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Most users of low-code platforms, such as Excel and PowerApps, write programs in domain-specific formula
languages to carry out nontrivial tasks. Often users can write most of the program they want, but introduce
small mistakes that yield broken formulas. These mistakes, which can be both syntactic and semantic, are hard
for low-code users to identify and fix, even though they can be resolved with just a few edits. We formalize
the problem of producing such edits as the last-mile repair problem. To address this problem, we developed
LAMIRAGE, a LAst-Mlle RepAir-engine GEnerator that combines symbolic and neural techniques to perform
last-mile repair in low-code formula languages. LAMIRAGE takes a grammar and a set of domain-specific
constraints/rules, which jointly approximate the target language, and uses these to generate a repair engine
that can fix formulas in that language. To tackle the challenges of localizing the errors and ranking the
candidate repairs, LAMIRAGE leverages neural techniques, whereas it relies on symbolic methods to generate
candidate repairs. This combination allows LAMIRAGE to find repairs that satisfy the provided grammar and
constraints, and then pick the most natural repair. We compare LAMIRAGE to state-of-the-art neural and
symbolic approaches on 400 real Excel and PowerFx formulas, where LAMIRAGE outperforms all baselines. We
release these benchmarks to encourage subsequent work in low-code domains.

1 INTRODUCTION

Low-code (LC) platforms allow end users to build applications or carry out complex calculations
with little-to-no programming experience. These platforms promise to democratize the access
to computational tools and skills for end-users across a wide range of domains. LC domains in-
clude traditional end-user applications, such as spreadsheets (Excel [Microsoft Excel 2021] and
Google Sheets [Google Sheets 2019]), but are increasingly expanding to more diverse areas, such
as robotic process automation frameworks (Power Automate [Microsoft Power Automate 2019],
UlPath [UiPath 2019]), and enterprise apps (Power Apps [Microsoft Power Apps 2019], Appian [Ap-
pian 2022]). While these tools usually offer a graphical user interface with basic functionality,
most nontrivial applications built in this domain require the end user to write “small programs” or
formulas. These formula-like languages are specifically designed for LC users [Microsoft Power Fx
overview 2022] and are tailored to mirror spreadsheet formula languages, such as that in Excel, with
which many users are already familiar. However, low-code languages can support functionalities
that go beyond traditional spreadsheet-like languages. For example, formulas written in PowerApp’s
PowerFx language can interact with the user interface.
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Fig. 1. Real faulty formulas taken from help forums, their compile-error messages, and the correct formulas

Many of these platforms have significant user bases, resulting in a huge amount of code written
as formulas. For example, Excel has 1 billion users [Morgan Stanley 2015]. Power Apps, an LC
platform for building enterprise apps, is one of Microsoft’s fastest-growing product offerings (based
on a recent earnings call). Economically, the LC sector is expected to continue to grow substantially.
For example, Gartner (a market consulting firm) predicts that up to 65% of application development
will be done on such platforms by 2024 [VentureBeat 2022].

Traditional software engineers have benefited from decades of academic research at the in-
tersection of programming languages, software engineering, and artificial intelligence. For ex-
ample, program synthesis research has enabled engineers to quickly extract information from
complex logs [Raza and Gulwani 2017], fix network policies [Hallahan et al. 2017], and wrangle
dataframes [Bavishi et al. 2019]. Code search techniques, often integrated into version control
platforms such as GitHub, allow developers to quickly search for related code snippets, often
overcoming syntax-level differences [Premtoon et al. 2020]. Automated refactoring tools [Miltner
et al. 2019] facilitate tasks such as updating APIs [Gao et al. 2021]. Techniques can automatically
produce patches by leveraging static analyzers, test suites, or code examples [Goues et al. 2019a].

However, many of these advances have been focused on general purpose programming languages
used by traditional programmers, such as Java, C#, C++, or C, but not on LC platforms. This lack of
LC-developer assistance can limit the accessibility of LC platforms, despite their intended goal of
democratizing computational power. Our goal is to provide this new class of programmers with
first-class feedback and tooling comparable to that available for traditional programmers. To lead
this effort, we first identify: where is the first place LC users tend to get stuck? Based on user forums
and discussions with both the Excel and PowerApps teams at Microsoft, we identified that small
mistakes (first focused on syntax, and then on semantics) paired with lack of error assistance are
often the first stumbling block for LC programmers. Figure 1 shows some user errors taken from
help forums [MrExcel Message Board 2021; Power Apps Community 2021] and the corresponding
unhelpful compile-error messages. This problem is compounded in the end-user domain as the
formula authors often lack the experience to identify the correct repair even if the application were
to provide a more detailed error message, which can lead to substantial frustration. Prior work
studying programming novices has similarly found that syntax errors can contribute substantially
to user frustration [Drosos et al. 2017].

Last-mile repair problem. We studied faulty formulas reported in LC help forums [MrExcel
Message Board 2021; Power Apps Community 2021] and shared by the Excel and PowerApps teams
at Microsoft. We observed that: (1) the formulas are often almost correct, (2) most of the essential
components of the formulas are present in the correct order, (3) the errors are usually in terminal
symbols, typically punctuation, such as unbalanced parentheses, missing commas, missing quotes,
etc., and (4) the repaired formulas are usually within a small token edit distance' of the intended
correct formulas. Repair of such faulty formulas, being close to the correct formula, involve edits
that an experienced programmer can identify without additional information, albeit with additional

ISimilar to string edit distance, token edit distance involves adding, removing, or replacing characters, over tokens.

, Vol. 1, No. 1, Article . Publication date: July 2022.



Neurosymbolic Repair for Low-Code Formula Languages 3

time and effort. We focus on the problem of repairing such almost-correct formulas and call it the
last-mile repair problem (Section 3).

Neural techniques are not enough: Recently, the machine-learning (ML) community has taken
up the problem of repairing program errors in general-purpose languages by using deep neural
networks [Gupta et al. 2017; Yasunaga and Liang 2020, 2021]. Neural techniques, however, suffer
from multiple shortcomings in our setting. First, these techniques are data-hungry and require
availability of huge program corpora to learn from. However, public corpora are not readily available
in LC domains. Second, even large pre-trained models often struggle to guarantee correctness of
the generated code and end up generating code that contain mistakes (including syntax errors), as
shown by a recent work [Austin et al. 2021; Poesia et al. 2022]. In the context of repair, it is critical
that we do not introduce additional mistakes or ignore existing ones that we can identify.

Symbolic techniques are not enough: Symbolic techniques, such as error recovery in parsers [Aho
and Peterson 1972; Fischer et al. 1979; Rajasekaran and Nicolae 2014], can provide some guar-
antees (e.g., syntactic validity), but their design is typically constrained by the tradeoffs of their
ultimate use-case: compilation toolchains. Compilers solve a well-defined problem, and, thus, are
deterministic and preserve semantics. For example, compilers typically have a limited lookahead
and implement limited error-recovery, e.g. panic mode [Aho et al. 1986], if any. In contrast, repair
engines need to “guess” the meaning of an ill-formed program, as there may be multiple possible
valid repair candidates (i.e., error-free variants) of a faulty program, but not all may match the
user’s intent. Furthermore, these repairs may constitute additions and deletions of user input,
often faraway from the location where the error is detected. Purely symbolic techniques often
fail to distinguish between, or even generate, such viable candidate repairs. E.g., the state-of-the-
art error-recovery tool GRMTOOLS [Diekmann and Tratt 2020] non-deterministically picks from
edit operation sequences within the same edit distance. It also focuses on the first error location
found, and ignores repairs that involve edits preceding that error location. Our use-case requires
generation of exhaustive repairs and a finer-grained ranking among multiple repairs.

Neurosymbolic technique: Increasingly, systems combine neural and symbolic approaches to
leverage the advantages of both. For example, Synchromesh [Poesia et al. 2022] enforces symbolic
constraints on a large pre-trained language model (LM) during decoding for natural language to
code generation. These symbolic constraints remove common LM mistakes such as referencing
unavailable names. Another effective approach is to use neural models that can guide otherwise
symbolic approaches. For example, Kalyan et al [Kalyan et al. 2018] showed that a model can help
speed up search substantially by guiding branching decisions in deductive search.

Neurosymbolic repair with LAMIRAGE. Based on the above observations, we design LAMI-
RAGE, a framework that can generate a last-mile repair engine tailored to a particular target LC
formula language using neurosymbolic techniques for proposed repair candidate enumeration and
ranking. To motivate our design, we take inspiration from program synthesis [Gulwani et al. 2017],
where the intent lies within the faulty program. The feasibility of program synthesis rests on two
pillars: (1) controlling the search space through effective candidate enumeration and (2) ranking to
pick one from many candidates. To address these requirements, LAMIRAGE has the following key
properties:

o Effective enumeration. A naive approach that enumerates and explores all possible options fails to
scale because the search space is large. LAMIRAGE exploits the fact that most errors are in certain
unreliable language symbols. This observation allows us to (1) produce language-agnostic edit
actions based on insertion/deletion/update of such unreliable symbols, and (2) bias enumeration

, Vol. 1, No. 1, Article . Publication date: July 2022.



4 R. Bavishi, H. Joshi, J. Cambronero, A. Fariha, S. Gulwani, V. Le, I. Radicek, and A. Tiwari

to these symbols, allowing the engine to search deeper in the search tree, and, thus, examine

repair candidates that involve fixes far from the reported error locations.

o Complementary domain specific knowledge. The language-agnostic edit actions are syntax driven,
editing the buggy formula to satisfy the grammar provided. However, non-context-free properties
may also need to be enforced to produce a valid repair candidate. To enforce such properties,
LAMIRAGE uses additional rules to generate repairs that eliminate certain classes of semantic
errors, such as adjusting the number of parameters in a call to remove arity errors.

o Neural error localization and candidate selection. In cases where the actual error location may lie
outside the range considered by the symbolic engine, LAMIRAGE uses a pointer network [Vinyals
et al. 2015] to predict additional error location ranges. To enumerate candidates at these locations,
we consider a (location-specific) edit range surrounding each predicted location. This symbolic
relaxation allows us to take advantage of the predictions even if they are imperfect. The next
challenge we address with a neural technique is the selection of the the intended correct formula
among the set of generated repair candidates. Ranking only based on distance from the faulty
formula is not sufficient, as this often leads to ties. We break such ties using neural selection: we
use a fine-tuned, pre-trained, deep-neural-network-based language model to guide us to the most
natural formula. Our experiments (Section 5) show the effectiveness of our neural localization
and selection approaches.

In contrast to existing symbolic state of the art, LAMIRAGE offers more expressive repairs. In
particular, while being syntax-guided, LAMIRAGE supports repairs to some semantic errors by
allowing language developers to easily integrate domain-specific strategies for identifying errors
beyond those captured by a CFG. Additionally, LAMIRAGE supports backtracking (carried out both
symbolically and by a neural localizer) to perform edits required for errors that have a root cause
at a different location from where they are detected. Both of these contributions allow LAMIRAGE
to substantially outperform the symbolic state of the art in our evaluation.

From a neural perspective, LAMIRAGE follows prior work in the area of program synthesis and
program repair that use machine learning to improve their search process. The novelty of LAMIRAGE
lies in its application of this combination of techniques to the problem of fixing last-mile errors in
the low-code domain, paired with the specific setup (and insights) required to make neural models,
such as our localizer and ranker, work well in combination with an effective symbolic approach.

