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Abstract. With the popularity of applications like Internet, sensor net-
work and social network, which generate graph data in stream form,
graph stream classification has become an important problem. Many ap-
plications are generating side information associated with graph stream,
such as terms and keywords in authorship graph of research papers or
IP addresses and time spent on browsing in web click graph of Internet
users. Although side information associated with each graph object con-
tains semantically relevant information to the graph structure and can
contribute much to improve the accuracy of graph classification process,
none of the existing graph stream classification techniques consider side
information. In this paper, we have proposed an approach,Graph Stream
Classification with Side information (GSCS), which incorporates side
information along with graph structure by increasing the dimension of
the feature space of the data for building a better graph stream classifi-
cation model. Empirical analysis by experimentation on two real life data
sets is provided to depict the advantage of incorporating side informa-
tion in the graph stream classification process to outperform the state
of the art approaches. It is also evident from the experimental results
that GSCS is robust enough to be used in classifying graphs in form of
stream.

Keywords: Graph Classification, Graph Streams.

1 Introduction

With the expansion of technologies that generate graph data in form of stream
like Internet, social network, sensor network etc. into our everyday life, graph
stream classification is gaining significant research interest in data mining and
machine learning community. Graph stream classification is a two step process,
where in the learning step, features are extracted from each training graph and
a classification model is built, and in the classification step, class labels of each
test graphs are predicted using that classification model.
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Graph is a very popular data structure, suitable for representing schema-
less data like representing various activities among nodes in a network. In many
graph streams, various side attributes are associated with each graph which may
contain semantically relevant information to the graph linkage structure. These
informations may contribute to build a more discriminative classification model.
Let us look at some examples. First, each article residing in scientific reposi-
tories(e.g. Google Scholar [1], DBLP [2]) can be represented using a bidirected
authorship graph where authors are nodes and their co-author relationships con-
stitute bidirectional edges among the nodes. Along with each graph, various
types of side attributes like terms and keywords of the paper can be associated.
Second, communication via message passing among users in a social network
in a small time window can form a directed graph where users are nodes and
messages sent and received among users make directed edges among the corre-
sponding nodes of users of those messages. Different types of side attributes like
user locations, user profile informations, message types (e.g. personal message,
group chat) and platforms (e.g. PC, mobile) can be associated with each graph
in the stream. Hence, side information should be incorporated along with graph
linkage structure in the graph classification process to improve classification ac-
curacy.

Features that only occur with high frequency in objects with one particular
class label, used to discriminate among objects with two or more different class
labels, are known as discriminative features. The aim of any classification algo-
rithm is to build a classification model using discriminative features, which help
to make finer distinctions among objects with different class labels, thus improv-
ing classification accuracy. By considering side information along with the graph
linkage structure, dimension of the feature representation of a graph object can
be increased. This increased dimensionality with features related to the graph
structure, can be of great use to find more discriminative features from graph
objects, hence increasing classification accuracy.

One of the inherent challenges in graph stream classification is storing the
received objects from the stream and extracting features from the enormous vol-
ume of data. For example, there are 4.2 × 109 IPv4 addresses. So there can be
4.2× 109 distinct nodes and 9.2× 1018 distinct edges in the web graph stream.
Storing this huge amount of data is intractable. Traditional graph classification
algorithms require multiple scans over the whole data, which is not possible in
stream scenario. So a summary of the graph stream is saved for future mining.
As information loss is occurring while saving a summary of the graph stream,
the results will be approximate rather than exact.

Various graph mining approaches have been defined in recent times to solve
different tasks like classification [3], correlation mining [4], recommendation on
social networks [5] etc. Though there are some approaches for graph stream clas-
sification [3][6][7][8], to the best of our knowledge none of them considers side
information in the mining process. Aggarwal et al. [3] proposed a probabilistic
discriminative subgraph mining approach, where the received graphs are at first
compressed and saved into a summary table using two random hashing schemes
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and then frequent and discriminative subgraphs are mined from that table to
build a rule-based classifier. A clique based approach was proposed by Chi et al.
[6] where the graphs are at first compressed into a fixed size node space and then
discriminative clique patterns are extracted from each compressed graph to build
a rule-based classifier. Discriminative hash kernel approach was proposed by Li
et al. [7] to classify graph streams. Guo et al. [8] proposed an approach for graph
stream classification which uses a combination of hashing and factorization of
graphs. Yu et al. [9] considered side information in the graph stream clustering
process and their experimental results showed the benefit of considering side
information in the clustering process. One major drawback of the existing graph
stream classification techniques is that, they do not consider side information in
the classification process and the side information can help to improve classifi-
cation accuracy.

