 1Q4, 1Q7, and IQ15. The result
sets of IQ4 and IQ15 are large (>1000), so this is expected. IQ7 retrieves
all movie genres, and, thus, does not require any selection predicate.
As a decision tree approach, TALOS has the advantage here, as it stops
at the root and does not need to traverse the tree. In contrast, SQuID
retrieves all semantic properties of the example tuples only to discover
that either there is nothing common among them, or the property is not
significant. While SQuID takes longer, it still abduces the correct query.
These are not representative of QBE scenarios, as users are unlikely to
provide large number of example tuples or have very general intents
(PJ queries without selection).

DBLP. Fig. 15(b) compares the two systems on the DBLP dataset. Here,
SQuID successfully reverse engineered all five benchmark queries, but
TALOS failed to reverse engineer two of them. TALOS also produced
very complex queries, with 100 or more predicates for four of the cases.
In contrast, SQuID’s abductions were orders of magnitude smaller, on
par with the original query. On this dataset, SQuID was slower than
TALOS, but not by a lot.

7.6. Comparison with learning methods

Query intent discovery can be seen as a one-class classification
problem, where the task is to identify the tuples that satisfy the desired
intent. Positive and Unlabeled (PU) learning addresses this problem by
learning a classifier from positive examples and unlabeled data in a
semi-supervised setting. We compare SQuID against an established PU-
learning method [21] on 20 benchmark queries over Adult. The setting
of this experiment conforms with the technique’s requirements [21]:
the dataset comprises of a single relation and the examples are chosen
uniformly at random from the positive data.

Fig. 16(a) compares the accuracy of SQuID and PU-learning using
two different estimators, decision tree (DT) and random forest (RF). We
observe that PU-learning needs a large fraction (>70%) of the query

result to achieve f-score comparable to SQuID. PU-learning favors pre-
cision over recall, and the latter drops significantly when the number of
examples is low. In contrast, SQuID achieves robust performance, even
with few examples, because it can encode problem-specific assumptions
(e.g., that there exists an underlying SQL query that models the intent,
that some filters are more likely than other filters, etc.); this cannot be
done in straightforward ways for machine learning methods.

To evaluate scalability, we replicated the Adult dataset, with a
scale factor up to 10x. Fig. 16(b) shows that PU-learning becomes
significantly slower than SQuID as the data size increases, whereas
SQuID’s runtime performance remains largely unchanged. This is due
to the fact that, SQuID does not directly operate on the data outside of
the examples (unlabeled data); rather, it relies on the «DB, which con-
tains a highly compressed summary of the semantic property statistics
(e.g., filter selectivities) of the data. In contrast, PU-learning builds a
new classifier over all of the data for each query intent discovery task.
We provide more discussion on the connections between SQuID and
machine learning approaches in Section 10.

7.7. Squmb parameters

We list the four most important SQuID parameters in Fig. 17 along
with brief description. We now discuss the impact of these parameters
on SQuID and provide few empirical results.

p. The base filter prior parameter p defines SQuID’s tendency to-
wards including filters. Small p makes SQuID pessimistic about includ-
ing a filter, and thus favors recall. In contrast, large p makes SQuID
optimistic about including a filter, which favors precision. A low p
helps in getting rid of coincidental filters, particularly with very few
example tuples. However, with sufficient example tuples, coincidental
filters eventually disappears, and the effect of p diminishes. Fig. 18(a)
shows effect of varying the value of p for a few benchmark queries on
the IMDb dataset. While a low p favors some queries (IQ2, IQ16), it
causes accuracy degradation for some other queries (IQ3, IQ4, IQ11),
where a high p works better. It is a tradeoff and we found empirically
that moderate value of p (e.g., 0.1) works best on an average.

y. The domain coverage penalty parameter y specifies SQuID’s
leniency towards filters with large domain coverage. Low y penalizes
filters with large domain coverage less, and a high y penalizes them
more. Fig. 18(b) shows the effect of varying y. Very low value for y
favors some queries (IQ3, IQ4, IQ11) but also causes accuracy degrada-
tion for some other queries (IQ2, IQ16), where a high y works better.
Like p, it is also a tradeoff, and empirically we found moderate values
of y (e.g., 2) to work well on an average.

7,. The association strength threshold z, is required to define the
association strength impact a(¢) (Section 4.2.2). Fig. 18(c) illustrates
the effect of different values of 7, on the benchmark query IQ5 on the
IMDb dataset. The figure shows that, with very few example tuples,
high z, is preferable, since it helps drop coincidental filters with weak
associations. Similar to other parameters, with increased number of
example tuples, the effect of r, diminishes.
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Parameter Default value Description
P 0.1 Base filter prior parameter.
¥ 2 Domain coverage penalty parameter.
Ta 5 Association strength threshold.
T 2.0 Skewness threshold.

Fig. 17. List of SQuID parameters with description.

7. The skewness threshold 7, is required to classify an association
strength distribution as skewed or not (Section 4). Fig. 18(d) illustrates
the effect of different values of r, on the benchmark query IQ1 on
the IMDb dataset. 7, = N /A refers to the experiment where outlier
impact was not taken into account (i.e., A(¢) = 1 for all filters). In
this query, there were a number of unintended derived filters involving
certificate, and a high 7, helped to get rid of those. We also found
a high 7, to be very useful when we could not use a high r, due to
the nature of the query intent (e.g., IQ3). However, too high value for
7, is also not desirable, since it will underestimate some moderately
skewed distributions and drop intended filters. Empirically, we found
that moderate 7, (e.g., 2-4) to work well on an average.

8. Comparative user studies

In this section, we present findings from our comparative user
studies over SQuID and the traditional SQL-based mechanism. While
prior work have conducted user studies for other PBE systems [22],
query by example is a special category of programming by example
that brings forth unique aspects and challenges. First, the traditional
mechanism for retrieving relational data requires not only strong
technical skills over the SQL language, but also familiarity with the
structural organization of the data, called a schema. Schemas can be
very complex, may contain domain-specific abstractions, differ from
one database to the next, and could also get modified over time. As
a result, even expert users with prior SQL experience can struggle to
familiarize themselves with the schema of a previously unseen dataset,
leading to difficulties in data exploration. Therefore, QBE needs to be
studied from the perspective of users with varied levels of expertise,
and the study needs to investigate the pain points specific to relational
data access and exploration.

Second, the operational mechanisms in QBE systems fundamentally
differ from those in general PBE systems. Traditional PBE approaches
often rely on demonstration, where the mechanism to solve the in-
tended task is demonstrated by the user. In contrast, in QBE, the user
gives examples of the intended output and not the querying mechanism.
Other PBE approaches rely on complete input-output specifications:
the user needs to provide, typically small, sample inputs and outputs
and the system infers their intended program. This mechanism is also
not possible in a data exploration setting, where the input data is
predetermined and typically large, and the user can only provide a
small set of examples of their intended query output. Since the set of
examples in the QBE setting is naturally incomplete, there is typically
a much larger number of queries (programs) that could be compatible
with them, compared to the general PBE setting; thus, the effectiveness
of QBE systems needs to be explored with a targeted study.

Third, the setting of data exploration has two characteristics that
can have significant impact in the performance of a QBE system:
(1) Since the user needs to provide example records from the dataset at
hand, domain expertise can have a bigger impact in the user experience
than in the general PBE setting. (2) Data exploration tasks can be
vague and subjective, and a strict specification is often hard, or even
impossible, to derive, even by experts. This is a perspective not relevant
to general PBE and has not been explored by prior studies.

We conducted two comparative user studies: (1) a controlled ex-
periment study involving 35 participants, and (2) an interview study
involving 7 interviewees to gain a richer understanding of users’ issues

and preferences. All participants and interviewees had varying levels
of SQL expertise and experience, but were required to have at least
basic SQL skills. Our studies focused on the task of data exploration
and explored how SQuID compares against the traditional SQL querying
mechanism, over a variety of objective and subjective data exploration
tasks. Specifically, our study aimed to identify the most critical issues
users face when interacting with the traditional SQL querying mech-
anism, to what extent a QBE system like SQuID can alleviate these
challenges, how effective SQuID is over a variety of data exploration
tasks, and what the possible pain points of SQuID are.

8.1. Dataset and baseline

In our comparative user studies, we studied how users perceive
SQuID, compared to the traditional SQL querying mechanism, over
a variety of subjective and objective data exploration tasks. We now
provide an overview of the dataset we used in our studies and a brief
description of SQL, the baseline which we compare SQuID against.

8.1.1. Dataset

For our comparative user studies, our goal was to emulate data
exploration tasks in a controlled experiment setting. Generally, people
explore data they are interested in and within a domain they are
somewhat familiar with. Moreover, data exploration with QBE expects
some basic domain familiarity, as users need to be able to provide
examples. Therefore, our goal in selecting a dataset was to identify
a domain of general interest, where most study participants can be
expected to have a basic level of domain familiarity. Furthermore, the
dataset needs to be sufficiently large to emulate the practical challenges
that users face during data exploration. We selected the Internet Movie
Database (IMDb),” which satisfies these goals. The IMDb website is
well-known source of movie and entertainment facts, has over 83
million registered users and about 927 million yearly page visits.® The
database contains information regarding over 10 million personalities,
along with their demographic information; and about 6 million movies
and TV series, along with their genre, language, country, certificate,
production company, cast and crew, etc.