In summary, we make the following contributions:

e We define the problem of last-mile repair for buggy programs (Section 3). We present a tractable
formulation that approximates the target execution engine with a grammar and a set of constraints.
We motivate the application of last-mile repair in the low-code domain (Section 2), where the
grammar and constraints can successfully model the target engine.

e We present LAMIRAGE, a neurosymbolic approach that combines the strengths of both symbolic
techniques (effective enumeration) and deep learning (natural ranking and long-range error
localization) to solve the last-mile repair problem in LC formula languages. We show that more
expressive repairs, paired with effective use of neural models to complement the symbolic
procedures, can improve the number of repairs in our low-code evaluation.

e We developed concrete grammar and constraint approximations that are empirically effective for
the domains of Excel and PowerFx. We evaluate LAMIRAGE on two benchmark sets of 200 faulty
formulas from each domain collected from help forums and system telemetry collected from the
PowerApps and Excel teams at Microsoft. We compare LAMIRAGE to the state-of-the-art neural
and symbolic systems [Chen et al. 2021; Diekmann and Tratt 2020; Open Al 2022; Yasunaga and
Liang 2021], and a commercially available alternative. In Excel, LAMIRAGE’s top repair candidate
matched the ground truth repair in 174 out of 200 formulas, compared to 147 for the next best
system, CODEX-EDIT. In PowerFx, LAMIRAGE’s top repair candidate matched the ground truth in
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Faulty expression at various stages of repair Description

P1: If (!IsBlank(LunchSeminar, UpdateContext(LunchSeminarVar : LunchSeminar))) Error location :

P2: If (!IsBlank(LunchSeminar), UpdateContext(LunchSeminarVar : LunchSeminar))) ADD)

P3: If (!IsBlank(LunchSeminar), UpdateContext(LunchSeminarVar.LunchSeminar())) REPLACE : by . and ADD (
P4: If (!IsBlank(LunchSeminar), UpdateContext({LunchSeminarVar : LunchSeminar})) ADD {and REPLACE) by }

Fig. 2. The user authors PowerFx formula P1, but the compiler reports an error at :. To automatically fix this,
LAMIRAGE first inserts a ) to get P2, inducing the correct arity for the IsBlank function call. LAMIRAGE then
generates multiple repairs for the remaining errors, including P3 and P4, both of which have edit distance 3
from P1. The correct expression, P4, is ranked higher based on its naturalness by fine-tuned CopeBERT. This
example is a real user’s PowerFx formula adapted for ease of exposition.

170 out of 200 formulas, compared to 106 for Copex-EpIT. We also motivate our design with

ablation studies.

e We release our benchmarks, gathered from real user forum posts and telemetry collected from
our industrial partners, along with manually annotated ground-truth repairs.’

The paper is structured as follows. Section 2 provides an example of last-mile repair in a PowerFx
formula. Section 3 presents the formal problem definition and Section 4 details our approach.
Section 5 presents our experimental results and Section 6 discusses the choices language developers
can make in LAMIRAGE. Section 7 summarizes related work and Section 8 provides closing remarks.

2 MOTIVATING EXAMPLES AND OVERVIEW

Popular low-code (LC) platforms, such as Excel and Power Apps, often expose subsets of their
functionality via drop-down menus in a graphical user interface. However, to accomplish many
tasks users must write formulas in the underlying LC formula language. This can represent a
significant challenge, as LC platform users have varying degrees of programming experience and
are typically attracted to such a platform in part due to the relatively lower barrier to entry. In
particular, LC formula authors often struggle when identifying and manually fixing small errors
in their formulas. In this last mile setting, the formula is almost correct, but still requires a few
tweaks to be fully correct. To illustrate this common experience we will walk through the details of
a Power Apps example, where users write PowerFx formulas.

Example 2.1. Consider an incorrect PowerFx formula P1 (Figure 2). This example is a real user’s
PowerFx formula adapted for ease of exposition. The user is trying to update the context by
assigning to LunchSeminarVar the value of LunchSeminar if the latter is not empty. The formula
P1 has errors: the compiler points to the colon *: as the culprit location. However, the root cause of
the error is not at that location. O

Novices often struggle to fix such buggy formulas. This can result from multiple factors, in-
cluding: lack of user experience writing formulas, large formulas that compose multiple functions,
lack of LC editor support for simple features such as syntax highlighting, ambiguous or complex
error messages from the underlying LC language toolchain. This combination of factors can make
spotting and fixing even small bugs a daunting task.

Furthermore, not all errors in formulas are due to simple typographical mistakes. In P1, for
example, one of the errors arose because the user was not aware that a key-value pair needs to be
enclosed within curly braces ‘{’ and ‘}’. Additionally, errors in LC formulas can also be semantic
mistakes. For example, if we wrap the key-value pair in P1 with curly braces, the compiler will no
longer report a syntax error, but type errors (and arity errors) remain: the If function requires two
or three arguments of appropriate types.

2The link will be made available once we have completed our privacy review.
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Example 2.2. The incorrect PowerFx formula P1 (Figure 2) is an instance of the last-mile repair
problem: the correct formula (P4) is 3 edits away from P1 and can be obtained by:

(1) inserting a parenthesis ‘)’ after LunchSeminar, (2) inserting an opening brace ‘{’ before the
key-value pair, and (3) replacing the closing parenthesis ‘)’ after the key-value pair by a closing
brace ‘}’. O

We now describe our framework, which allows us to generate such repairs automatically.

LAMIRAGE Overview. LAMIRAGE is a last-mile repair-engine generator. A repair-engine generator
is a meta procedure that takes an annotated grammar approximating a target LC language and
optional language-specific transformation rules and checks (which we view as constraints), and
generates a repair engine that can fix last-mile errors in formulas in the target LC language. Figure 3
presents the architecture of LAMIRAGE. Developers create a new repair engine by providing: (I1) an
annotated grammar that specifies the unreliable terminals in the specific LC language, (I12) domain-
specific insights, such as repair rules, (I3) a collection of paired well-formed and buggy formulas to
train a neural error localizer, and (I4) a collection of well-formed formulas to fine tune a ranker
(CopEBERT [Feng et al. 2020]). Given a faulty formula, the engine predicts error locations using
the neural error localizer. The locations complement those identified symbolically. The engine then
enumerates repair candidates, ranked by the token edit distance from the faulty formula. These
candidates are obtained by inserting and/or deleting tokens corresponding to unreliable terminals
in the faulty formula at the error locations identified. Ties between candidate repairs are resolved
using fine-tuned ConpeBERT to select the most natural candidate to return to the user.

The repair engines created by LAMIRAGE are syntax-directed, working as modified LL parsers, but
the repairs produced are not limited to fixing syntactic errors but also common semantic errors. A
LAMIRAGE-generated repair engine works like a normal LL parser with the following modifications:

- If the parser reaches a failure state, then instead of stopping, the repair engine backtracks and
attempts to insert or delete the “unreliable” tokens defined in I1. These edit operations can fix many
syntactic errors, and can also induce semantic corrections (e.g. fixing function arity mistakes by
re-associating call arguments using a different parenthesization).

- Each time the parser’s internal state is updated, an external call to a (appropriate) repair
rule, defined in 12, is made, which can optionally change the parser’s state. These calls allow us
to implement transformations that can induce more complex semantic corrections that require
domain knowledge about the underlying LC formula language beyond that captured in the grammar
annotations provided in I1. For example, these rules can perform basic type casts in frequently
misused function calls or correct naming errors in the formula.

Example 2.3. Continuing from Example 2.2, we describe how we repair P1. The unreliable
terminals for PowerFx correspond to punctuation tokens (parentheses, curly braces, brackets, dots,
commas, and colons) in our PowerFx implementation. During parsing P1, when the first comma is
processed, a domain-specific rule is triggered that enforces the arity for the IsBlank call to be 1 by
inserting a closing parenthesis. Thus, P1 is turned into P2. Arity analysis is one domain-specific
insight incorporated for the PowerFx domain (12).

Other examples include rules that fix misspelled function or variable names.

The repair engine follows the steps of a regular parser until it hits the token colon ‘’. At this point,
the parser backtracks to the point where the d-th last reliable token was consumed. Here, d is a
parameter whose value lies in [1-4]. Since LunchSeminarVar and UpdateContext (identifiers) are
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Fig. 3. LAMIRAGE uses three key components: a neural error localizer, a symbolic candidate enumerator, and a
neural ranker. The neural localizer predicts error locations that augment deterministic backtracking to perform
edits far from the location where the error is identified — for efficiency, we only use predict locations when our
deterministic backtracking does not yield viable candidates. The symbolic enumerator produces candidate
repairs that are guaranteed to satisfy the grammar and constraints provided by the repair engine developer.
Finally, a neural ranker, trained on well-formed formulas from the domain, re-ranks candidate repairs. We
train both neural models on formulas collected from public forums and industry partners’ telemetry.

reliable, if d = 2, we backtrack to the point after UpdateContext is consumed. Our engine now enu-
merates several repairs that add and/or remove punctuation tokens. While in this example, symbolic
backtracking yielded repair candidates, there may be formulas where the true error location lies
in an earlier part of the formula outside the sybmolic backtracking depth. In such cases, LAMIRAGE
makes use of neural error localization (described in Section 4.3.2) to predict error locations.

Following this methodology of backtracking and candidate enumeration, we generate candidates
P3 and P4. Since P3 and P4 are both at a token-edit distance 3 from P1, we break the tie using
fine-tuned CopeEBERT to find P4 as the most natural repair.

Conceptually, this syntax-driven approach to enumerating candidate repairs and then ranking
the resulting repaired formulas based on a score (in this case, the edit distance and neural ranker
score) has parallels with traditional program synthesis. O

This example demonstrates a key insight behind LAMIRAGE: successfully repairing last-mile
errors in LC formulas benefits from a combination of symbolic and neural techniques. Without
symbolic candidate enumeration, there is no guarantee that the repair candidates produced are
valid programs in PowerFx, without the neural re-ranking of candidate repairs, the correct result P4
would not be identified as the most natural repair, and without neural error localization, locations
far from the error state would not be considered during formula editing.

3 LAST-MILE REPAIR PROBLEM

Let T be a target engine—e.g., a compiler, an interpreter, or a run-time engine—that accepts or
rejects programs. Informally, given a string s, representing an ill-formed program, we seek to
transform (fix) s to another nearby string § that is accepted by T. Several values of § may exist, but
we want the one that the user most likely intended.

The first challenge to fixing s is to generate candidate strings that are near to the original buggy
input and will also be accepted by T. In most real-world scenarios, it is impractical or expensive
to query T repeatedly to identify valid fix candidates. Furthermore, we need to have a practical
way to produce these candidates. Rather than consider all strings, we take inspiration from syntax
guided synthesis and use a context free grammar G as a constructive approximation of T.
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A context-free grammar is a quadruple G := (V, 3, R, S), where V is the the set of non-terminals,
3 is the set of terminals, R € V X (V U X)* is the set of production rules, and S € V is a special start
symbol.

A string s € X" is accepted by G, or in the language defined by G, denoted by s € L(G), if there
exists a derivation of s in G. A derivation of s is a sequence of strings S — s; — ... = s — s,
where each s; € (V U X)*, and for each s; — s;, s; is obtained by replacing a non-terminal X in s;
with Xj, ..., X, whereeach X; € (VUZX) and (X — X;...X;) € R.

Let Lsy be the language of all inputs accepted by T. A smaller L(G) implies a more efficient
enumeration of candidate repairs (as the space is smaller) but the reduction in overlap with Lg,,
may place some candidate repairs out-of-scope. A larger L(G) may increase the scope of fixes,
but may also result in spurious candidates outside of Ls,;. Given a fixed size of L(G), we want to
maximize overlap with Lz, but one might allow spurious candidates if it makes writing G easier.
Note that we can apply T on the final candidate repairs (after search) to filter out invalid candidates.

The second challenge is that G, by definition, can only cover context-free properties of Lz,. To
address this challenge, we introduce a set of context-sensitive constraints C that are satisfied by
all programs in Lg,;. A constraint C € C is a mapping: > +— B. Constraints capture requirements
that (1) well-formed programs must satisfy, and (2) are not captured by G. Some examples are:
(a) programs should be type correct, (b) each variable should be defined, and (c) every function or
operator name should be supported by T. Together, G and the constraints C serve as a proxy for T.

Let Cp be the set of all constraints enforced by T. Like G, C is an approximation. However,
unlike G, C in practice is typically a sound over-approximation, meaning: Vs € X*.Cpu(s) =
C(s) A=C(s) = —Cru(s). Evaluating C is more efficient than checking acceptance with T (by
construction), so we can use it during our candidate repair search. We present more discussion
around the tradeoffs in choice of G and C in Section 6.

The third challenge is to model the user intent, i.e., quantifying the likelihood of a candidate fix
being the one that the user intends. We want to maximize the probability Pr($ | s) which quantifies
the probability that § is the user-intended program given they wrote s. Our assumption is that
the user usually writes a program that is “close” to what they intend. To quantify “closeness”, we
can use any distance metric dist on strings. In this work, we use token edit distance and require a
distance threshold ¢ that specifies the required closeness. Among the set of programs that are within
a distance of § from s, we assume that Pr($ | s) is proportional to the prior probability, namely
Pr(3), of observing $. Intuitively, we want to find a string § as a repair that is “close” (according to
distance function dist and the distance threshold ) to the buggy program s, while making sure
that it is “valid” (validated using the grammar G and the constraints C). In case of multiple such
candidates, we break ties by leveraging the probability distribution of “natural” programs that real
users compose in the target language, defined by Pr.

Now we can formalize the problem statement as follows. Given a grammar G := (V,%,R,S),
constraints C : 2* +— B, a distance measure dist : 3* x * — R*, a distance threshold §, and a
string s € X*, the last-mile repair problem seeks to find a string § € ¥* such that § € L(G) and C($),
dist(5,s) < 6, and § = argmaxy ., gy gist(xs) <5} L7 (X), where Pr is the probability distribution
over human-composed strings in Lg.

4 REPAIR-ENGINE GENERATOR

We present the LAMIRAGE framework, our specific solution to the last-mile repair problem, and
describe how it can be instantiated to generate repair engines for different LC formula languages.

The class of possible repairs can be large, and consequently, the search space of potential repairs
can be enormous. Therefore, we need to focus on classes that represent a large set of common
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mistakes that low-code users make when authoring programs in the target language. This target-

specific information is captured using the concept of unreliable terminals and domain-specific

parser state transforms. While unreliable terminals capture pure syntax errors user’s may make,
domain-specific parser state transformers allow LAMIRAGE to incorporate more semantic fixes.

Let G := (V, %, R, S) be the grammar. LAMIRAGE further assumes access to the following:

o Aset U C X of unreliable terminals: A subset of the terminals is classified as unreliable based
on their likelihood of being erroneously omitted or included in user-authored buggy formulas.
For example, in formula languages, parentheses and/or punctuation marks are observed to be
unreliable as user’s often tend to misplace them in expressions.

o A set of domain-specific parser state transformations, where each transformation takes a parser
state and returns a set of (modified) parser states. We will later see examples.

The subset U and domain-specific transformations are specified by the developer using LAMIRAGE
to instantiate a repair engine for their LC formula language.

Intuitively, LAMIRAGE can be seen as a syntax-guided repair engine, generating repair candidates
by performing rule-based transformations (enumerating candidate valid programs) on top of an LL
parser that accepts strings in G.

The main differences from a regular LL parser are the following:

(1) rather than produce a single parse, the repair engine explores and produces multiple parses;

(2) the repair engine backtracks when a failure state is reached by the underlying LL parser;

(3) the repair engine thereafter proceeds searching over valid candidates by transforming unreliable

terminals (and trusting reliable terminals to constrain the search space);

(4) at every step, the repair engine also calls parser state transformers to get new parser states that

can accumulate context sensitive information (e.g. number of arguments in current call); and

(5) the repair engine limits the number of repairs it considers by tracking the edits (cost) it has

already made (incurred) on the input string.

Next, we formalize this intuition of an error-correcting parser.

4.1 Parser States

We describe the error-correcting parser using inference rules. The inference rules operate on parser
states. Given a grammar G := (V, %, R, S), a parser stateis a 4-tuple (A, T, p, c¢), where A is the parsing
stack, T is the stream of remaining tokens that need to be processed, p is the parse-tree constructed
so far, and c is the cost of the state. The parsing stack A is represented as a list, with the first element
of the list corresponding to the top of the stack. Similarly, T is also represented as a list, with the
first element being the next immediate token. For convenience, we use Stack(x), RemTokens(x),
ParseTree(x), and Cost(x) to refer to the parsing stack, remaining tokens, the parse-tree, and the
cost of a search-state x respectively.

Let G := (V, %, R, S) and the input string be s. Let toks denote the tokenization of s represented
as a list of tokens. The initial state of the error-correcting parser is ([S, $], toks, po, 0), where $ is
the end-of-sequence symbol, p is parse tree containing just a single (root) node S, and cost is 0.
Starting from this initial state, the inference rules describe how states are updated. In some cases,
multiple rules may be applicable, or the same rule may result in multiple states. In these cases,
the interpretation is that of a non-deterministic choice - the actual implementation considers all
possibilities and explores all states, providing a completeness guarantee with respect to G. The top-
level algorithm, shown as Algorithm 1, is just a specific strategy for applying these inference rules.
The goal is to start with the initial state and reach the special state, accept, that is the terminating
state for the algorithm. Any state of the form ([], [], p, c¢), for any parse tree p and cost c, rewrites
to the accept state (Figure 5, detailed in Section 4.2).
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First(t) = {t} if t is a terminal
First(X) = First(y1) U ... U First(yn) ifVi: X > y; €R
First(sy) = First(s) U (First(y) if s can derive € else 0)

Follow(X) = First(8) U (Follow(Y) if § can derive € else 0) for all Y — yX§ rules in the grammar

Fig. 4. Fixed-point equations for the standard First and Follow helper functions used in an LL parser for
grammar G := (V,Z,R,S).

T-TERMINAL-MATCH
a=tANa€eXU{$}

(a:At:T,pc)— (AT, pc) ({1, [1.p,c) — accept

T-AcceprT

T-NoN-TERMINAL-EXPANSION
(aeV)A(a— Xy...X;) €ER t € First(Xi... Xi) V (t € Follow(a) A € € First(X; ... Xi))
p’is obtained from p by adding X7 ... X as children of the leftmost leaf a in p

(a: At:T,pcy — {[X1, ..., Xg]++A t : T, p’, )
Fig.5. Transition rules for the syntax-guided repair engine states given a grammar G := (V, 2, R, S). Definitions

for First and Follow are provided in Figure 4. The end-of-sequence token is denoted by $. Symbols : and ++
corresponds to Haskell-style list prepend and append syntax.

Informally, starting from ([S, $], toks, po, 0), where toks is a tokenization of input string s, if
we reach ([], [], p, ), then p will be a parse of some string § obtained by repairing s, and ¢ will be
dist(s, s) (the cost of the repair).

4.2 Repair Algorithm

Algorithm 1 describes the overall approach. At a high level, we explore the search space using the
transition rules in Figure 5 and maintains a priority queue of states, ordered by their costs (Line 4).

The priority queue is initialized to contain just the initial state (Line 3). Every time it encounters
a state corresponding to an accept state, it translates the parse-tree into a repair and returns it to
the user (Lines 8-9). Otherwise, it applies domain-specific strategies to obtain a set of new states in
Line 10. Domain-specific strategies are explained later in Section 4.4. The next step is to compute
the set of next states using the transition rules from Figure 5 (Line 11). There are two conditions for
the state to be considered an error state (Line 12). The set of next states (N) can be empty, in which
case no progress can be made without making edits, or the state is part of the set of states predicted
as possible error states by our neural error localizer (detailed later in Section 4.3.2). If the state is
considered to be an error state, the algorithm then goes into repair mode. It uses a sub-procedure
EnumerateRepairs (detailed in Section 4.3.3) to apply a correction on the error state and put it back
in the search queue (Line 13).

The transition rules in Figure 5 describe a standard LL parser. The transition T-TERMINAL-MATCH
handles the case when the top of stack is a token that matches the next token in the input stream.
The transition T-Non-TErMINAL-ExPANSION replaces a nonterminal X at the top of stack by the list of
elements from the right-hand side of some production rule based on the lookahead. The standard
helper functions, Follow and First, used in this rule are obtained using fix-point computation over
the equations shown in Figure 4. Note that these two functions are pre-computed for a grammar.

We extend this initial rule set with those in Figure 8 to convert the LL parser into a syntax-guided
repair candidate enumerator, which LAMIRAGE uses to produce repair candidates (which then need
to be ranked). Algorithm 2 presents a strategy for applying these new extension rules.
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Algorithm 1 Overall Repair Engine Algorithm. Given the list of tokens corresponding to a buggy
string s, and a grammar G, it returns a list of repairs. The $ symbol corresponds to the end-of-
stream token. GenRepair(s) converts the parse tree of state s back into a string. The optional Sy.q
correspond to states associated with error locations predicted by our neural error localizer — which
are only used when deterministic backtracking does not yield viable repair candidates.

1: procedure Repair (toks, G, Spreq = 0)

2: po < tree with a single node for StartSymbol(G)

3 so < {[StartSymbol(G)$], toks, po, 0) > Initial State
4 P < An empty priority queue

5: Insert sg into P with cost 0.

6 while P is not empty do

7 Pop s from P with cost ¢

8 if s — accept then > Rules in Figure 5
9 yield GenRepair(s)

10: Sp « ApplyDomainStateTransformers(s)
11: N~ {s"|s"—>s"As" €Sp} > Rules in Figure 5
12: if N is empty or s € Spe4 then
13: N « EnumerateRepairs(s)
14: for each s’ in N do
15: Insert s’ into P with cost Cost(s”)
Backtracked State s Error State s,

Tokens: Update Context Key E] Value Reliable Tokens
L J

Unreliable Tokens
Tre = [Key, Value] Tig Trem

Tyen € {“({Key : Value”,““(Key, Value ”,“((Key, Value ”,“({Key : (Value”,...}

Fig. 6. lllustration of repair enumeration, along with token reliability and deterministic backtracking.

4.3 Repair Candidate Enumeration

Algorithm 1 calls EnumerateRepairs to repair an error state, as described in Algorithm 2.

We use 7(s) = (s, ...,s) to refer to the trace of s i.e. to the sequence of states resulting from
repeated application of the transition rules in Figure 5 starting from the initial state sy, as detailed
in Algorithm 1, and ending at s. Note that the trace is just a history of parser states that we assume
the algorithm saves. We say a token t is unreliable if t.value == a for some unreliable terminal a;
i.e., when the value attribute of the token corresponds to an unreliable terminal.

Given an erroneous search state s., we first identify the portion of input processed so far that can
be edited to induce candidate repairs. LAMIRAGE accomplishes this using deterministic backtracking.