8.1.2. Structured query language (SQL)

The traditional way to query a relational database is to write a query
in structured query language (SQL). SQL is one of the most widely
used programming languages for handling structured data (54.7% de-
velopers use SQL [31]). It is specifically designed to query relational
databases and has been used for over 50 years. SQL is a declarative
query language and is primarily based on relational algebra. The SQL
language consists of several elements such as clauses, expressions,
predicates, statements, integrity constraints, etc. SQL has been im-
plemented by different developers — such as Oracle, Microsoft SQL,
MySQL, PostgreSQL, etc. — slightly differently; however, fundamentally,
they all work the same way. For our comparative user studies, we
picked PostgreSQL, which is a free and open-source relational database
management system.

Relational databases usually organize data in a normalized form,
to avoid redundancy. This is in contrast with the flat data format
where all attributes of an entity are stored together within the same
row. For example, the detailed schema of the IMDb database, split in
15 relational tables, is shown in Fig. 19. Here, the relation movie
contains only three attributes about movies: a numerical record id
(called primary key), a text attribute specifying the title of the movie,
and the production year of the movie. However, information about
associated genres of a movie is not present in the movie table. To
figure out the genres of a movie, one would need to write a SQL

7 IMDb: www.imdb.com/
& IMDb.com Analytics: www.similarweb.com/website/imdb.com/
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query to JOIN the tables movie, movietogenre, and genre. The
query would also need to specify the logic behind this join, i.e., which
rows in the genre table are relevant to a particular movie in the
movie table. SQL is a relatively simple language with a limited set of
operators (e.g., SELECT, PROJECT, JOIN, etc.). While this simplicity
enables the users to learn quickly how to express easy intents using
SQL (e.g., the SQL query SELECT title FROM movie would retrieve
all movie titles), it comes at the cost that complex intents are hard to
express in SQL. Specifically, the restrictions in the data organization
(normalized schema) and the simplicity of the SQL operators make
complex tasks harder to translate in SQL: it requires the users to
specify the entire data retrieval logic. Overall, writing a successful SQL
query for a data exploration tasks requires several skills: (1) familiarity
with the database schema, (2) understanding of the table semantics,
(3) understanding of the SQL operators, (4) knowledge of the SQL
syntax, and (5) expertise in translating task intents to SQL.

8.2. Study design

In our user studies, our goal was to quantitatively compare the
efficacy and efficiency of SQuID and SQL over a variety of data
exploration tasks, while also gathering qualitative feedback from users

regarding their experiences with the systems. To this end, we opted
for two separate comparative user studies: (1) a controlled experiment
study, with a fixed set of tasks, over a group of participants of sufficient
size to support quantitative evaluation; (2) an interview study, with
a flexible set of tasks, over a small group to gather qualitative user
feedback. Due to the situation caused by the current COVID-19 pan-
demic, both studies were conducted online: the controlled experiment
was conducted through a website, hosted on our university servers, and
the interview study was conducted over Zoom.

For both studies, we provided the database schema (Fig. 19) and a
graphical user interface with a text box, where the participants could
write SQL queries to interact with a PostgreSQL database. For SQuID,
we provided a graphical user interface to allow the participants to
interact with the system (Fig. 20). We now proceed to describe the
settings, design choices, and methods of our comparative user studies.
We first describe our controlled experiment study over a user group of
35 participants, followed by our interview study with a smaller group
of 7 interviewees.

8.2.1. Study 1: Controlled experiment study
Participants. For our controlled experiment study, we recruited stu-
dents who were enrolled in an undergraduate computer science course
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 SQuiID User Guide About

Instruction Pre-Survey Tutorial Task 1

Task 2 Task 3

Task4 | PostSuvey

Find funny actors

Bruno would like to lighten his mood during the quarantine. He would like to find a list of funny actors so he can
follow their Twitter feeds. Can you help him compile such a list?

List of input examples:

Robin Williams (%}
Jim Carrey (]
Eddie Murphy O

Task Time remaining: 9:35

Results generated based on input examples:
Adam Sandler

Alan Cumming

Alec Baldwin

Andy Dick

Ben Stiller

[=H N ¥ IR

Fig. 20. The graphical user interface of SQuID used in our user study. The task description is at the top. The left panel allows the users to provide examples
with an auto-completion feature. SQuID infers the user’s intended query from the examples, executes it, and shows the results in the right panel. The result set

contains more actors, but we only show the first five (alphabetically) here.

on Data Management Systems at our university during the Spring
2020 semester. The course offers an introduction to data management
systems and the SQL language. This ensured that our study participants
would have basic familiarity with SQL, which is required to compare
the two systems: SQuID and SQL. We invited all 89 students enrolled
in this course to take part in the study and 35 of them agreed to
participate. We offered extra credit for study participation; students
who opted to not participate were given alternative opportunities for
extra credit. We labeled these participants P1-P35. The average grade
the participants achieved in the course was 86.3 (out of 100), with
a minimum grade of 45, and a maximum grade of 100; the standard
deviation of the grades was 9.87. This indicates a broad range in our
participants’ SQL skills, which was one of our goals. While all of them
had prior experience and exposure, some had only very basic skills (and
failed the class) and some achieved advanced skills.

Tasks. We designed 4 data exploration tasks over the IMDb database.
Our goal was to observe what challenges a set of diverse tasks poses to
the participants and how the challenges vary based on the subjectivity
of the tasks and the mechanism (SQuID or SQL) used to solve the tasks.
To this end, we designed two objective tasks: (1) to find Disney movies
and (2) to find Marvel movies; and two subjective tasks: (1) to find
funny actors and (2) to find strong and muscular actors. We provided a
detailed description for each task to the study participants. (Details are
in the Appendix.)

Task assignment mechanism. Each participant was assigned all of the
four tasks in the sequence: Disney, Marvel, funny, and strong. This
order was enforced to ensure that they perform objective tasks first,
which are easier, and then move to more complex and subjective tasks.
We randomized task-system pairings to make sure that for each task,
about half of the participants use SQuID while the other half use SQL.
The task assignment mechanism was as follows: for each user, we
randomized which system (SQuID or SQL) they are allowed to use for
each task. Everyone did the tasks — Disney, Marvel, funny, strong -
in that order, but there were two possible system assignment orders:
(a) SQuID, SQL, SQuID, SQL, or (b) SQL, SQuID, SQL, SQuID. Each
participant was randomly given one of these assignments. This resulted

in randomized task-system pairings, with the constraint that each par-
ticipant must solve one objective and one subjective task using SQL and
the remaining two tasks (also one objective and one subjective) using
SQuID. This mechanism also eliminated any potential order bias with
respect to the treatment system as half of the participants interacted
with SQuID before SQL, while the other half interacted with SQL before
SQuID. Within each task (e.g., Disney), each participant used either
SQuID or SQL to solve each task, but not both.

Study procedure. This study was conducted online and the participants
took the study over the Internet on a specific website, hosted on
our university servers. We sent out the URL of the website during
recruitment. At the beginning of the study, participants were asked a
series of questions about their familiarity with SQL. The questions asked
the participants to provide answers using a 5-point Likert-scale ranging
from “Not familiar (1)” to “Very familiar (5)”. Next, there was a ques-
tion asking them at what frequency they watch movies, followed by a
questions about overall movie and actor familiarity where participants
could select multiple options. After this survey, participants were given
an interactive tutorial, which was divided into two sections, walking
them through the steps to obtain results with both SQuID and SQL.
The tutorial took about 2-5 min to complete. After the tutorial, the
participants started the tasks. They had 10 min for each task, but could
finish before the time was up if they chose. Participants were asked to
avoid using Internet search, but if they did, they were encouraged to
report it. After each task, the participants were asked to answer a post-
task survey with two questions: the first one was about the difficulty of
the task where the participants had to provide answers using a 5-point
Likert-scale ranging from “Very difficult (1)” to “Very easy (5)”; and
the second one was about their satisfaction with the results where the
participants had to provide answers using a 5-point Likert-scale ranging
from “Very unsatisfied (1) to “Very satisfied (5)”. After completing all
four tasks, the participants were asked to answer four survey questions:
the first one was regarding their preferences between SQuID and SQL
where the participants had to provide answers using a 5-point Likert-
scale ranging from “Definitely SQL (1)” to “Definitely SQuID (5)”; the
second one was about usability comparison between SQL and SQuID
where the participants had to provide answers using a 5-point Likert-
scale ranging from “SQL was a lot easier (1)” to “SQuID was a lot easier
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Interviewee ID  Gender Country of origin  Program level SQL expertise Area of specialization
11 Female  Greece 2nd year PhD  Medium Data management
12 Male India 3rd year PhD  Low Natural language processing
3 Male Hong Kong 2nd year MS High Systems
14 Female  China Sth year PhD High Data privacy
15 Male India 4th year PhD High Theory and data management
(3] Female  Japan 2nd year PhD  Medium Data privacy
17 Male USA 4th year PhD High Data privacy

Fig. 21. Demographic and experience details of the interviewees who participated in our interview study.

(5)”; the third one was about satisfaction with results obtained using
SQuID where the participants had to provide answers using a 5-point
Likert-scale ranging from “Very unsatisfied (1)” to “Very satisfied (5)”;
and the fourth one was about accuracy of the results obtained using
SQL where the participants had to provide answers using a 5-point
Likert-scale ranging from “Very inaccurate (1)” to “Very accurate (5)”.

Data collection. During the study, we collected all survey responses and
all inputs the participants provided to the systems. Specifically, for SQL,
we collected all their queries, including any intermediate queries that
they used to reach their final query; for SQuID, we collected all the
examples they provided, along with the revision history (addition or
removal of examples). We stored all this information in JSON format.