4.3.1 Deterministic Backtracking. To produce the editable formula range, LAMIRAGE determin-
istically backtracks to an ancestral state s, € 7(s.). The state s; corresponds to the state in 7(s,)
where the d'" previous reliable token was added to the parse-tree of s, or if no such state exists,
sp is the first state in 7(s,). Consider the example in Figure 6. The error state corresponds to the
point after Key is consumed. With d = 2, the backtracked state corresponds to the point right
after UpdateContext was consumed. The constant d here refers to the backtracking depth, which
controls the extent to which we can reach and edit previously processed tokens.
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missing parenthesisl 2 backtracking depth

PR

formula: =IF (COUNT (B1:Cl <2,0,1)

»_compiler error: missing closing parenthesis

Fig. 7. The true location of an error may be relatively far from where the compiler detects an error. For
example, in this formula the missing parenthesis is not identified until the end of the formula, as COUNT is
variadic. LAMIRAGE uses a pointer-network to predict such error locations.

We use Tigr, Trem and To to refer to three special lists of tokens. Let ¢, be the first reliable token in
Tokens(se). Ty is the list of tokens in Tokens(sy) up until and including #, (note that Tokens(s) is
guaranteed to be a suffix of Tokens(sp)). Trem is the list of tokens after, and excluding t, in Tokens(s,).
Finally, T, is the list of all reliable tokens, in order, in T;. This logic is encapsulated within the
Backtrack procedure in Line 2 of Algorithm 2. Consider the example in Figure 6. Tig; corresponds
to the four tokens (, Key, :, and Value. T, is the list of tokens following Value. T, is the list of
two reliable tokens in T, - Key and Value.

Tokens in Tiy that are unreliable (i.e. not in T,,;) are candidates for editing during candidate
enumeration. Meanwhile, tokens outside of T, such as tokens in Ty, remain untouched.

Scoping edits to a subset of tokens in Tig, in contrast to considering the entire program prefix,
helps constrain the search space for candidate repairs, allowing LAMIRAGE to quickly produce viable
repairs. While deterministic backtracking is efficient, it is not complete: there may be required edits
outside of the range identified. LAMIRAGE uses neural techniques to address this challenge.

4.3.2  Neural Error Localization. Compilers often raise errors at locations far away from the actual
source of mistake [Traver 2010]. In Figure 7, the user forgot a closing parenthesis for the COUNT
function in their Excel formula. However, the Excel compiler will parse the formula until the
end-of-stream token is encountered, and will then raise a missing parenthesis error. Why is no
error reported earlier? The function COUNT is variadic, so the compiler greedily accepts the string
contents as valid arguments for the function call. A purely symbolic repair technique might rely
on backtracking to identify possible repair locations, however, as the formula grows, so does the
backtracking depth required. This increase in depth can substantially increase the search space. To
mitigate this problem, we leverage neural methods to complement our deterministic backtracking.

We train a Pointer Network [Vinyals et al. 2015] to predict error locations in arbitrary length
formulas by learning distributions over input tokens, which has been shown in previous work [Va-
sic et al. 2018] to be effective for error localization in general purpose programming languages.
Specifically, we take a corpus of well-formed formulas in the corresponding language and then
generate broken variants by introducing synthetic errors. These errors are introduced by randomly
adding, deleting, or changing unreliable tokens in the formula. We then train the pointer network
to predict the locations (token indices) where these edits were performed as a function of the
broken formula. At prediction time, we take the top 5 locations predicted by the network, though
in practice the network mostly predicts 1 or 2 locations. For each predicted location, we take the
parsing state up to that location when processing the input and treat it as an error state s,. We can
then apply our deterministic backtracking strategy starting from each such state. As a result the
pointer network need not be perfect to still provide useful enumeration locations, in contrast to
prior work [Vasic et al. 2018] that jointly localizes and repairs. The symbolic candidate enumerator
can then perform edits as before to yield new candidates.

To mitigate the increase in the size of the search space, as a result of additional candidate edit
locations, LAMIRAGE employs a fall-back strategy. Specifically, LAMIRAGE first attempts to repair a
buggy program using only the deterministic backtracking strategy, and if no viable repair candidates
are produced, LAMIRAGE then employs the neural error localizer to predict error states. These
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T-UNRELIABLE-TERMINAL T-RELIABLE-TERMINAL
a€eXANaeU aeXANa¢gUANa=ty
(a: A Tgen, Tret) = (A Tgen++[a]’ Tret) (a: A Tgen, trel : Trer) = (A, Tgen++[a], Trer)

T-NoN-TERMINAL
(aeV)A(a— X;...X}) €R
(tye1 € FirstReliable(X; ... Xi) V (tye € FollowReliable(a) A € € FirstReliable(X; ... X;.)))

(@ A Tgen, trer : Trer) = ([X1 ., X ]++A, Tgen, trer : Trei)

T-AcceprT

(a: A, Tgen, [1) — accept

Fig. 8. State transition rules for EnumerateRepairs given a grammar G := (V, %, R, S) and unreliable terminals
U c X. Definitions for FirstReliable and FollowReliable are provided in Figure 9. Symbols : and ++ correspond
to Haskell-style list prepend and append syntax.

neurally predicted error states augment the set identified by the deterministic approach and are
passed transparently to the candidate enumeration algorithm EnumerateRepairs.

This use of the neural localizer mirrors previous lines of work in program synthesis and program
repair that integrate model-based approaches to restrict or prioritize elements in their search
space, for example [Long et al. 2017; Yu et al. 2019]. The novelty in our approach is in showing a
simple pointer-network-based localizer can work well in the low-code domain, particularly when
employed in a fall-back strategy.

4.3.3 Candidate Enumeration with Guarantees. EnumerateRepairs returns all states s, that are the
same as s except for their remaining token sequences, where T, is replaced by a new sequence of
tokens Tgep (Line 10). Ty, satisfies the constraint that it can be obtained from Tiy; by inserting and/or
deleting unreliable tokens. Additionally, the parsing stacks of the repaired states s, are guaranteed
to be able to derive the string corresponding to Ty, as a prefix. Furthermore, the modified states
are guaranteed to satisfy custom checks (as they are applied prior to returning candidates). These
guarantees are a key benefit of LAMIRAGE compared to purely neural alternatives. Figure 6 shows
a few possibilities for Ty, that are generated by the algorithm.

At the core of EnumerateRepairs is the ability to enumerate valid Tg.,. This is achieved by repeated
application of the transition rules in Figure 8. The first rule states that if the top of the stack is
an unreliable terminal, add it to the generated token sequence so far. The second rule covers the
case when the top of the stack is reliable; in this case it must match against the next expected
reliable token as per T,,;. The third rule governs the production rules chosen to expand the top
of the stack when it is a non-terminal. This is analogous to the non-terminal rule in the standard
parsing transition rules in Figure 5. The only difference is the use of FirstReliable and FollowReliable.
These two functions are similar to their standard counterparts First and Follow used in Figure 5.
The only difference is that they are only concerned with reliable terminals, not all terminals.

However, recall that, as per the last-mile repair definition, we do not want just any Ty, that
is possible. It must be within some edit-distance of the original. Thus we ensure that the edit-
distance (Lines 9-11), or its lower-bound estimate (Lines 16-17) is less than the hyper-parameters
MaxGlobalCost and MaxLocalCost, which restrict the maximum edit distance.

4.4 Domain-Specific Parser State Transformers

The repairs generated by Algorithm 2 are guaranteed to satisfy G. However, valid formulas in the
target language must also satisfy constraints C, which capture semantic properties, such as correct
typing or using only defined variable names. Fixing formulas that do not satisfy these constraints
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Algorithm 2 Enumerating repairs given an error state s,

1: procedure EnumerateRepairs(se)

2 $b> Treb Tigts Trem < Backtrack(se)
3 P < An empty queue

4 Insert (Stack(sp), [], Trep) into P.
5: repairs < empty list

6 while P is not empty do

7 Pop (A, Tgen, Trer) from P

8
9

if (A, Tgen, Tre1) — accept then > Figure 8
: ¢y < EditDist(Tgen, Tigt) + Cost(sp)
10: sy « (Stack(sp), Tgen*+Trem, ParseTree(sp), cr)
11: if ¢, < MaxGlobalCost then
12: Add s, to repairs
13: continue
14: NextStates < {x | (A, Tgen, Trer) — x} > Figure 8
15: for each (A", Tg,,, T/ ) € NextStates do > Compute lower-bound on edit-distance
16: ¢ « {EditDist(Tjen, p) | p is a prefix of Tyg}
17: if ¢ < MaxLocalCost then
18: Append (A", Tg,,, T' ) to P
19: return repairs

FirstReliable(t) = {t} if t is a terminal and t is reliable
FirstReliable(t) = 0 if t is a terminal and t is unreliable
FirstReliable(X) = FirstReliable(y1) U ... U FirstReliable(y,) where X — yj ...X — yj, are production rules
FirstReliable(sy) = FirstReliable(s) U (FirstReliable(y) if s can derive € else 0)
FollowReliable(X) = FirstReliable(5) U (FollowReliable(Y) if § can derive € else 0)

for all Y — yX rules in the grammar

Fig. 9. Fixed-point equations for FirstReliable & FollowReliable.

often requires context-sensitive information and additional knowledge about the underlying LC
formula language beyond that reflected in G. A key innovation of LAMIRAGE, in contrast to state-
of-the-art symbolic repair systems like GRMTOOLS, is the increase in repair expressiveness — which
can capture some semantic errors — enabled by our use of C.

We introduce the concept of domain-specific repair strategies via parser state transformers to
tackle these classes of errors, as captured by the call to ApplyDomainStateTransformers in Line 10
of Algorithm 1. Transformers are essentially a collection of symbolic transition rules, that create
new parser states from a given state, or flag a state as an error state, denoted as L. Given the input
parser state, the ApplyDomainStateTransformers function simply returns the set of states obtained
by applying all the eligible transition rules, or an empty set if the input state is flagged as an error
state by any of the rules. To support different use cases, LAMIRAGE supports transformers that are
called at different points in the input processing procedure. For example, error state transformers
are called when an error state is raised, other transformers may trigger on a particular token/rule.

The transition rules for various strategies that can be implemented in our framework are listed
in Figure 11. All the rules are based on the grammar fragment described in Figure 10. This fragment
captures function calls and basic expressions as allowed by the LC domains of Excel and PowerFx.
Next, we explain each of our strategies individually.
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FuncCall ::= FuncName ( ArgsList ) FuncName ::= ident

ArgsList ::= € | Arg ArgsListTail ArgsListTail ::= € |, Arg ArgsListTail
Arg ::= Expr Expr ::= Var | Constant | BinaryExpr | ...
Var := ident

Fig. 10. Relevant fragment of grammar used for Excel/PowerFx corresponding to function calls and expressions.

T-ArITY
a € {ArgsList, ArgsListTail} f = CurFunc(p) n = CurNumArgs(p, f)
(n = MaxArity(f) A t.kind ¢ Follow(a)V n < MinArity(f) A t.kind € Follow(a))

(a: At:T,pcy > L

T-CoMBINE-TOKENS
Tokens t1 and t; are eligible to be combined into #3 with cost ¢’

(At ity T,p,c) > (A itz : T,p,c+c’)

T-SymBoL
a € {FuncName, Var} t.wal ¢ AvailableSymbols (t’, ¢’y € AvailableCorrections(t.val)

(a:At:T,pcy > (a: At :T,pc+c’)

T-SymBoL-FAIL
a € {FuncName, Var} t.val ¢ AvailableSymbols AvailableCorrections(t.val) = 0

(a:At:T,pcy > L

T-TyPING
p' = ComputeTypes(p) p' has typing errors (p’, ¢’y € ComputeTypeRepairs(p")

(AT, p,c)y = (AT, p',c+c’)

T-TypPING-FAIL
p' = ComputeTypes(p) p' has typing errors ComputeTypeRepairs(p’) = 0

(AT, p,c)y > L
Fig. 11. Inference rules for various domain-specific, context-sensitive repairs based on the grammar fragment
in Figure 10. The symbol L denotes an error state.
Arity Analysis. Most formulas in languages like PowerFx/Excel use built-in functions, which have a
fixed minimum and maximum arity. The IsBlank function in the motivating example in Figure 2
has a minimum and maximum arity of 1, and thus repairing P1 involves inserting a parenthesis
after the first argument to IsBlank which is LunchSeminar.

The rule T-Ar1ty in Figure 11 captures the arity analysis strategy that allows for such repairs.
Essentially, given an input parser state, it first computes the current unclosed function f, and the
number of arguments parsed so far for f, denoted by n, by analyzing the parse-tree p using the
convenience functions CurFunc and CurNumArgs respectively. Then, it flags the input parser state
as an error state if the top of the stack is either ArgsList or ArgsListTail (Figure 10) and one of two
cases hold: (1) n > MaxArity(f), and the next token is going to force the parse of another argument,
and (2) n < MinArity(f), and the next token does not indicate the start of a new argument. Whether
or not a new argument is going to be parsed can be checked by checking the membership of the
kind of the next token against the Follow set of the non-terminal at the top of the stack, as described
in the rule T-NoN-TERMINAL-EXPANSION in Figure 5.

How does this help in repair? Since the input parser state is flagged as an error state, this triggers
EnumerateRepairs in Algorithm 1 in Line 13. Thus, this strategy will be able to fix arity errors by
inserting/deleting unreliable tokens (punctuation).
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Combining Tokens. Another common class of errors in both our domains involves incorrect tok-
enization due to presence of extra whitespace. For example, in Excel, if a space is included between
the < and = symbols, the whole string is tokenized into two separate tokens, instead of the more
likely <= (less-than-equal) token, and will raise a syntax error (reported by the compiler as “missing
operand”). In both our domains, these binary operators are reliable terminals/tokens; hence Alg. 2
can’t generate repairs for such errors on its own and requires a domain specific strategy.

The strategy is formalized as the rule T-CoMBINE-TOKENS in Figure 11. Essentially it says that if
the next two tokens are eligible to be combined into a new token with cost ¢’, return a new state
where the two are combined and ¢’ is added to the cost. Thus, this strategy directly modifies the
remaining token stream. In our implementation, we use this rule to combine tokens corresponding
to relational operators such as <=, ==, and >=.

Fixing Symbol Errors. This strategy helps generate repairs for errors where function names or
variables are misspelled (IsBlnk instead of IsBlank), or synonyms for functions are used, such as
the use of Length instead of Len in the second example in Figure 1.

The strategy is formalized as the rule T-Symbol in Figure 11. If the top of the stack corresponds
to the non-terminals FuncName or Var in the grammar in Figure 10, and the next token ¢’s value is
not present in the set of available symbols, denoted by AvailableSymbols, and a corrected token
t’ is available with cost ¢’, then a new state is returned where the next token is replaced with
t’. The set of symbols AvailableSymbols can be determined from the runtime context within the
GUI/IDE interface to the underlying domain. The function AvailableCorrections returns available
symbols within a threshold edit-distance of the value of the original token ¢, which captures the
misspelling case, and built-in functions that are known synonyms of the value of ¢. If no such
correction is available, then the state is flagged as an error state (rule T-SymBoL-Fa1L). Note that
this will invoke EnumerateRepairs but none of its repairs would fix the issue and overall, no repairs
would be returned by Algorithm 1.

Fixing Type Errors. The final strategy helps generate repairs for typing errors. Specifically, types are
computed for the parse-tree of the input parse state, and if there is a type error, one of two things
can happen: (1) if a repair is available in terms of a fixed parse-tree with cost ¢’, then a new state is
returned with the fixed parse tree and an additional cost of ¢/, and (2) if a repair is not available, the
state is flagged as an error state. The scenarios are captured by rules T-Tyring and T-TypiNG-FAIL in
Figure 11 respectively. Note that a repair on a parse-tree must apply to a node which is completely
parsed i.e. it has no non-terminal leaf nodes. An example of a repair is explicit type conversion,
such as converting an int to a string to enable concatenation with another string.

Ease of Use. LAMIRAGE enables repair-engine developers to create new domain-specific strategies
with a few lines of code - this increase in repair expressiveness beyond syntax fixes, despite being
syntax-guided, is a key contribution of LAMIRAGE. For example, the equality operator in Excel (=)
is different from that in other languages such as Python and Java (==); confusing these is a common
mistake for some Excel users. To implement this DSS, a developer need only define a few constants
and conditions; Trigger token: "=", condition: "Next token in the input stream is also =", and the
Transformation: "skip the next = token from the input stream". Most such DSS are reusable across
domains with few changes.

4.5 Ranking Repairs by Naturalness

Algorithm 1 is guaranteed to return the repairs in increasing order of cost, which is the edit-distance
from the original buggy program in our implementation. However, a scenario may arise when there
are multiple repairs within the allowable edit-distance, in which case we need to select the most
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natural repairs to show to the user. We fine-tune a pre-trained language model, CoDEBERT [Feng
et al. 2020], to approximate the probability that a formula would be written by a user. CODEBERT
is pre-trained on millions of aligned natural language and code snippets across programming
languages such as Python, and Java, so we need to fine-tune it for our LC domains.

A simple way to fine-tune CopEBERT would be to train it with the causal-LM objective [Dai and
Le 2015] i.e. train it to predict a formula one token at a time, by taking into account the tokens
generated so far. Then the product of the associated probabilities with every generated token can be
used for ranking the formula. Since the bulk of our algorithm is focused towards producing repairs
involving insertion/deletion of unreliable tokens or punctuation, we can restrict the causal-LM
objective to only train the model to predict contiguous unreliable sequences given the list of tokens
before and after the target sequence. An issue arises here: the frequency distribution of punctuation
tokens is highly skewed: e.g., a parenthesis occurs more frequently than a curly brace. Thus training
with this objective over the available well-formed formulas introduces a bias in the models towards
more frequently occurring tokens and will not work well, in our experience. To address this, we
introduce a new setup that mitigates this bias. Specifically, we break this task further into predicting
a single unreliable token given the prefix and suffix lists of tokens, turning it into a classification
task, where we can appropriately balance the training dataset by undersampling and oversampling
as necessary. To rank repairs, we sum the negative log-probabilities of predicted tokens, and use
this to break edit-distance ties. In our experience, this modified setup worked well for both domains
and allowed us to use relatively modest amounts of data during training.

Now that we have our full approach, Theorem 4.1 summarizes the properties of our repairs.

THEOREM 4.1. Let G be the grammar provided to LAMIRAGE and C be the set of domain specific
constraints provided to complement G. Let Ly, be the language of inputs accepted by T, the target
execution engine. Jointly, G and C approximate Lg,y, as described in Section 3. Let § be a repair returned
by LAMIRAGE. Let dist : 3* X 3* > R* be an edit distance metric between two strings. Let § € R* be
the maximum permissible edit distance. Then § € L(G) A C(5) A (dist(s,$) < ). If a ranking model
is used and has learned the appropriate prior distribution over Lg,y, then § maximizes Pr(3).

5 EVALUATION

We present the results of our empirical evaluation of an implementation of LAMIRAGE on two
critical LC domains: Excel and PowerFx. First, we describe our experimental setup and methodology,
including a description of our datasets and the baselines we compare against. We also carry out a set
of ablation studies (Section 5.4) to evaluate the impact of different design decisions on LAMIRAGE.

5.1 Benchmarks and Datasets

We evaluate performance on two LC languages with significant user bases: Excel and PowerFx.

Benchmarking. We created a benchmark set of 200 Excel formulas by gathering buggy formulas
listed in the publicly available third-party Excel forum MrExcel [MrExcel Message Board 2021].
We performed a similar collection of 100 PowerFx formulas from the official PowerApps help
forum [Power Apps Community 2021]. We then added 100 PowerFx formulas collected by the
PowerApps team at Microsoft, who used basic system telemetry to passively log anonymized
PowerFx formulas written by real anonymized users. The combined set of 200 PowerFx buggy
formulas (and their groundtruth solutions) constitute our PowerFx benchmark. We manually
annotated the ground truth for all formulas.

To avoid introducing bias to the selection of formulas for our benchmarks, we adhered to the
following procedure. For forum sourced benchmarks, we sampled uniformly at random from
formulas scraped that did not pass the domain’s parser/analyzer. For telemetry benchmarks in the
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case of PowerFx, we sampled 500 formulas from our industrial partners’ telemetry that did not
pass PowerFx’s analyzer — we removed any broken formula that was incomplete (i.e. it was the
result of a user still in the process of writing). For both forum and telemetry formulas, we removed
formulas for which we could not unambiguously determine the ground truth solution manually.
The final collection of formulas include error such as: unmatched delimiters, invalid function call
syntax (including invalid spaces, extra commas, and supurious symbols), invalid function call arity
(both excess and insufficient arguments), incorrect types, malformed references (such as sheet, cell,
and range references in Excel), malformed records (in PowerFx), invalid operator uses (including
operators without operands or invalid use of an operator in a function call), malformed relational
operators (such as using incorrect syntax for a comparison operation), and inappropriate string
quoting. As part of our contribution, we are releasing these benchmarks.

For our evaluation, we consider a candidate repair to be successful if it matches the ground-truth
formula (after normalizing for white-space and casing, whenever not relevant).

Training datasets. To produce training data for methods that require it, we relied on MrExcel
forum posts and PowerApps forum posts. We restrict ourselves to training data that is disjoint from
the formulas used in our evaluation benchmarks. We extracted formulas present in user posts. To
improve the quality of PowerFx formulas collected, in that domain we restrict ourselves to text in
<code> HTML tags. We perform semi-automated curation using manually written rules to remove
partial formulas or inputs outside of the language domain targeted. We use a native parser for Excel
and PowerFx, respectively, to label formulas collected as parseable or un-parseable.

From this collection, we prepared 267,653 Excel formulas and 29,154 PowerFx formulas that
satisfy the domain’s analyzer and can be used for language modeling and baseline training. In
addition, we collected 27,501 Excel formulas and 1,183 PowerFx formulas that are rejected by the
domain’s analyzer and are used during baseline training.

5.2 Baselines

We compare LAMIRAGE to state-of-the-art symbolic and neural approaches. We produce up to 50
candidate repairs with each system. We report the number of benchmarks that are successfully
repaired if we consider the top 1, 3, and 5 candidate repairs produced. We base our cutoffs (up
to 5 candidates) on working memory capacity [Cowan 2001] which has been applied for other
recommendation systems [Henley 2018], though more studies are warranted.

Our configuration. Our evaluation implementation of LAMIRAGE includes domain specific strate-
gies for arity analysis and fixing symbol errors for both Excel and PowerFx, combining tokens
strategy for Excel, and repairing ill-formed cell references in Excel. In terms of ranking, our imple-
mentation of LAMIRAGE ranks candidate repairs lexicographically based on their edit-distance and
language-model score. For neural error localization, we use the implementation as described in
Section 4.3.2. We train the Excel and PowerFx neural error localizers on pairs of original formula
and synthetically broken formula, where we introduce at most 3 and 5 errors, respectively.