Data analysis. During our data analysis, we extracted the JSON data
programmatically through Python scripts and implemented custom
functions to programmatically analyze the data. To quantitatively eval-
uate the tasks performed by the participants, we compared their results
against the ground-truth results. We collected the ground-truth data
from publicly available lists on the IMDb website. For the objective
tasks (Marvel and Disney), we determined the ground truth by selecting
one list for each. For the subjective tasks (funny and strong), we
compiled a list by combining seven different lists for each. We selected
lists that meet the following criteria: (1) they have a number of entries
that is representative of the task (e.g., there are more than five Marvel
movies, thus the list should contain more than five entries), (2) they
are frequently viewed, and (3) they contain entries that match the
task objectives. For instance, we collected a list of 300 funny actors,
which was compiled from 7 shorter lists of funny actors. One of these
lists, titled “Funny Actors”, has over 400,000 views, and includes 60
well-known comedians including Jim Carrey, Robin Williams, Eddie
Murphy, Mel Brooks, and Will Ferrell.” We provide all the lists we used
in the Appendix.

8.2.2. Study 2: Interview study

We conducted a comparative interview study to gain richer insights
on users’ behavior, their preferences, and any issues they faced while
solving the data exploration tasks using both systems.

Interviewees. We recruited 7 interviewees for this study by targeting a
diverse set of computer science graduate students directly working or
collaborating with the data management research lab at our university.
Out of the 7 interviewees, 4 were male and 3 were female; 6 of
them were international students; and their ages ranged from 25 to
30 years old. All of them had experience using SQL for at least one year;
however, their expertise varied from moderate to expert. We label the
interviewees I1-17. We provide further details on the interviewees in
Fig. 21.

Tasks. For this study, we asked the interviewees to pick one objective
task from the following list: (1) Disney movies, (2) Marvel movies,
(3) animation movies, (4) sci-fi movies, (5) action movies, (6) movies
by an actor of their own choice, or (7) movies by a country of their

? Funny Actors: https://www.imdb.com/list/1s000025701

own choice. We also asked them to select one subjective task form
this list: (1) funny actors, (2) physically strong actors, or (3) serious
actors. The variety of tasks allowed interviewees to pick tasks based on
their interests and enabled us to observe how the two systems compare
over a variety of data exploration tasks. This study was within-subject,
i.e., all of the interviewees were required to use both the mechanisms
(SQuID and SQL) to solve each task.

Study procedure. For each interview, two of our research team mem-
bers were present, one as primary to lead the interview and ask
questions and another as secondary to take notes and ask potential
follow-up questions. At the beginning of the study, we provided them
the URL of the study website over the chat feature of Zoom. During the
study, the interviewees first completed an interactive tutorial and then
they were asked to pick two tasks. The interviewees were then asked
to solve each task using both SQuID and SQL, so that they can directly
contrast the two systems. We asked them to complete each task first
using SQuID and then using SQL, so that the examples they would pro-
vide while using SQuID would be free from biases due to observing the
results from their SQL query outputs. We did not expose the query that
SQuID generates through the SQuID interface, and, thus, avoided biases
when the interviewees were completing the SQL tasks. The interviewees
followed a think-aloud protocol and shared their screen over Zoom
during the study. They were observed by two interviewers who also
asked open-ended questions to the interviewees on completion of each
of the two tasks using both systems. The questions were intended to
gather information on which of the two systems the interviewees prefer,
under what circumstances they prefer one over the other, and the
justification of why they do so. They were also asked what challenges
they faced while using the systems and whether some particular task
exacerbated these challenges. Finally, they were asked what type of
results they prefer during data exploration: specific or generic.

Data collection. We recorded all interview sessions. The 7 interviews
summed to 467 min. On average, each interview lasted about 67 min,
with the shortest interview lasting 43 min and the longest one last-
ing 77 min. Upon completion, we replayed the interview recordings,
manually transcribed the responses, and stored them as plain text in a
spreadsheet, resulting in 119 responses in total.

Data analysis. We thematically analyzed the responses using our cod-
ing software (spreadsheet). Two independent coders from our team
independently coded the data. The following six themes emerged af-
ter several rounds of analysis: (1) struggle in task understanding,
(2) struggle in familiarizing oneself with the schema while using SQL,
(3) difficulties with writing syntactically correct SQL queries, (4) strug-
gle with solving vague/subjective tasks using SQL, (5) struggle due
to lack of domain familiarity while using SQuID, and (6) preference
between precision and recall of the results. Inter-coder reliability was
0.98, calculated using Krippendorff’s alpha.

8.3. Quantitative results from controlled experiment

We now present the quantitative results of the controlled experi-
ment study, summarizing our findings.
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Fig. 22. Domain knowledge of the participants.

Participants had basic domain knowledge and SQL familiarity. The dis-
tribution of self-reported movie-watching frequency among the partic-
ipants is shown in Fig. 22(a), with the most common response being
‘once or twice a month’, followed by ‘once or twice every few months’.
The responses regarding actor and movie familiarity are summarized
in Fig. 22(b): a vast majority of the participants (25 out of 35) re-
ported that they were ‘somewhat’ familiar with movies and actors.
This validates our choice of the IMDb database for conducting the
study, as indeed, we observed sufficient domain knowledge among
the participants. Regarding SQL expertise, all 35 participants reported
being very familiar with easy SQL queries and 34 reported being very
familiar with moderately complex SQL queries. When asked regarding
familiarity with complex SQL queries, 27 participants reported being
very familiar, 6 were unsure, and 2 were unfamiliar.

Soum is generally more effective than sqL in generating accurate results.
To quantitatively measure the quality of the results produced by both
SQuID and SQL, we checked them against the ground-truth results (dis-
cussed in Section 8.2.1). We used three widely used correctness metrics
to quantify the result quality: precision, recall, and F1 score. These met-
rics capture different aspects: precision captures “preciseness”, i.e., the
fraction of retrieved tuples that are relevant; recall captures “coverage”,
i.e., the fraction of relevant tuples that are correctly retrieved; and F1
score — which is a harmonic mean of precision and recall — maintains
a balance between them.

On average, we found SQuID to be more effective in generating
accurate results than SQL (Fig. 23). For all four tasks, on average across
participants, results obtained with SQuID achieved significantly higher
precision than the results obtained with SQL. SQuID achieved higher
recall than SQL for the two objective tasks (Disney and Marvel). While
SQuID’s recall for the subjective tasks (Funny and Strong) was lower
than SQL, note that SQL’s precision for those tasks was close to 0.
This is simply because the SQL queries the participants wrote for those
tasks were very imprecise and returned a very large number of results
(e.g., all actors in the database). While such general queries can happen
to contain a large portion of the correct results (hence the high recall),
they contain an extremely large number of irrelevant results making
them poorly suited for this retrieval task. In terms of F1 score, SQuID
always achieved higher values than SQL implying its effectiveness over
SQL for generating more accurate results. The result of t-tests for these
findings are shown in Fig. 24. Out of the 12 findings, 7 are statistically
significant with a p-value less than 0.05.

Participants were more efficient with squin than so. SQuID helped the
participants solve the tasks more quickly (Fig. 25(a)) and with fewer
attempts (Fig. 25(b)) than SQL. On average, the participants were able
to solve the tasks using SQuID about 200 s faster than when using
SQL. Participants were also able to solve the tasks with about 4 fewer
attempts while using SQuID compared to SQL. The results of t-test
of these findings, shown in Fig. 26, signify that most are statistically
significant with a p-value less than 0.05.

Participants generally found squip easier to use and more satisfying, but
still preferred sqL.  Figs. 27(a) and 27(b) show self-reported overall
satisfaction with the results produced by SQuID and SQL, respectively.
Generally, participants found the results produced by SQuID more
satisfying than the results produced by SQL. Out of the 35 partici-
pants, 23 were somewhat or very satisfied with SQuID. In contrast,
18 reported that the results produced by SQL were somewhat or very
accurate. However, we found that the self-reported satisfaction does not
correlate with the actual correctness of the results (measured in terms
of precision, recall, and F1 score), and in fact, the participants generally
did better with SQuID than SQL, although they did not always realize it.
Fig. 27(c) shows self-reported overall evaluation comparing SQuID and
SQL in terms of ease of use. Out of the 35 participants, 19 reported that
SQuID was easier, 6 reported that they had the same level of difficulty,
and 10 reported that SQL was easier.

However, despite reporting that SQuID was easier to use and the
results were more satisfying, the participants were still leaning towards
SQL as a preferred mechanism for data exploration. Fig. 27(d) shows
self-reported overall preference between SQuID and SQL, where 11
reported that they would prefer SQuID while 19 reported that they
would prefer SQL. Five participants reported no preference.

8.4. Qualitative feedback from interview study

We now report the results of our interview study and describe six
main themes that emerged from our analysis.

Studying the schema is challenging, even for squ experts. All seven of our
interviewees from the interview study commented that it was difficult
to become acquainted with the database schema. “As a user, I have to
explore the schema”, I1 said. I1 continued, “The query itself was not
complicated. It was time consuming to get familiar with the schema
itself. Even for experienced users, reading through the schema and
getting acquainted to [it] ...takes time”. When asked about the com-
parison in difficulty between writing the SQL query and understanding
the schema, I3 said “Looking at the schema diagram was harder. I
kept going back and forth trying to understand it”. Understanding the
schema may be complicated not only because it can be difficult to
learn what keys connect the tables, but also because it may be hard to
interpret the structure of the individual tables. I5 said, “I think it was
pretty hard because I was not sure where to look for comedy based on
actors. I was thinking that [the] Role [table] might have the attribute,
but it didn’t. Then I had to go through joining five tables!”

Squ requires stricter syntax, which makes writing queries difficult. All
interviewees struggled to a varying degree to write a SQL query because
of different issues; e.g., some of them could not figure out the correct
spelling of attributes. For instance, one queried for the genres ‘scifi’
and ‘comedic’, neither of which exist in the database. 14 said, “The
difficult part was to get the accurate predicate for the query, and
I had to [explore the database] for that”. SQL requires strict string
matching, which can be extremely difficult to overcome for someone
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Fig. 23. Comparison of SQuID vs. SQL in terms of average precision, recall, and F1 score.

Precision Recall F1 Score
Task p-value i p-value t p-value t
Disney 0.004 3.0781 0.0389 2.1457 0.151 1.468
Marvel 0.1047 1.6669 0.0588 1.9554 0.7195 0.3621
Funny 0.0001 4.3845 0.0042 -3.0751 0.0 8.6225
Strong 0.011 2.6935 0.1751 -1.3859 0.0 6.4942

Fig. 24. ¢ test results for precision, recall, and F1 score. Out of 12 findings, 7 are statistically significant. In all cases, df = 33.
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Fig. 25. Comparison of SQL vs. SQuID in terms of effort (average time required and average number of attempts) for solving the same set of tasks.

who is unfamiliar with the database constants and SQL syntax. While some even said they had not used SQL in months - thus, it was difficult
it is possible to query a table and view its content to see how the names to recall specific syntactic rules. For instance, two of the interviewees
are spelled, very few interviewees did this. It appears that the ability - who had relatively lower SQL expertise — could not remember the
to write a SQL query is based on experience and recent exposure to requirements for joining tables. I7 had to use Google to help with
SQL. Interviewees noted that they do not use SQL on a daily basis - this syntax, and 12 did not recall that SQL could join more than two
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Task completion time #Attempts
Task p-value t p-value t
Disney 0.0014 -3.5 0.0 -4.7578
Marvel 0.0146 -2.5767 0.0008 -3.6985
Funny 0.0008 -3.7105 0.0007 -3.7441
Strong 0.0132 -2.6206 0.0595 -1.9518

Fig. 26. 1 test results for task completion time and number of attempts. Out
of the 8 findings, 7 are statistically significant. In all cases, df = 33.

tables. I5 said, “I was making a lot of mistakes about where to have the
underscores, where to not have underscores, and for those things I had
to look through the [schema] multiple times”. An interesting note, 16
spent the vast majority (over 9 min) attempting to find the name ‘Japan’
in the database, and spent less than 1 min writing the actual query.
SQuID reduces the need to recall exact spelling by providing an auto-
completion feature as the user types examples. Although it does not
provide an auto-correct if the name is misspelled, the auto-completion
feature allows the users to type what they know and scroll through the
suggestions until they find the intended name. We observed several of
our interviewees initially spelled a movie name incorrectly, but they
were helped by the auto-completion feature. For example, 12 initially
typed ‘Spiderman’ in the search bar, but the title is spelled ‘Spider-
Man’ in the database. 12 was able to correct the spelling when he typed
‘Spider’ in the search box and autocomplete showed the entire title. The
search bar also helped I5 who noted, “If I was missing some spellings,
there were some suggestions”.

SquL requires parameter tuning for subjective tasks; souip alleviates this.
Some exploration tasks can be subjective and inherently vague, e.g.,
defining a “funny” actor precisely. How many comedies, exactly, does
an actor have to star in before they are considered funny? These ques-
tions have no clear answers, and such parameters can vary from person
to person and from day to day. In practice, it may be very difficult, if
not impossible, to think of objective measures for a subjective concept,
which makes subjective tasks very complicated to specify with SQL.
12 said, “Even if I forget about syntax ... figuring out how to go about
writing the pseudocode query for funny actors [is difficult]”. One of the
most common blunders of interviewees who used SQL to find “funny”
actors was to query all actors who had been in some comedy movie. I3
was the first to acknowledge this. “I had to play around with a lot of
smaller queries”, he said, “to get the one that I eventually had, which
I was still not satisfied with. It seems like I pulled many actors and
actresses that happened to be in some comedy”. I3 elaborated, “Vague
tasks are generally a lot more open to interpretation. Coding up a query
that meets someone’s vague specifications [is] hard ...It was very hard
to nail down what the correct definition of funny is”. 14 also recognized
that vague tasks are difficult to define. She even said, “This probably
isn't a query that I should write in SQL!” She continued, “strong and
muscular are very vague descriptors, and SQL needs clear rules. I have
to use genre as a proxy, and that makes the query very nasty”.

On the other hand, SQuID can interpret complex parameters without
any involvement from the user, sparing them the mental burden of
defining and implementing a complex query. 14 also said, “In order to
write a SQL query, you need to understand the schema well, know your
data well, and know your question well ... But if the task is exploratory
and you only have a vague idea in mind, like ‘strong actors’ ... it would
be very hard, if not impossible, to write a SQL query”. Indicating how
SQuID helped in the subjective tasks, I3 said “SQuID is a lot more user-
oriented. You could just put in some actor names and it would infer
what you really want”.

Soum produces precise results, which is preferred for data exploration. We
asked interviewees whether they would prefer a long list that includes

all relevant names, but may also include many irrelevant names (high-
recall) or a shorter list that includes exclusively relevant names with
very few irrelevant names, but may miss some relevant names (high-
precision). Six out of seven interviewees reported that they would
prefer having a shorter list with higher precision, while one interviewee
had no preference. “I think I'm okay with not having all Marvel movies
listed here”, 12 said, “but I definitely don’t want anything outside of
Marvel movies. It’s fine that [the results] are missing some Thor movies.
I wouldn’t have liked it if there were movies from DC [Comics] in
here”. Comparing the SQL results to the SQuID results, I5 said, “I think
the [SQuID ] results were not too few but not too many. It was easily
understandable, and I could actually see if these were actors I was
looking for ...The [SQL ] results were just too many, and most of the
names [ didn’t know, so it was not easy to find the names that I was
looking for”. 16 said, “I prefer a shorter list because if there are too
many movies listed, then probably, it would be overwhelming and I
could not say if the results are right”.

Soum’s interactivity helps users to enrich examples. Three interviewees
mentioned that the results produced by SQuID helped them think of
more examples in an iterative process. 16, who struggled to think of
examples, was able to think of only three sci-fi movies, but when
she saw ‘Avatar’ in the list of results, many other ideas came to her
mind. Even if the intermediate results (the first or second round of
results generated) were not all intended, some of them were useful in
reminding the interviewees of relevant examples. For instance, 12 said,
“SQuID was [nice] because it was slightly interactive. I could look at
the results and update my examples”. During a task, 17 said, “[The
results are] useful because now I can use Guardians of the Galaxy”.
17 later added, “I think when I gave the first few examples, it gave
me some results and that helped me think of more that I was looking
for, and it eventually did complete the task”. SQuID’s results reminded
the interviewees of examples that had not been on their mind, but
were nonetheless relevant. I3 said, “I saw the movie Transformers,
and that’s something I had in my mind, but it did not occur to me
when I was entering the examples. There were a bunch of other movie
names [like that]”. Since SQuID can provide serendipitous, but helpful,
intermediate results, the user’s lack of domain familiarity can still be
alleviated to some extent.

Domain familiarity is crucial to evaluate the results, for both souip and
soL.  SQuID requires a basic familiarity with the domain. For those who
struggle to think of even one relevant example, like 16, SQuID presents a
unique challenge. All interviewees could easily think of a few examples
that fit the task, but they struggled beyond that. 17 said, “It was very
easy to come up with two or three, but the more examples I had to
give the harder it became”. Two interviewees suggested that SQuID
adopt an interactive system where it would ask the user whether or
not a particular result was relevant on a case-by-case basis. This could
alleviate some of the difficulty of thinking of relevant examples.

Furthermore, users who possess very little knowledge of the domain
may be unable to recognize the results, and thus would be incapable
of verifying them. But this is true for both SQuID and SQL. It was
not uncommon for the interviewees to tell us that they could hardly
recognize the names in the results, especially for SQL. I1, for instance,
said, “Honestly, I don't recognize any of the results”. This, apparently,
was partly due to the large number of results returned by SQL, where
there is a high chance that there will be unfamiliar names. Most people
are only familiar with a relatively small subset of actors, rather than
the entirety of the IMDb database. This made it difficult for the users
to evaluate the results produced by both SQuID and SQL.

9. Discussion, limitation, and future work

In this section, we discuss key takeaways of our user studies, the
limitations of SQuID, and future directions.
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Fig. 27. Comparison of SQuID vs. SQL in terms of various metrics (self-reported).

9.1. Key takeaways

We summarize significant findings from the quantitative and qual-
itative analysis of our comparative user studies and highlight the key
takeaways below.

Soum alleviates sqL pain points: schema complexity, semantic translation,
and syntax. From our interviews, we identified three key pain points
of the traditional SQL querying mechanism, all of which are removed
when using SQuID:

Schema complexity. One significant difficulty that we observed
during the use of SQL was the requirement of schema understanding.
To issue a SQL query over a relational database, the user must first
familiarize themselves with the database schema [7,32]. The schema
is often complex, like the IMDb schema shown in Fig. 19, and under-
standing it requires significant effort. The user also needs to correctly
specify the constant values (e.g., Comedy and not Comedic), name of
the relations (e.g., movietogenre and not movie_to_genre), and
name of the attributes (e.g., id and not movie_id) in the SQL query.
Moreover, some attributes reside in the main relation (e.g., per-
son.name) while others reside in a different relation (e.g., names of
a movie's genres reside in the relation genre and not in the relation
movie). From a closer look at some of the user-issued SQL queries, we
observed futile efforts to guess keywords, incorrectly trying values such
as “comedic”, “superhero comics”, and “funny”, which do not exist
in the database and result in syntax or semantic errors. In structured
databases, if one does not know the exact keywords, they end up
issuing an incorrect SQL query, which returns an empty result. In
contrast, SQuID frees the user from this overhead as it leverages the
database content and schema and associates it automatically with the
user-provided examples.