We set the local and global edit distances for LAMIRAGE to 3 and a per-formula timeout of 10
seconds, such that we only consider LAMIRAGE candidates produced within the timeout.

Symbolic approaches. We consider a state-of-the-art symbolic error recovery system and the
publicly available error recovery in Excel desktop. No such feature is available for PowerFx.

GRMTOOLS. We use GRMTOOLS, a parser framework that exposes the official implementation of
a symbolic state-of-the-art parsing recovery technique [Diekmann and Tratt 2020]. GRMTOOLS
produces a set of one or more edit operations at one or more locations in the original input code.
When there are multiple locations, GRMTOOLS applies the first edit operation at location i before
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generating the set of repairs at location i + 1. To produce a repaired candidate, we take the top edit
operation at each location and apply it to the input formula. GRMTOOLS does not rank repairs, as
long as they have the same edit distance, and produces the edit operations in non-deterministic
order for each location. For each formula, we run GRMTOOLS 50 times and take the set of repairs
returned in the given order. This approach is based on correspondence with the authors (via Github
issues) for approaches to enumerate more than 1 repair candidate. To account for non-determinism,
we repeat our GRMTOOLS evaluation 10 times and report the best performance across cut-offs.

ExcEer-DEskTop Error Recovery. We compare against the error recovery provided by Excel desktop
Version 2203, which can correct errors such as adding missing closing parentheses.

Neural approaches. We compare to three neural systems that represent two popular approaches
in neural program repair: 1) task-specific models and 2) large pre-trained language models.

Break-It-Fix-It (BIF1). BIF1 iteratively trains an encoder-decoder based neural code fixer and
breaker - the latter is used to improve the fixer that generates repair candidates. Both the fixer and
breaker are implemented using transformers [Vaswani et al. 2017]. We refer the interested reader
to the associated paper [Yasunaga and Liang 2021] for more details. We train BiF1 on our Excel and
PowerFx data and set the maximum generation length to 10 tokens beyond the input length.

Copex. We use OpenAlI’s REST API to conduct experiments with Copex [Chen et al. 2021], a
state of the art large language model trained on code. We provide Cobex with the following prompt:

##### Fix bugs in the below code \n ### Buggy <domain> \n <buggy-code> \n ### Fixed <domain>

where we replace <domain> with Excel or PowerFx, and the <buggy-code> with the formula we
want to repair. To use Conex’s few-shot learning abilities, we include three manually written
examples of buggy and fixed code from the appropriate domain chosen to cover common mistakes.
We rank CobpEex produced repairs based on their average log probability.

The three examples cover common mistakes: missing parentheses, extra parentheses, and extra
commas. These as they represent common user mistakes. Note that we also experimented with
zero-shot learning and found that including our predefined examples improved performance across
the board. Our prompt design did not exhaust the token limit but rather included relevant examples.
Poesia et al. [2022] showed that similarity of examples with target task is important.

CopEx-EpIT. On March 22nd 2022, OpenAl released a new version of Codex designed for the
task of editing existing user inputs [Open AI 2022], rather than completing prompts. We use the
REST edit API provided by OpenAl In contrast to the traditional Codex API, the edit API does
not take a standard prompt but rather takes an “instruction” parameter, which states (in natural
language) what the model should do. We use the phrase “Fix bugs in the <domain> code” as
the instruction and replace “<domain>” with Excel or PowerFx, as appropriate. Additionally, note
that this API does not return multiple possible candidates but rather a single result. To mitigate this
restriction, we call the edit API 50 times to produce up to 50 candidate repairs for each formula.

For Copex/CoDEX-EDIT, we use temperatures 0, 0.1, 0.3, 0.4, 0.5, and 0.7. We report the best
performance for each cutoff in our main evaluation; detailed breakouts in supplementary materials.

5.3 Results

Table 1 shows the number of formulas from our benchmark set that are successfully repaired
by each system. In the Excel domain, we see that ExcEL-DEskTOP, which only produces a single
repair candidate for each faulty formula, performs worst, repairing only 83 of the 200 formulas.
The symbolic state-of-the-art GRMTOOLS repairs up to 108 formulas, but still lags the neural and
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System Type Excel PowerFx

Top-1 Top-3 Top-5 Time | Top-1 Top-3 Top-5 Time
ExceL-DEskToP Symbolic 83 83 83 - - - - -
GRMTOOLS Symbolic 97 104 108 427.6 98 110 113  351.4
BiF1 Neural 115 130 134 363.1 34 45 48  592.8
CODEX Neural 111 156 160 1651.8 86 117 132 1997.9
Cobpex-EDIT Neural 147 163 165 5806.6 106 137 140 6417.6
LAMIRAGE NeuroSymbolic 174 182 182 32.1 170 177 177 134.4

Table 1. More repaired formulas: LAMIRAGE can successfully repair more formulas than baseline approaches
across all top-K cutoffs in both domains. For Copex and Copex-EpiT we combine results across temperatures,
reporting the best value for each cutoff. The temperature with best performance for top-1, top-3, and top-5
correspond to 0.3, 0.7, 0.7 (Copex in Excel); 0.4, 0.7, 0.7 (Copex in PowerFx); 0.1, 0.3, 0.4 (Copex-EpiT in Excel);
and 0.0, 0.4, 0.5 (Copex-EpiT in PowerFx); We also report the median time (in milliseconds) to produce the
repair candidates for each formula. LAMIRAGE can produce its candidate repairs faster than other systems.

neurosymbolic approaches. In particular, GRMTOOLS fails to repair many formulas where the edit
is far away from the location where the error state is raised. In terms of neural approaches, we
find that B1F1, which is trained specifically for our task and domain, can repair substantially more
formulas than the symbolic approaches (across all cutoffs). BiF1 also outperforms CopEx at top-1,
but repairs fewer formulas at more lenient cutoffs. Copex-EpiT, which is designed for the task of
editing user input, improves over both BiF1 and CopEx, outperforming both approaches over all
top-K cutoffs. LAMIRAGE, which combines the advantages of symbolic candidate enumeration with
neural error localization and ranking, fixes the most formulas across all systems. LAMIRAGE fixes
27 more formulas at the top-1 cutoff than the next best system, CODEX-EDIT.

In the PowerFx domain, LAMIRAGE similarly outperforms all baselines across all cutoffs, repairing
64 more formulas at the top-1 cutoff compared to the next best system (Copex-Epir). All systems
with data-driven components, in this case neural approaches and LAMIRAGE, experienced a drop in
performance compared to the Excel domain, though LAMIRAGE experienced a smaller drop. The
purely symbolic approach GRMTOOLS repaired a comparable number of formulas in both domains.
We believe this is due to the fact that while PowerFx is a growing language, publicly available
PowerFx code corpora is significant smaller than that for Excel. This challenge in data availability
is reflected in our own training data as well. Neural approaches that benefit from significant pre-
training (e.g. Conex and Copex-EDIT) experienced a smaller drop than B1F1, which was trained
specifically on the PowerFx data we collected. LAMIRAGE, which combines symbolic and neural
benefits, experienced the smallest drop in performance (4 fewer formulas repaired at top-1 cutoff)
compared to the next best approach (Copex-EpiT, which repaired 41 fewer at top-1 cutoff).

In both domains, we notice that Copex and CoDEX-EDIT results improve substantially between
top-1 and top-3 cutoffs (while still trailing LAMIRAGE) and stabilizing thereafter. We believe these
large pretrained models fail to account for differences in low-code formulas, as their training corpus
primarily consist of programs written in general purpose languages. Both engines are capable of
producing viable candidates, but are not suitably distinguishing between them.

We also compute the median time to produce all candidate repairs for each formula in our
benchmarks. We exclude EXCEL-DESKTOP as error recovery is exposed as a pop-up which requires
user interaction, thus invalidating time measurement. Copex and Copex-EDIT use the OpenAl
REST API, so they include network time, and we compute the minimum time across temperatures
for each benchmark before summarizing as a median. For GRMTOOLS, we run the tool 50 times on
each formula to obtain 50 candidate repairs, as such we add these times up. These repetitions incur
repeated processing within GRMTOOLS, unavoidable without significant modifications to the tool.
In both domains, the median time for LAMIRAGE is substantially lower.
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Ablation System Excel PowerFx

Top-1 Top-3 Top-5 | Top-1 Top-3 Top-5

CobpEBERT 135 137 137 125 130 131

Enumeration CoODEX 128 128 128 112 121 121
Whole-Prefix 71 97 110 116 141 150

DSS No DSS 138 145 145 153 164 165
Neural No Neural Ranker 173.9 182.2 182.6 150.9 167.8 169
No Neural Localizer 167 175 175 159 166 166

Full LAMIRAGE 174 182 182 170 177 177

Table 2. LAMIRAGE outperforms ablations: We consider the following ablations: (a) purely neural (CopeBERT,
CobEx) (b) naive symbolic enumeration, (c) no domain specific strategies (DSS), (d) no neural ranker, and (e)
no localizer. In all but one case, LAMIRAGE repairs more formulas across all top-K cutoffs. We find that neural
ranking (on average) does not play as big a role in Excel as there are fewer candidates with edit-distance ties
and so neural ranking tie-breaks are less important.

5.4 Ablation Study Over LAMIRAGE
We now present results (Table 2) that explore the impact of different design choices in LAMIRAGE.

Enumeration ablation. We compare LAMIRAGE to two ablations that replace LAMIRAGE’s
candidate enumeration with neural enumeration. CopEBERT and CopEex in Table 2 use CODEBERT
and CoDEX, respectively, to generate candidate repairs. To use these neural models for candidate
enumeration, when LAMIRAGE reaches an error state, we make the corresponding neural model
predict the sequence of unreliable tokens bounded by the reliable tokens at the particular error
location (see Section 4.3 for details on this bounding). In the case of Codex, we prompt the model
to produce the sequence of unreliable tokens as a completion to a prompt which corresponds to
the formula prefix. Zero-shot prediction worked better for this task of generating unreliable token
sequences. In the case of CopEBERT, we predict the next unreliable token, given the prefix/suffix
of the formula, and we add a beam-search layer to output sequences (up to stop token).

We also compare LAMIRAGE to an ablated version (WHOLE-PREFIX in the table) that uses symbolic
backtracking and candidate enumeration but considers the entire formula prefix (up to where the
error state was identified) when generating candidate repairs. This is in contrast to LAMIRAGE’s
approach of identifying edit ranges based on surrounding reliable tokens.

Our results show that LAMIRAGE’s enumeration outperforms all ablated versions across all top-K
cutoffs in both domains. Ablation with CopEBERT outperformed the version that uses Copex for
candidate enumeration in both domains as well. The ablated version with whole-prefix deterministic
backtracking solves much fewer benchmarks as the search space explodes leading to time outs.

Domain specific strategies. Next, we evaluate the impact of domain specific strategies (DSS) on
LAMIRAGE’s performance. Our results show that removing DSS substantially decreases the number
of benchmarks solved in the Excel domain across all top-K cutoffs. DSS play a major role in the
number of benchmarks solved in PowerFx across all cutoffs, but this benefit is smaller in this domain
relative to Excel. DSS plays a bigger role in Excel owing to idiosyncrasies in its formula language
that are difficult to capture with just a grammar approximation. For example, Excel’s parser does not
recognize a function call if there is a space between the function name and the opening parentheses
- a DSS, consisting of a single line of code, can resolve this. Relatedly, malformed cell references,
another frequent user error, is more easily handled using DSS as compared to a grammar. Additional
DSS can be added to LAMIRAGE to further improve coverage of user scenarios.