Semantic translation. After studying the schema, the next task
was to translate the task’s semantics formally to a language (e.g., SQL)
that computational systems understand. While this is relatively easy for
objective tasks (e.g., finding all movies produced by Disney), the same
is not true for subjective tasks (e.g., finding all “funny” actors). As our
qualitative feedback indicates, expressing subjective or vague tasks is
hard in any formal language, not only in SQL. For example, for the

task of finding all “funny” actors, even the SQL experts struggled to
encode the concept “funny” in SQL. Many participants wrote a SQL
query to retrieve all actors who appeared in at least one movie whose
genre is Comedy. However, upon observing the output of such an ill-
formed query, they were not satisfied with the results. This is because
appearing in only one comedy movie does not necessarily make an
actor funny. Usually, actors who appear in “many” comedy movies are
considered funny. The key struggle here is to figure out what is the
right threshold for “many”, i.e., in how many comedy movies should
an actor appear to be considered “funny”. In contrast, SQuID is able to
discover these implicit constants from the user-provided examples. For
retrieving funny actors, SQuID learns from the user-provided examples
what is the usual number of comedy movies all the example actors
appeared in, and subsequently, uses that number to define the notion of
“many”. For instance, for Example 1.3, SQuID inferred that appearing
in 40 comedy movies is sufficient for an actor to be considered funny.
This parameter (40) was automatically inferred based on the user-
provided examples: SQuID automatically discovered that each example
actor appeared in 40 or more comedy movies in the IMDb database.

Language syntax. SQL is a programming language with several
operators and keywords, and similar to all programming languages,
SQL also requires strict syntax. While issuing a SQL query, even a minor
syntactic error will result in complete failure and will return no result.
Moreover, the syntax error messages that the SQL engine provides
are often ambiguous and confusing to novice users. We observed that
one of our interviewees could not recall the correct syntax of the
JOIN operation. This stringent requirement of syntax poses significant
hurdles to novice and even intermediate SQL users. In contrast, SQuID
completely bypasses SQL, eliminating this challenge.

Soum is generally more effective than soL and boosts efficiency. In our
controlled experiments, we noted that SQuID is generally more effective
than SQL in deriving accurate results. For objective tasks, we found
that SQuID outperforms SQL in all three correctness metrics—precision,
recall, and F1 score. However, it is important to highlight that our
interviewees noted that SQulID is particularly useful and preferable
to SQL for subjective tasks. This does not contradict our quantitative
analysis. While SQL has higher recall than SQuID for subjective tasks,
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SQuID achieves much higher F1 scores, because SQL’s precision for
these tasks is close to 0. This is because an extremely general SQL
query (e.g., one that returns all the data) may have very high recall,
but it will not be useful for the exploration task that expects targeted
results. Furthermore, SQuID significantly boosts the user’s efficiency
in data exploration. This was confirmed by our controlled experiment
study where we found that participants achieved their goal much faster
(in about 200 fewer seconds) and with less effort (with about 4 fewer
attempts) while using SQuID compared to SQL.

Squin’s pain point and remedies: lack of domain expertise. Lack of domain
knowledge is a handicap for SQuID, as it requires at least a few initial
examples for its inference. This is a general issue with all query-
by-example mechanisms [7,33]. However, even when the user lacks
domain knowledge, they can use alternative mechanisms - such as
keyword search, Internet search, or very basic SQL queries (when
the user has some SQL familiarity) — to come up with some initial
examples. In contrast, when a user does not know SQL, learning it from
scratch takes significant time and effort. While SQuID’s by-example
paradigm can help both expert and novice users alike, in general,
programming-by-example systems are most beneficial when domain
knowledge outweighs technical knowledge and experience [22]; oth-
erwise, a hybrid system is more desirable. However, lack of domain
knowledge is a problem for SQL as well. Without basic knowledge over
the data domain (e.g., what are the entities and what are their proper-
ties), understanding the schema can be harder. Furthermore, without
sufficient domain knowledge, debugging SQL queries, i.e., validating
whether the user-issued SQL queries are correct or not, based on the
results, is also challenging.

Squip promotes serendipitous discovery, aiding in data exploration. SQuID
is interactive in a sense that the users can revise their examples based
on the results and even use some of the results as examples in the
next iteration. A number of interviewees mentioned that by looking
at the results that SQuID generated from their initial examples, they
were able to come up with new examples. Moreover, when their exam-
ples contained some unintentional bias - e.g., while retrieving Disney
movies, they only provided examples of recent movies — they were able
to receive implicit feedback of that bias by SQuID as the results SQuID
generated reflected the same bias. This feedback mechanism helped
them revise their examples accordingly. In contrast, SQL does not offer
such interactivity or feedback mechanism. While some interviewees
used subqueries of the main query to view some intermediate results,
this was just for the purpose of verifying the correctness of the main
query. In contrast, SQuID’s natural interaction and feedback mechanism
offers additional help to the users. This makes SQuID particularly suit-
able for the task of data exploration. SQuID often promotes serendipity
in the results—providing a good balance between exploration (serendip-
itous, surprising, and novel discovery) and exploitation (similar to the
examples)—which is a desired property during data exploration.

Soum is particularly useful for solving complex and subjective tasks. The
specific properties of SQuID, specifically interactivity, providing feed-
back, and promoting serendipitous discovery, make it a significantly
better choice for solving subjective tasks that are usually ambiguous
and vague, and are very hard to solve using SQL. For example, in our
studies, we used “strong actors” or “funny actors” as two examples of
subjective tasks. Participants of both our controlled experiment study
and interview study found thinking of examples easier than expressing
their intent using SQL, especially for subjective tasks. Our results
indicate that SQuID provides an easier mechanism for data retrieval
and helps users overcome the difficulty of writing overly complex SQL
queries for subjective tasks. In contrast, for objective tasks, we found
both SQuID and SQL equally effective, given the user has basic SQL
expertise.

Trust on a system depends on prior exposure, expertise, type of the tasks, and
system explainability. During our controlled experiment, we wanted to
measure how much the participants trust the mechanism that produces
the results by asking the questions: “how well do you think SQuID
did in generating the desired results?” and “how accurate were the
SQL results?” While some participants reported that they were more
satisfied with the results produced by SQuID than SQL, interestingly,
many of them reported that they prefer SQL over SQuID even though
they generally did better with SQuID (Fig. 27(d)). This result is in
line with prior work that compared a PBE tool against traditional
shell-scripting and found that despite performing better using the PBE
tool, users tend to trust the traditional shell-scripting more [22]. We
validated this by checking against ground-truth results where SQuID
groups achieved results with higher precision (more specific) and F1
score (more accurate), as shown in Fig. 23.

Since the participants performed better when using SQuID com-
pared to SQL, we interpret their preference for SQL to be due to
three possible sources of bias: (1) Familiarity: The participants were
at the time taking a course on relational databases and SQL, which
may have artificially increased their confidence in their SQL skills.
They had prior experience with SQL, but were experiencing SQuID for
the first time through the study. (2) Explainability: SQL exposes the
precise mechanism (the code) that produces the results, while we did
not provide participants with an explanation of the inner workings of
SQuID nor exposed the query it produces. (3) Domain expertise: Low
domain expertise poses a hurdle in producing examples for SQuID; we
posit that the users may consider SQL a more versatile mechanism for
such circumstances.

We further investigated the issue of trust during our interview
study by asking all our interviewees the question: “Which of these
two systems, SQuID or SQL, do you trust more?” We expected SQL
experts to trust SQL more, but did not observe any strong trend. Rather,
the interviewees mentioned that for objective tasks, they were more
confident about the SQL queries they wrote, and hence, they trusted
SQL more. In contrast, for the subjective tasks, they reported that
they trusted the results produced by SQuID more, as for the subjective
tasks, the most common complaint was that SQL produced too many
results (less specific) and perhaps retrieved the entire database content.
Ultimately, SQuID can also provide explanations, by exposing the SQL
query it synthesizes in order to generate the results and the underlying
mechanism used to synthesize the query. We shed more light on this in
the future work.

Soum is easy to learn. A desired property for any system is learnability:
how easy it is to get used to the system. From our study, we found that
it was very easy for the participants to learn how to use SQuID almost
instantly. SQuID’s interface is intuitive and both novices and experts
learned how to use it, just by observing its behavior. In contrast, when
participants did not know how to write certain classes of SQL queries,
they simply gave up and mentioned that they cannot express their logic
in SQL. This is particularly significant considering that all our study
participants and interviewees had prior exposure to and experience
with SQL, while this was their first experience using SQuID.

9.2. Limitations and future work

Our study results indicate that SQuID effectively helped users with
various levels of SQL familiarity perform their tasks faster and more
efficiently. However, our work explored only one example of QBE
systems and recognizably with a limited number of participants. Ad-
ditional work is needed to study the impact of QBE systems further.
While our goal was to draw a comparison between traditional SQL
querying and QBE systems, additional studies might investigate how
complete novices (users with no SQL expertise) use QBE systems.
Furthermore, future studies can expand the list of tasks to better tease
apart the impact of using QBE systems for various task types. From the
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interviewees’ feedback, we extracted a few directions for future work
to improve user experience while using QBE systems:

Exposing internal mechanism for explainability. QBE systems like SQuID
can explain how the SQL queries were synthesized from the user exam-
ples by exposing the particular semantic similarities that the system
discovers across the examples, and its confidence in each similarity
being intended. This can also guide users in revising their exam-
ples to emphasize borderline semantic similarities that SQuID missed,
or diversify examples to avoid coincidental similarities among the
examples.

Tuple suggestion to enrich examples. A few interviewees reported that
it would be helpful if SQuID could suggest a few tuples that the
user may consider adding to the examples. Such a tuple-suggestion
mechanism will help the users supply additional examples and diversify
the examples, in case the users lack domain knowledge.

Interaction with the results for feedback. Another direction of future
work is to allow the users to interact with the results produced by QBE
system: the user will accept or reject a few result tuples which will act
as feedback to the system. This will help QBE system learn the user
intent better.

Extensive user study. More extensive user studies are needed in the
future to evaluate all these additional features and determine whether
they contribute positively to the users’ trust and satisfaction in QBE
systems.

Beyond the ones extracted from the user study, there are several
possible improvements and research directions that can stem from our
work, including smarter semantic context inference using log data,
example recommendation to increase sample diversity and improve
abduction, techniques for adjusting the depth of association discov-
ery, on-the-fly aDB construction, and efficient «DB maintenance for
dynamic datasets.

10. Related work

SQuID was first demonstrated in a 2018 conference [34] and later
described in details by the authors in a 2019 conference paper [35].
This article extends the conference paper by including (1) additional
details regarding the probabilistic abduction model, specifically, mod-
eling query prior (Section 4.2.2), (2) experimental results on the impact
of the system parameters on SQuID’s performance (Section 7.7), (3) re-
sults and analysis of two new comparative user studies (Section 8),
(4) extensive discussion on key takeaways of the user studies indicating
SQuID’s limitations and scope of future extensions (Section 9), and
(5) an extensive discussion on how SQuID contrasts with prior work
(Section 10). The new comparative user study on real users is foun-
dational to our understanding of how users interact with relational
databases for data exploration tasks. Especially, from the comments
of the interviewees during our interview study, we gained an inside
look at how inexperienced users interact with QBE tools as well as
their thought processes behind writing complex queries with traditional
query interfaces.

We proceed to provide an overview of the related work. Then we
contrast SQuID with prior art, where we provide an extensive discussion
to contrast SQuID against existing semi-supervised machine learning
approaches and data cubes.

10.1. Overview of related work

Programming by example (PBE) paradigm is based on the intu-
itive premise that users who may lack or have low technical skills,
but have expertise in a particular domain, can more easily express
their computational desire by providing examples than by writing
programs under strict language specifications. This is in contrast with

traditional program synthesis [36,37], which requires a high-level
formal specification (e.g., first-order logic) of the desired program.
Example-driven program synthesis has been effectively used for a vari-
ety of tasks, such as code synthesis for data scientists [?], data wran-
gling [38], integration [39], extraction [40,41], transformation [33,
42], and filtering [43]; data structure transformation [44]; text pro-
cessing [45], normalization [46], and summarization [47]; querying
relational databases [7], and so on.

Many PBE approaches have been developed in the literature to aid
novices or semi-experts in a variety of data management tasks. The
focus of PBE is to not only solve the task, but also provide the mecha-
nism that can solve the task. To this end, all PBE tools learn from the
user examples and synthesize programs that can produce the desired
results. To help data scientists write complex codes for data wran-
gling and data transformation, WREX [?] proposes an example-driven
program synthesis approach. To enable integration of web data with
spreadsheets, WebRelate [39] facilitates joining semi-structured web
data with relational data in spreadsheets using input—output examples.
FlashRelate [40] and FlashExtract [41] enable extraction of relational
data from semi-structured spreadsheets, text files, and web pages,
using examples. Data-transformation-by-example approaches [33,42]
led to the development of the FlashFill [48] feature in Microsoft Excel,
which can learn the user’s data transformation intent only from a few
examples. Beyond data management tasks, recently, PBE has been used
for text processing [45], text normalization [46], and personalized text
summarization [47]. Live programming [5] helps novice programmers
to understand their codes, where they can manipulate the input by
directly editing the codes and manipulate the output by providing
examples of the desired output. Beyond computational tasks, PBE tools
also support creative tasks such as music creation by example [49],
where a software takes a song as an example and allows the user to
interactively mix the Al-generated music.

Query by example (QBE) was an early effort to assist users without
SQL expertise in formulating SQL queries [S50]. Existing QBE sys-
tems [7,8] identify relevant relations and joins in situations where
the user lacks schema understanding, but are limited to project-join
queries. These systems focus on the common structure of the exam-
ple tuples, and do not try to learn the common semantics as SQuID
does. QPlain [9] uses user-provided provenance of the example tuples
to learn the join paths and improve intent inference. However, this
assumes that the user understands the schema, content, and domain to
provide these provenance explanations, which is often unrealistic for
nonexperts.

Set expansion is a problem corresponding to QBE in Knowledge
Graphs [17,51,52]. SPARQLByE [53], built on top of a SPARQL QRE
system [54], allows querying RDF datasets by annotated (positive/
negative) example tuples. In semantic knowledge graphs, systems ad-
dress the entity set expansion problem using maximal-aspect-based en-
tity model, semantic-feature-based graph query, and entity co-
occurrence information [11,18,19,55]. These approaches exploit the
semantic context of the example tuples, but they cannot learn new
semantic properties, such as aggregates involving numeric values, that
are not explicitly stored in the knowledge graph, and they cannot
express derived semantic properties without exploding the graph size.
For example, to represent “appearing in more than K comedies”, the
knowledge graph would require one property for each possible value
of K.

Interactive approaches rely on relevance feedback on system-
generated tuples to improve query inference and result delivery [12-14,
56,57]. Such systems typically expect a large number of interactions,
and are often not suitable for nonexperts who may not be sufficiently
familiar with the data to provide effective feedback.

Query reverse engineering (QRE) [58,59] is a special case of
QBE that assumes that the provided examples comprise the complete
output of the intended query. Because of this closed-world assumption,
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QRE systems can build data classification models on denormalized
tables [20], labeling the provided tuples as positive examples and the
rest as negative. Such methods are not suitable for our setting, because
we operate with few examples, under an open-world assumption. While
few QRE approaches [29] relax the closed world assumption (known as
the superset QRE problem) they are also limited to PJ queries similar to
the existing QBE approaches. Most QRE methods are limited to narrow
classes of queries, such as PJ [29,30], aggregation without joins [60],
or top-k queries [61]. REGAL+[62] handles SPJA queries but only
considers the schema of the example tuples to derive the joins and
ignores other semantics. In contrast, SQuID considers joining relations
without attributes in the example schema (Example 1.1). A few QRE
methods do target expressive SPJ queries [15,16], but they only work
for very small databases (<100 cells), and do not scale to the datasets
used in our evaluation. Moreover, the user needs to specify the data
in their entirety, thus expecting complete schema knowledge, while
SCYTHE [15] also expects hints from the user towards precise discovery
of the constants of the query predicates.

Alternative approaches exist, beyond by-example methods, to aid
novice users explore relational databases. Keyword-based search [63-
65] allows accessing relational data without knowledge of the schema
and SQL syntax, but does not facilitate search by examples. Other
notable systems that aim to assist novice users in data exploration
and complex query formulation are: QueRIE, a query recommendation
based on collaborative filtering [66], SnipSuggest, a context-aware SQL
autocompletion system [67], SQL-Sugg, a keyword-based query sugges-
tion system [68], YmalDB, a “you-may-also-like”-style data exploration
system [69], and SnapToQuery, an exploratory query specification
assistance tool [70]. These approaches focus on assisting users in query
formulation, but assume that the users have sufficient knowledge about
the schema and the data. VIDA [71], ShapeSearch [72], and Zenvis-
age [73] are visual query systems that allow visual data exploration,
but they require the user to be aware of the trend within the out-
put. Some approaches exploit user interaction to assist users in query
formulation and result delivery [12-14,56,57]. There, the user has to
provide relevance feedback on system-generated tuples. However, such
highly interactive approaches are not suitable for data exploration as
users often lack knowledge about the system-provided tuples, and thus,
fail to provide correct feedback reflecting their query intent. Moreover,
such systems often require a large number of user interactions. User-
provided examples and interactions appear in other problem settings,
such as learning schema mappings [74-76]. The query likelihood model
in IR [77] resembles our technique, but does not exploit the similarity
of the input entities.

Related work on user study of PBE approaches. Drosos et al. [?] present
a comparative user study contrasting WREX against manual program-
ming. The study results indicate that data scientists are more effective
and efficient at data wrangling with WREX over manual programming.
Mayer et al. [78] presents comparative study between two user inter-
action models — program navigation and conversational clarification -
that can help resolve the ambiguities in the examples in by-example
interaction models. Lee et al. [79] presents an online user study on
how PBE systems help the users solve complex tasks. They identify
seven types of mistakes commonly made by the users while using PBE
systems, and also suggest an actionable feedback mechanism based on
unsuccessful examples. Santolucito et al. [22] studied the impact of
PBE on real-world users over a tool for shell scripting by example.
Their study results indicate that while the users are quicker to solve
the task using the PBE tool, they trust the traditional approach more.
However, none of these studies focus on QBE in particular, which is a
PBE system tailored towards data exploration over relational databases.
The performance of a QBE tool is affected by additional factors, such as
the subjectivity of the data exploration task and the domain knowledge
of the user. Moreover, traditional data access and exploration methods
pose hurdles not only to novices, but to expert users as well. These

factors indicate the need for a new study that targets QBE systems in
particular and are the motivation behind our comparative user studies.