Neurosymbolic Ranking and Localization. Finally, we compared LAMIRAGE to two ablations
that remove the neural error localizer and the neural ranker. Without the ranker, the ablated version
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cannot distinguish between candidate repairs with the same edit distance. So we run the ablated
version without neural ranker 100 times, compute results, and report the average across each cutoff.
In Excel, full LAMIRAGE outperforms the version without neural localizer but is comparable to
the version without neural ranker. This behavior is due to the fact that we generate fewer repair
candidates with edit-distance ties in Excel, so there is less opportunity to exploit neural ranking for
tie breaking. In contrast, both neural ranking and localization play a significant role in PowerFx.

5.5 Discussion

We discuss some takeaways around error analysis and neural approaches.

Error Analysis. We consider the formulas in each domain that we cannot repair with LAMIRAGE
after considering the top-5 candidates. In Excel, we find that we can increase our coverage to 4
additional formulas if we change LAMIRAGE hyperparameters: a deeper backtracking would cover
3 formulas and a longer repair timeout would cover 1 more formula. Extending our approximate
grammar G with new productions would cover 4 additional formulas. Finally, if we add more type
constraints to C and token preprocessing DSS we would cover the remaining 9 formulas.

In the case of PowerFx, increasing the set of type constraints and DSS would increase coverage to
14 additional formulas. If we extend our approximate grammar, we would cover 2 of the remaining
formulas. For one formula, our neural localizer incorrectly predicts that a reliable token is the source
of the error — improving the localizer would resolve this issue. If we perform deeper deterministic
backtracking, we can solve 3 more formulas. If we increase the edit distance threshold, we solve
one more. The remaining two formulas require inserting reliable tokens.

The solutions proposed here for increasing coverage all come with tradeoffs. By increasing
backtracking depth, timeouts, and edit distance thresholds, expanding the approximate grammar,
and adding more DSS and constraints, we can increase the number of formulas repaired at the
expense of efficiency. LAMIRAGE does not make a decision on these fronts, but rather lets the
language developer choose the appropriate tradeoffs for their use case.

Neural vs LAMIRAGE. In our evaluation, LAMIRAGE outperformed neural baselines such as Cobex-
Epit. Cases where CopEx-EDIT failed (but LAMIRAGE succeeded) provide interesting insights into
challenges of purely neural approaches.

Given the Excel formula =IF(B6="", "",, CoDEX-EDIT (even at temperature=0.0) returns a
degenerate candidate repair that nests the user’s input repeatedly =IF(B6="","" ,IF(B6="",....
The fix simply requires a closing parenthesis. On other occasions, CobEx-EDIT adds spurious
additional code. For example, given the formula =LEN(MID(A2,1,SEARCH("<",A2)), Copex-EDIT
returns =LEN(MID(A2,1,SEARCH("<",A2)-1)) which changes the computation. This is especially
challenging for LC settings, where the user is less likely to spot errors due to their lack of develop-
ment experience. In other cases, CopEx-EDIT fails to recognize that there is an error altogether. For
example, given =B2< =EDATE(TODAY (), -33), CoDEX-EDIT returns the original input rather than
remove the space between the less than and equals operator (caught by LAMIRAGE’s constraints C).

Training a neural model for low code language repair can improve performance but may be
challenging due to data availability. Additionally, fine-tuning large pretrained models like CopEx
and Copex-EprT, while appealing, raises resource challenges (e.g. Codex has 12 billion parameters).
Alternatively, developers can rely on paid APIs, like OpenAI’s, but this can represent substantial
costs for high-volume low-code platforms (e.g. OpenAI’s completion API costs 6 cents per 1k tokens).
These models are also expensive at inference (prediction) time and unlikely to to be deployed in
resource-constrained environments for the foreseeable future.

Neural models will continue to improve, but symbolic systems can also be improved through
the addition of more domain knowledge. In practice, systems like LAMIRAGE, which combine both
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approaches, are a particularly interesting point in the design space. LAMIRAGE can quickly (and
cheaply, in terms of compute resources) produce effective repairs, but at the one-time cost of the
language developer providing an annotated CFG and DSS.

Applicability. We evaluated LAMIRAGE’s applicability on two popular low-code languages: Excel
and PowerFx. The former counts hundreds of millions of daily users, the latter is the language used
in PowerApps, one of Microsoft’s fastest growing offerings. While the ideas presented in LAMIRAGE
may provide a good starting point for tackling similar last-mile repair tasks in other languages,
such as small Python expressions, we leave that for future work and keep our focus on the low-code
domain. It is worth highlighting that the low-code domain is not restricted to a single language, but
rather consists of different platforms with different languages — for example, Salesforce lightning,
Creatio, Google sheets, Google AppSheet, Mendix, and other low-code platforms all have their own
languages.

6 INSTANTIATING THE FRAMEWORK

LAMIRAGE is a framework that can be instantiated to create a specific repair engine for a particular
language. This instantiation is guided by the language developer, and influences the kind of repairs
that will be produced for consumption by the end-user.

By design, the framework supports many choices/components so that a language developer can
choose the tradeoffs that are right for their domain and platform. To illustrate these choices, we will
discuss the necessary components, along with additional extensions that the language developer
may choose to instantiate.

First, the developer needs to provide LAMIRAGE with an annotated CFG. The CFG annotations
correspond to marking terminals as unreliable, and potentially setting different edit costs for
different unreliable tokens. If the user does not specify per-token edit costs, we use a default value
of 1. Most language developers already have a CFG for their domain, or can craft one that targets
the subset of the language they believe may benefit most from repairs. Similarly, in our experience,
language developers can quickly identify a set of unreliable tokens for their domain — often those
that are associated with punctuation. For example, the Roslyn® team immediately noted that braces
were unreliable tokens in the C# domain.

After receiving the annotated CFG, LAMIRAGE can produce a repair engine capable of fixing
syntax errors (as captured by the CFG) by performing edits on unreliable tokens (as captured by
the annotations). For some domains or use-cases, such a repair engine may suffice. To expand the
scope of repairs to semantic fixes, such as identifying incorrect function call arity and performing
edits to resolve this, we require the language developer provide domain-specific strategies. There
are domain specific strategies (DSS) that are likely to be useful across domains (such as checking
call arity) and need only be instantiated with domain-specific values (such as the function names
and associated number of arguments) — this was our experience with both the Excel and PowerFx
domains. Importantly, the language developer can add DSS incrementally, focusing on implementing
a check/fix strategy for observed user errors. In discussions with partner teams, this data-driven
approach to DSS development fits well with their traditional workflow.

If the language developer has access to a corpus of well-formed programs in their domain, they
may consider training the neural ranker component, which complements the edit-distance-based
ranking that takes place in the purely symbolic approach. To train the ranker successfully, the
language developer’s corpus should contain at least 10s of thousands of well-formed programs.
In our experience, these programs can be scraped from online resources (e.g. help forums or

3a NET compiler
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repositories) or production resources (e.g. product telemetry). We found that a relatively small
model performed well for ranking purposes, so modest GPUs like a K80 work well.

Furthermore, the language developer can also choose to train the neural localizer, to complement
the symbolic backtracking implemented by default. If the language developer has pairs of real
buggy programs and their corrected versions, as might be available from product telemetry, this
data is well suited for training the pointer network. If the paired corpus is relatively small (fewer
than 10s of thousands of pairs), the language developer can produce synthetic pairs by introducing
errors (uniformly at random) into their corpus of well-formed programs. Additionally, the language
developer can train the pointer network initially on these synthetic pairs and then fine-tune on
their real paired corpus. Similarly to the ranker, we successfully trained the pointer networks for
the Excel and PowerFx domains using modest GPU resources.

Note that without training a neural ranker and localizer, the language developer still has the
ability of using LAMIRAGE, as we can default to their symbolic alternatives. While the resulting
repair engine will fix less programs, as demonstrated by our ablation studies presented in Section 5.4,
the purely symbolic system can more easily be deployed in limited-resource platforms such as
the browser. Furthermore, the added value from the neural components may vary across domains
- in practice, it may be possible to implement post/pre-processing heuristics that cover enough
common cases to avoid the need for the neural components, when they are cumbersome to deploy.

Finally, the language developer has the option of setting different values for three hyperparame-
ters: the backtracking depth, a maximum local cost, and a maximum global cost - all of which come
with defaults that work well in our two evaluation domains. The backtracking depth determines
how far back edits are made from the detected error location. The maximum local cost is used to
prune out search candidates early that will have a total edit distance higher than the threshold.
The maximum global cost is the maximum edit distance threshold allowable for repair candidates
returned by the engine. The appropriate values for each of these hyperparameters depends on the
use case of the language developer. In particular, increasing the backtracking depth and the two cost
hyperparameters allows the repair engine to produce candidates with further away edit locations
and more edits. This increase in the search space may improve coverage, but will increase search
times and may require more investment in the neural ranker to distinguish candidates. Conversely,
reducing the values of these hyperparameters may produce fewer repair candidates but return
results quickly to the end-user. We expect language developers will have a set of buggy programs
to repair as benchmark tasks, and these can be used to pick appropriate hyperparameter values, as
is standard in many Al-based systems.

7 RELATED WORK

We discuss symbolic and neural error correction, and general program repair and synthesis.

Symbolic Approaches for Error Correction Historically, most practical implementations of
error correction for mistakes such as syntax errors have relied on greedy/simple approaches such
as panic error recovery [Aho et al. 1986] — where the processing system just deletes tokens until it
can resume parsing. However, more complete error recovery strategies do exist [Aho and Peterson
1972; Cerecke 2003; Corchuelo et al. 2002; Degano and Priami 1995; Fischer et al. 1979; Kim and Yi
2010; Rajasekaran and Nicolae 2014; Spenke et al. 1984]. The state-of-the-art symbolic approach to
error recovery, developed by Diekmann and Tratt [2020] and implemented in GRMTOOLS, improves
on Corchuelo et al. [2002]’s approach both in completeness (the ability to return minimum edit
sets) and speed (they optimize their implementation).

Like LAMIRAGE, these approaches enumerate repairs as edit operation sequences that allow
parsing to continue whenever an error is encountered. The key difference with LAMIRAGE stems
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from the increased expressiveness of its repairs. First, LAMIRAGE is syntax-guided but is not limited
to syntax repairs only. LAMIRAGE allows language developers to add domain-specific strategies,
which capture non-context free properties of well-formed programs, to increase the scope of
repairs. This allows LAMIRAGE repair engines to produce fixes for some semantic mistakes like
incorrect function call arity. Second, LAMIRAGE can address non-local errors — meaning errors that
require a repair that is not in the immediate location where the error is detected - by performing
backtracking. State-of-the-art symbolic systems such as GRmTooLs do not perform backtracking
as it leads to an explosion in the search space. LAMIRAGE mitigates this by combining two ideas.
When it backtracks, LAMIRAGE still limits editing actions to unreliable tokens (constraining the
space of possible candidates). Additionally, it backtracks up to a fixed depth and relies on a neural
localizer to identify candidate locations beyond that depth bound.

As both of these ideas increase the size of LAMIRAGE’s search space, the system also needs to
be more effective at comparing candidates. Tools such as GRMTOOLS rely exclusively on minimum
edit distance. In contrast, LAMIRAGE also employs a neural ranker that can break ties between
otherwise equidistant candidates.