10.2. Comparison with prior work

We provided a summary of prior work to contrast with SQuID in the
comparison matrix of Fig. 3. We now explain the comparison metrics
and highlight the key differences among different classes of query by
example techniques and their variants. We organize the prior work
into three categories: QBE (query by example), QRE (query reverse
engineering), and DX (data exploration). Furthermore, we group QBE
methods into two sub-categories, methods for relational databases, and
methods for knowledge graphs. All QRE and DX methods that we
discuss are developed on relational databases. We first describe our
comparison metrics:

Query class encodes the expressivity of a query. We use four primi-
tive SQL operators (join, projection, selection, and aggregation) as com-
parison metrics. While data retrieval mechanisms (e.g., graph query,
SPARQL) for knowledge graphs do not directly support all these oper-
ators, they support similar expressivity through alternative equivalent
operators.

Semi-join is a special type of join which is particularly useful for
QBE systems. A system is considered to support semi-join if it al-
lows inclusion of relations in the output query that have no attribute
projected in the input schema (e.g., in Example 1.1, no attribute of
research appears in the input tuples, but Q2 includes research).
While knowledge-graph-based systems do not directly support semi-
join as defined in the relational database setting, they support same
expressivity through alternative mechanism.

Implicit property refers to the properties that are not directly stated
in the data (e.g., number of comedies an actor appears in). In SQuID,
we compute implicit properties by aggregating direct properties of
affiliated entities.

Scalability characterizes how the system scales when data increases.
While deciding on scalability of a system, we mark a system scalable
only if it either had a rigorous scalability experiment, or was shown
to perform well on real-world big datasets. Thus, we do not consider
approaches as scalable if the dataset is too small (e.g., contains 100
cells).

Open-world assumption states that what is not known to be true is
simply unknown. In QBE and related work, if a system assumes that
tuples that are not in the examples are not necessarily outside of user
interest, it follows the open-world assumption. In contrast, closed-world
assumption states that when a tuple is not specified in the user example,
it is definitely outside of user interest.

Apart from the aforementioned metrics, we also report any addi-
tional requirement of each prior art. We briefly discuss different types
of additional requirements here: User feedback involves answering any
sort of system generated questions. It ranges from simply providing
relevance feedback (yes/no) to a system-suggested tuple to answering
complicated questions such as “if the input database is changed in a
certain way, would the output table change in this way?” Another form
of requirement involves providing negative tuples along with positive
tuples. Provenance input requires the user to explain the reason why
they provided each example. Some systems require the user to provide
the example tuples sorted in a particular order (top-k), aiming towards
reverse engineering top-k queries. Schema-knowledge is assumed when
the user is supposed to provide provenance of examples or sample input
database along with the example tuples.

Comparison summary. QBE methods on relational databases largely
focus on project-join queries. Few knowledge-graph-based approaches
support attribute value specification, which is analogous to selection
predicates in relational databases. However, they are limited to predi-
cates involving categorical attributes or simple comparison operators
(= and #) involving numerical attributes. This is a serious practical
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limitation as user intent is often encoded by range predicates on
numeric attributes. Therefore, we mark such limited support with gray
circles.

While all QBE methods follow open-world assumption, QRE meth-
ods are usually built on the closed-world assumption. However, few
QRE methods also support open-world assumption and support superset
QRE variation. However, such approaches are limited to PJ queries
only. In general, QRE methods cannot support highly expressive class
of queries without severely compromising scalability.

While almost every QBE and QRE technique supports join and
projection, data exploration techniques usually assume that the tuples
reside in a denormalized table and the entire rows of relevant entities
are of user interest; thus, data exploration techniques do not focus on
deriving the correct join path or projection columns.

Contrast with machine learning. Machine learning methods can model
QBE settings as classification problems, and relational machine learn-
ing targets relational settings in particular [80]. However, while the
provided examples serve as positive labels, QBE settings do not pro-
vide explicit negative examples. Semi-supervised statistical relational
learning techniques [81] can learn from unlabeled and labeled data,
but require unbiased sample of negative examples. There is no straight-
forward way to obtain such a sample in our problem setting without
significant user effort.

Our problem setting is better handled by one-class classification [82,
83], more specifically, Positive and Unlabeled (PU) learning [21,84-
88], which learns from positive examples and unlabeled data in a
semi-supervised setting [89]. Most PU-learning methods assume denor-
malized data, but relational PU-leaning methods do exist. However,
all PU-learning methods rely on one or more strong assumptions [86]
(e.g., all unlabeled entities are negative [90], examples are selected
completely at random [21,91], positive and negative entities are nat-
urally separable [84,85,92], similar entities are likely from the same
class [93]). These assumptions create a poor fit for our problem setting
where the example set is very small, it may exhibit user biases, response
should be real-time, and intents may involve deep semantic similarity.

Existing PU-learning approaches over relational data make some
strong assumptions that do not fit into our problem setting. Under
the SCAR assumption, TIcER [91] estimates label frequency, which
is the sampling rate of examples, to solve the PU-learning problem
over relational data. However, when the number of positive examples
is small, it generates high-precision, but low-recall classifier. Under
the separability assumption, few PU-learning approaches [84,85] infer
reliable negative examples from the positive examples and apply iter-
ative learning to converge to the final classifier, which is prohibitive
for the real-time data exploration setting. Aleph [92] is a relational
rule learning system that allows a PosOnly setting for PU-learning,
based on the separability assumption. However, it tries to minimize
the size of the retrieved data, which results in low-recall with very few
examples. Under the smoothness assumption, RelOCC [93] uses positive
examples and exploits the paths that the examples take within the
underlying relational data to learn distance measure. However, it does
not exploit any aggregated feature (deep semantic similarity) or feature
statistics (selectivity) obtained from the entire dataset. We summarize
the key points to contrast machine learning (ML) approaches with
SQuID below:

Dependency on data volume. SQuID is agnostic to the volume of
unlabeled data as it relies on highly compressed summary of the feature
statistics (e.g., selectivity of the filters), precomputed over the data.
SQuID pushes this summarization task in the offline preprocessing
step and uses the summary during online intent discovery. In con-
trast, efficiency of ML approaches depends on the sheer volume of
the data as they are data-intensive. Sampling is a way to deal with
large volume of data, however, it comes at a cost of information loss
and reduced accuracy. Moreover, for large data spread out in diverse
classes, it is hard to produce an unbiased sample; it is even harder to

produce such sample in a relational dataset. Ideally, ML approaches
are task-specific and the large training time is affordable due to being
a one-time requirement. However, a query intent discovery system
is designed for data exploration, which demands real-time perfor-
mance. Each query intent is equivalent to a new machine-learning task
and requires time-consuming training, which is not ideal in the data
exploration setting.

Training effort. For each task, ML approaches require training a new
model, which requires significant effort (e.g., manual hyperparameter
tuning) to converge to a model. Therefore, ML approaches would need
to rebuild the model every time a new query intent is posed, or even
when the current example set is augmented with new examples. No
single hyperparameter setting would work for all tasks where the
tasks are unknown a-priori. Under the separability assumption, some
PU-learning approaches [84] apply iterative learning to converge to
the final classifier which is wasteful for learning each query intent.
In contrast, SQuID does not require hyperparameter tuning for each
task, rather it only requires one-time manual parameter tuning for the
overall intent types (e.g., user preference regarding precision-recall
tradeoff) on a particular dataset.

Interpretability. SQuID is a query by example method which is an
instantiation of general programming by example (PBE). One key dif-
ference between PBE and ML is the requirement of interpretability of
the underlying model. The goal of PBE technique is to provide the users
the learned model (e.g., SQL query in our case), not just a black box
that separates the intended data from the unintended one. In contrast,
the focus of ML approaches is to construct a model, often extremely
complex (e.g., deep neural network), that separates the positive data
from the negative ones.

Functioning with very few examples. Even though PU-learning ap-
proaches work with only positive examples, they require a fairly large
fraction of the positive data as examples. In contrast, SQuID works on
very small set of examples which is natural for data exploration. This
is possible under the strong assumption that the underlying model,
where the user examples are sampled from, is a structured query.
This implies that the user consistently provides semantically similar
examples reflecting their true intent. When the labeled data is this
small, PU-learning approaches result in high-precision, but low-recall
classifiers, which does not help in data exploration.

Assumptions involving model and feature prior. One significant
distinction between SQuID and ML approaches is the assumption re-
garding the underlying model. SQuID assumes that there exists a SQL
query with conjunctive selection predicates (features) that is capable to
generate the complete set of positive tuples. In contrast, ML approaches
do not have any such simplified assumption and attempts to learn a sep-
arating criteria based on features. Hence, it is unlikely for ML systems to
drop strongly correlated features observed within the examples, despite
being coincidental. Additionally, we exploit two information—(1) data
dependent feature prior (Section 4.2.1), and (2) data-independent fea-
ture prior (Section 4.2.2)—which is hard to incorporate in ML. As
an example, in Section 4.2.2, we discuss outlier impact, a non-trivial
component of feature prior, which indicates whether a set of features
together is likely to be intended. Such assumptions cannot be encoded
in ML approaches in a straightforward way.