Neural approaches for Error Correction Program repair systems are increasingly using deep
learning to correct syntax and semantic errors in general purposes programming languages [Ahmed
et al. 2021; Gupta et al. 2017; Santos et al. 2018; Tufano et al. 2018; Yasunaga and Liang 2020, 2021].
Our evaluation compares to three such methods (BiF1, Copex, Copex-Ep1T). Other work in the
space includes DeepFix [Gupta et al. 2017], which fixes syntactic errors in C programs using a
sequence-to-sequence approach; SynFix [Ahmed et al. 2021], which fixes Java syntax errors by
applying multiple deep learning models in sequence; and TFix [Berabi et al. 2021], which pretrains
a T5 transformer [Raffel et al. 2019] on natural language and fine-tunes it on buggy/repaired code
snippets mined from Github commits.

A challenge with purely neural methods is the lack of guarantees over outputs. For example,
language models are known to generate plausible but incorrect content, known as “hallucina-
tions” [Guo et al. 2021]. Such models are also known to introduce basic errors [Poesia et al. 2022],
which complicates repair. In contrast, LAMIRAGE’s candidate repairs are guaranteed to satisfy our
approximate grammar G and our constraints C. One way to mitigate this issue with neural models
is to increase their training data but availability (at scale) can be challenging in the LC domain.

Moreover, repair tools for general purpose languages, such as TFix* and SynFix or even non-
neural methods such as GetAFix [Bader et al. 2019], typically assume a more detailed oracle (static
analyzer) that provides detailed diagnostics. This oracle is not often available for LC domains, in
part due to lack of tooling.

General Program Repair and Synthesis Monperrus [2020] reviews the vast literature of au-
tomated program repair, most of which is focused on repair in the context of general purpose
programming languages[Bader et al. 2019; Gao et al. 2021; Goues et al. 2019b; Kim et al. 2013; Long
et al. 2017; Long and Rinard 2016; Mechtaev et al. 2016; Nguyen et al. 2013; Weimer et al. 2009] and
not low-code domains. In contrast, LAMIRAGE specifically focuses on last-mile repair in low-code
domains, where oracles such as test suites or static analyzers are not readily available. The lack
of such oracles has influenced the scope and design of LAMIRAGE. Specifically, we focused on
repairing errors that require small changes and that can be detected without substantial additional
context. Intuitively, these error correspond to those that a typical user might post to a help forum,

4 Applying pre-trained TFix to basic Excel formulas failed to generate any relevant repair candidates - fine-tuning TFix
would also require a more detailed Excel analyzer that is not available.
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where an expert low-code user can often understand intent and provide a fix simply from the
posted formula.

As discussed, there are parallels between LAMIRAGE’s syntax-guided approach and other syntax-
guided program synthesis systems [Devlin et al. 2017; Gulwani 2011; Microsoft PROSE Github
2022; Polozov and Gulwani 2015]. However, there are key differences. First, we only have the
buggy formula and no additional specification (e.g. input/output examples). Second, a generic
string transformation DSL is unlikely to result in valid repairs. In contrast to synthesis for program
transformations [Miltner et al. 2019; Rolim et al. 2017], LAMIRAGE does not mine edit patterns from
groups of programs but rather relies on the CFG and DSS to induce transformations of the user’s
buggy formula. Incorporating mined patterns into LAMIRAGE as DSS is left as future work.

Prior program repair work has explored the use of machine learning models during search. For
example, Prophet [Long and Rinard 2016] used a log-linear model to rank candidate patches before
validating them with a test suite. In contrast to this work, LAMIRAGE uses two neural models
during search: a pointer-network-based localizer and a transformer-based ranker. While Prophet
computes manually defined features over C patches, LAMIRAGE relies on the ability of neural
models to capture high-dimensional patterns without the need for manually defined features.
Prophet produces their candidate patches by applying template-based rewrites to the originally
buggy program. In contrast, LAMIRAGE performs a syntax-guided search as it processes the input
buggy program. Finally, LaMirage performs pruning while searching (based on an approximate
edit distance bound) compared to Prophet, which first generates all patches, ranks them, and then
validates them using a test suite.

More broadly, combining machine learning and symbolic methods has been explored by past work
both in the areas of program synthesis generally and program repair specifically, for example [Chen
et al. 2018; Ellis et al. 2018; Kalyan et al. 2018] and [Tang et al. 2021; Yu et al. 2019; Zhu et al. 2021],
respectively. Many of these systems use neural methods to reduce the search time (by constraining
or prioritizing search direction) and improving the ranking of competing candidates produced.
In this regard, LAMIRAGE takes a similar approach. However, in this work we introduce a novel
application of these techniques to the task of producing last-mile repairs that fix syntax and some
semantic errors in the low-code domain. Furthermore, we present various insights that show how
to effectively combine these techniques for our particular use case. Specifically, we show that we
can use relatively small models for both error localization and ranking in the low-code domain.
Both of these can be successfully trained with modest amounts of data — enabled by the smaller
model sizes — collected from a combination of help forums and product telemetry. In the case of
the neural localizer, we show that using a fallback strategy, where we employ the neural model
only when symbolic tracking fails to produce a candidate, lets us exploit the additional coverage
of the neural localizer without blowing up the search space. In the case of the neural ranker, we
show that applying a standard causal language modeling objective fails to work due to the skew in
unreliable token sequences — we introduced instead a balanced training set and a classification task
that can be iteratively applied to produce appropriate likelihood predictions.

Neurosymbolic Methods for Programming Tasks Prior work in the programming languages
and software engineering communities has explored the use of combining neural and symbolic
methods to assist developers with programming tasks.

Synchromesh [Poesia et al. 2022] improves the extent to which large language models, such as
Codex, can generate syntactically and semantically valid code from natural language utterances.
To do so, Synchromesh biases the decoding process towards tokens that would produce valid
completions. These tokens are derived from the associated grammar and domain constraints (such
as table schemas for SQL). Additionally, Synchromesh introduces target similarity tuning — a
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method for picking few shots for the prompt that are expected to have a similar program structure
to the intended program (as specified via the natural language utterance).

Rahmani et al. [2021] note that LLMs often fail to generate the desired program directly from
natural language descriptions, but the programs that they do generate often contain most or all
of the components that should appear in the desired program. Thus, their approach consists of
generating candidate programs from the natural language utterance using an LLM, and then mining
code fragments from these as components, and performing component-based synthesis over these
mined components (and a DSL) to satisfy the input/output examples provided. In particular, not
only are the components from the LLM useful for initializing the search, but other features of the
programs from the LLMs also help for pruning and guiding the beam search, as well as ranking the
synthesized candidates to learn programs more efficiently and from fewer examples. They show
that such an approach performs well in the domains of regular expressions and CSS selectors.

Verbruggen et al. [2021] combine LLMs into a traditional inductive synthesizer by identifying
subproblems that cannot be solved through syntactic transformations defined in the base DSL
and can be handed off to a LLM to produce a solution. By incorporating an LLM into a symbolic
synthesizer, their approach can support semantic transformations of inputs, such as returning the
currency symbol given a country name, without the need to manually define such operators.

Similarly to this line of work, LAMIRAGE combines both symbolic and neural methods. In
particular, LAMIRAGE uses a neural localizer and ranker, and integrates these into a symbolic
(syntax-guided) framework for processing buggy input programs and generating candidate repairs.
The contributions of LAMIRAGE are to apply these ideas to a new task (last-mile repair in the
low-code domain) and to arrive at the specific design that works well in practice (as shown by our
evaluation).

8 CONCLUSION

We presented LAMIRAGE, a last-mile repair-engine generator for programs written in low-code (LC)
formula languages. LAMIRAGE targets “last-mile repairs”, where the formula is almost correct and
has a few subtle errors. We designed LAMIRAGE to combine the advantages of symbolic and neural
techniques. We evaluated LAMIRAGE on real Excel and PowerFx formulas. Our results showed
that LAMIRAGE outperforms state-of-the-art symbolic and neural techniques in both domains. We
carried out ablation studies on the design decisions in LAMIRAGE. We discussed the useability of
our framework and design considerations, motivated by our ongoing partnership with industry
teams to integrate our repair engines into leading LC platforms. Finally, we are releasing our two
benchmark sets for future work in low-code domains.
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A APPENDIX
B NEURAL LOCALIZER

We use a publicly available implementation of Pointer Network for Neural Error Localizer: https:
//github.com/ast0414/pointer-networks-pytorch. We use cross entropy loss and Adam optimizer
for training. We train our model for 26 hours and 7 hours for Excel and Powerapps respectively.

B.1 Training Data

We train pointer network independently for Excel with 480572 synthetically generated well formed-
buggy formula pairs and Powerfx with 60802 synthetically generated well formed-buggy formula
pairs.

Vocabulary size: The vocabulary size for Excel was 12344 and for Powerfx it was 86224.

Data Preprocessing: We anonymize cell references, string literals and numbers for Excel. We
anonymize string literals and numbers for PowerFx.

Hyperparameters Values
Batch Size 256
Embedding Dim 256
Encoder Layers 4
Hidden Size 256
Learning Rate 0.0001
Loss Reduction sum
Early Stopping Patience 5
Number of Epochs 100

Table 3. Hyperparameters for trained Pointer Network for Excel and Powerapps

C DETAILED CODEX AND CODEX-EDIT TABLES

Approach Top-1 Top-3 Top-5
CopEx(t=0.0) 110 115 115
CoDEX(t=0.1) 110 120 120
CoDEX(t=0.3) 111 139 139
CoDEX(t=0.4) 110 148 149
CopEx(t=0.5) 108 152 154
CopEx(t=0.7) 111 156 160

Copex-EpIT(t=0.0) 145 146 146
Copex-EprT(t=0.1) 147 153 153
CopEex-EprT(t=0.3) 146 163 163
CopEex-EpIT(t=0.4) 142 163 165
Copex-EprT(t=0.7) 118 158 165
Copex-EpIT(t=0.5) 135 163 163

Table 4. Detailed Excel Results
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Approach Top-1 Top-3 Top-5
CopEex(t=0.0) 79 83 83
CopEx(t=0.1) 81 92 92
CoDEX(t=0.3) 84 12 117
CopEx(t=0.4) 86 114 130
CopEex(t=0.5) 86 114 127
CopEx(t=0.7) 85 117 132
Copex-EprT(t=0.0) 106 107 107
CopEex-EprT(t=0.1) 105 120 120
Copex-EprT(t=0.3) 106 129 131
Copex-EprT(t=0.4) 105 137 138
Copex-EpIT(t=0.5) 94 134 140
Copex-EprT(t=0.7) 79 122 137

Table 5. Detailed PowerFx Results

, Vol. 1, No. 1, Article . Publication date: July 2022.



	Abstract
	1 Introduction
	2 Motivating Examples and Overview
	3 Last-mile Repair Problem
	4 Repair-engine Generator
	4.1 Parser States
	4.2 Repair Algorithm
	4.3 Repair Candidate Enumeration
	4.4 Domain-Specific Parser State Transformers
	4.5 Ranking Repairs by Naturalness

	5 Evaluation
	5.1 Benchmarks and Datasets
	5.2 Baselines
	5.3 Results
	5.4 Ablation Study Over LaMirage
	5.5 Discussion

	6 Instantiating the Framework
	7 Related Work
	8 Conclusion
	References
	A Appendix
	B Neural Localizer
	B.1 Training Data

	C Detailed Codex and Codex-Edit Tables