Contrast with data cube. Data cube [94] can serve as an alternative
mechanism to model the information precomputed in the abduction-
ready database aDB. However, a principal contribution of the aDB
is the determination of which information is needed for SQuID’s in-
ference, rendering it much more efficient than a data cube solution.
We have empirically evaluated data cube’s performance on the IMDb
database using Microsoft SQL Server Analysis Services (SSAS), where
we defined a three-dimensional data cube: (person, movie, genre), de-
ployed it in Microsoft Analysis Server 14 with process option “Process
Full”, and used MDX queries to extract data. We also ported the rele-
vant SQuID aDB data (persontogenre) from PostgreSQL into Microsoft
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SQL Server 14, and evaluated the corresponding SQL queries. We found
that the data cube performs one to two orders of magnitude slower
than queries over the «DB. One can materialize certain summary-
views by applying roll-up operations on the data cube to expedite
query execution, but such materializations essentially replicate the
information materialized in the «DB; and determining the appropriate
data to materialize, i.e., which derived relations to precompute, is the
primary contribution of the «DB.

If one were to materialize all possible roll-up operations to take
advantage of data cube’s generality without the performance penalty,
this would require four orders of magnitude more space compared to
the aDB on the IMDb data. Compression mechanisms exist to store
sparse data cubes efficiently, but such compression would hurt the
query performance even more. The issue here is that the data cube
encodes meaningless views (e.g., person-to-movie), because genre
is not an independent dimension with respect to movie. In contrast,
SQuID aggregates out large entity dimensions (e.g., SQuID aggregates
out movie while computing persontogenre) which ensures that the size
of the aDB is reasonable (Fig. A.29). Ultimately, even though the data
cube does provide a possible mechanism for encoding the «DB data,
it is not well-suited for schemas that do not exhibit the independence
of dimensions that the data cube inherently assumes, resulting in poor
performance compared to the «DB.

11. Conclusions

In this article, we focused on the problem of query intent discovery
from a set of example tuples. We presented SQuID, a system that per-
forms query intent discovery effectively and efficiently, even with few
examples in most cases. The insights of our work rely on exploiting the
rich information present in the data to discover similarities among the
provided examples, and distinguish between those that are coincidental
and those that are intended. Our contributions include a probabilistic
abduction model and the design of an abduction-ready database, which
allow SQuID to capture both explicit and implicit semantic contexts.
Our work includes an extensive experimental evaluation of the effec-
tiveness and efficiency of our framework over three real-world datasets,
case studies based on real user-generated examples and abstract intents,
and comparison with the state-of-the-art query reverse engineering
technique and with PU-learning. Our empirical results highlight the
flexibility of our method, as it is extremely effective in a broad range of
scenarios. Notably, even though SQuID targets query intent discovery
with a small set of a examples, it outperforms the state of the art in
query reverse engineering in most cases, and is superior to learning
techniques.

Our comparative user studies found that database users, with var-
ied levels of prior SQL expertise, are significantly more effective and
efficient at a variety of data exploration tasks with SQuID over the
traditional SQL querying mechanism that requires database schema
understanding and manual programming. Our results indicate that
SQuID eliminates the barriers of familiarizing oneself with the database
schema, formally expressing the semantics of an intended task, and
writing syntactically correct SQL queries. The key takeaway of this
work is that in a programming-by-example tool like SQuID, even a
limited level of domain expertise (knowledge of a subset of the desired
data) can substantially help overcome the lack of technical expertise
(knowledge of SQL and schema) in data exploration and retrieval. This
indicates that programming by example can lead to the democratization
of complex computational systems and make these systems accessible
to novice users while aiding expert users as well. Our studies validate
some prior results over other PBE approaches but also contribute new
empirical insights and suggest future directions for QBE systems to
further increase system explainability and user trust.
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Title

IMDb dataset

DBLP dataset

Adult dataset

Physically strong actors

Top 10 Acters and Actresses”

Sei-Fi Cinema in the 2000s

Funny Actors

100 Random Comedy Actors

BEST COMEDY ACTORS

115 funniest actors

Top 35 Male Comedy Actors

Top 25 Funniest Actors Alive

the wop funmiest actons in hollywood wday
Cioogle knowledge graph: Actors: Comedy
The Best Movies of All Time”

Top H-Index for Computer Science & Electronics”

https://fdat

https: /fwww. ime
http:/ Fwww. imd

https: /i,
httpa:/fiwaw, 1

httpa: /S www. 1
https:/ fwew. g

https:/farchive

https:/fuww. imdb

https:/ /fwww. imdk

https: ffwsw.ranker
http:/fwww . guide

https://datasets. imdbws. com/

ucl . edusmlid
1/1ist /180501

mdlist/1s058011111/7
http://wuw. imdb. com/1ist/1s00003 5
https:/ fwww, imdb. com/1ist /180000
https://www.imdb

funny+actors
list/the-pest-moviez-cf-all-time

Fig. A.28. Source of datasets and lists used in this article. * denotes the lists that are used as popularity mask.

IMDb & variations

IMDb bd-IMDb
DB size 633 MB DB size 1926 MB
#Relations 15 | #Relations 15
Precomputed DB size 2310 MB || Precomputed DB size 5971 MB
Precomputation time 150 min Precomputation time 370 min
person 6,150,949 person 12,301,898
Relation movie 976,719 movie 1,953,438
Cardinality castinfo 14,915,325 castinfo 59,661,300
bs-IMDb sm-IMDb
DB size 1330 MB DB size 75 MB
#Relations 15 | #Relations 15
Precomputed DB size 4831 MB || Precomputed DB size 317 MB
Precomputation time 351 min Precomputation time 14 min
person 12,301.898 person 65,865
Relation movie 1,953,438 movie 335.705
Cardinality castinfo 29,830,650 castinfo 1,364,890
Fig. A.29. Description of different variations of the IMDb dataset.
DBLP Adult
DB size 22 MB DB size 4 MB
#Relations 14 #Relations 1
Precomputed DB size 98 MB Precomputed DB size 5MB
Precomputation time 42 min Precomputation time 3 min
author 126,094
Relation publication 148,521 adult 32,561
Cardinality authortopub 416,445

Fig. A.30. Description of the DBLP and the Adult datasets.

Appendix. Datasets and benchmark queries

We collected the datasets from various sources and we provide them
in Fig. A.28. We provide the detailed description of the datasets in
Figs. A.29 and A.30. We mention the cardinalities of the large relations
for providing a sense of the data size and associations among relations.

A.1. Alternative IMDb datasets

For the scalability experiment, we generated 3 versions of the IMDb
database (Fig. A.29). For obtaining a downsized database sm—-IMDb,
we dropped persons with less than 2 affiliated movies and/or who
have too many semantic information missing, and movies that have
no cast information. We produced two upsized databases: one with
dense associations bd-IMDb, and the other with sparse associations
bs-IMDb. The database bd—IMDb contains duplicate entries for all
movies, persons, and companies (with different primary keys), and the
associations among persons and movies are duplicated to produce more

dense associations. For example, if person P1 appeared in movie M1 in
IMDb, i.e., (P1,M1) exists in IMDb’s castinfo, we added a duplicate
person P2, a duplicate movie M2, and 3 new associations, (P1,M2),
(p2,M2), and (P2,M1), to bd-IMDb’s castinfo. For bs—IMDb, we
only duplicated the old associations, i.e., we added P2 and M2 in a
similar manner, but only added (P2,M2) in castinfo.

A.2. Benchmark queries

Figs. A.31 and A.32 show benchmark queries that we used to run
different experiments on the IMDb and the DBLP datasets, respectively.
The tables show the query intents, details of the corresponding queries
in SQL (number of joining relations (J) and selection predicates (S)),
and the result set cardinality. Fig. A.33 shows 20 benchmark queries
along with their result set cardinality for the Adult dataset.
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ID Task J S #Result
Q1 Entire cast of Pulp Fiction 3 1 113
Q2 Actors who appeared in all of The Lord of the Rings 8 7 20

trilogy
Q3 Canadian actresses born after 1970 3 4 1531
1Q4 Sci-Fi movies released in USA in 2016 5 3 1374
1Q5 Movies Tom Cruise and Nicole Kidman acted to- 5 2 12
gether
Q6 Movies directed by Clint Eastwood 4 2 36
1Q7 All movie genres 10 35
Q8 Movies by Al Pacino 4 2 71
1Q9"  Indian actors who acted in at least 15 Hollywood 6 4 23
movies
[Q10°  Actors who acted in more than 10 Russian movies 6 4 84
after 2010
IQ11  Hellywood Horror-Drama movies in 2005 -2008 7 5 291
1QI12  Movies produced by Walt Disney Pictures 31 394
IQ13  Animation movies produced by Pixar 5 2 57
IQI4  Sci-Fi movies acted by Patrick Stewart 6 3 22
Q15  Japanese Animation movies 5 2 2512
IQ16° Walt Disney Pictures movies with more than 15 5 3 207

American cast members

* Includes GROUP BY and HAVING clauses

Fig. A.31. Benchmark queries for the IMDb dataset. J and S denote the number of joins and selection predicates, respectively.

D Task J S5 #Result
DQI1  Authors who collaborated with both U Washington and Microsott Research Redmond 5 2 30
DQ2"  Authors with at least 10 SIGMOD and at least 10 VLDB publications 8 4 52
DQ3  SIGMOD publications in 2010 — 2012 33 468
DQ4  Publications Jiawei Han. Xifeng Yan, and Philip S. Yu published together 703 15
DQ5  Publications between USA and Canada 5 2 336

" Includes GROUP BY, HAVING, and INTERSECT

Fig. A.32. Benchmark queries for the DBLP dataset. J and 8 denote the number of joins and selection predicates, respectively.

Data availability

Data will be made available on request.
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