Inspired by this drawback of the current graph stream classification tech-
niques, in this paper we are proposing an approach GSCS for graph stream
classification which considers side information. In GSCS, we have mostly fol-
lowed the discriminative clique based approach proposed by Chi et al. [6] for
graph structure mining. The volume of side information in the stream scenario
can also be potentially infinite. So a hash based technique is used to tackle
this storage problem and extract discriminative features from side information.
Finally a majority voting classifier, inspired from Chi et al. [6] approach, is de-
signed for classifying the future stream.

The rest of the paper is organized as follows: Section 2 explains our proposed
approach in detail with necessary examples and algorithms. Section 3 focuses
on the performance analysis of our proposed technique and shows the benefit of
considering side information in the classification process. Finally we bring the
paper to a close in Section 4.

2 Our Proposed Approach – GSCS

First, we introduce the problem formulation. Assume we have a stream of graphs
GS denoted as {G1, G2, . . . , Gn, . . .}. E represents the set of all distinct edges,
{(X1, Y1), (X2, Y2), . . . , (Xn, Yn), . . .} in the graph stream. (Xi, Yi) represents an
edge between the two nodes Xi and Yi. Each graph Gi is drawn on the sub-
set of massive node set V and contains a subset of edges from set E. GS
also has d different types of side information associated with it, denoted by
τ = {T1, T2, . . . , Td}. Each type of side information Tl, where l = 1, 2, . . . , d
has multiple values Sl = {Sl1, Sl2, . . . , Sln, . . .}. Our aim is to incorporate side
information in the graph stream classification process in order to improve the
classification accuracy over the existing graph stream classification algorithms.

Now, we give an overview of our GSCS approach. GSCS is composed of four
modules, showed in Figure 1. Each graph object consisting of graph structure
and side information, is received from the stream and processed according to
GSCS approach. The first module hashes a graph’s edges into a fixed-size edge
set and then maximal cliques are mined from the compressed graph. In this
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module, we have modified the approach in DICH [6] by using a more efficient
algorithm, for maximal clique detection for better performance. Second module
is followed from the approach stated in DICH [6], for managing the the ex-
ponential number of cliques into a fixed-size feature space. The third module
is used for side information mining and its design is inspired from DICH [6].
Finally, we have designed the fourth module to incorporate side information in
the classification process.

Fig. 1. GSCS approach for graph stream classification with side information

As in stream scenario, due to the high incoming rate of enormous amount of
data, a summary of stream needs to be saved for future mining. An in-memory
data structure, enabling high speed access-update operations, is used for stor-
ing the summary. DICH [6] used one in-memory table, where GSCS will be
using (d+1) in-memory tables. One table for the summary of the graph linkage
structure, the other d tables for the summary of the d types of side information.
These modules are briefly described in Section 2.1-2.4.

2.1 Clique Detection

In this module, the original edge set of each received graph Gi is hashed into a
compressed edge set, and maximal cliques are mined from the compressed edge
set to be used as feature representation of the linkage structure of graph. In
graph stream mining, massive universe of nodes and continuous arrival of data
make storing the original stream intractable. So a summary of the stream needs
to be saved for mining purpose. Hence, we hash the original edge set of graph Gi

to a compressed edge set. Edge compression involves hashing the two node labels
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of an edge into a fixed-size node space {1, . . . , N}, and then considering the two
hashed node label values as a compressed edge. Each time an edge is mapped
into a compressed edge, the weight of the compressed edge is increased by 1. If
multiple edges of Gi are mapped into the same index due to hash collision, the
weight of that compressed edge is set to the number of edges that result into the
same index after applying hash function.

Fig. 2. Clique detection in a compressed graph

Compressed representation of the original graph is significantly smaller and it
is now feasible to run clique detection algorithm. Different weights of compressed
edges are taken into account and maximal cliques are mined at different edge
weight threshold. Graphlet basis estimation algorithm [10] is adapted for this
purpose. Though DICH [6] used the naive BronKerbosch algorithm [11], for
improved performance, GSCS uses BronKerbosch with pivoting technique [12].

Let Gi be the compressed graph of Gi. G
(t)
i denotes the compressed graph

which consists of only compressed edges with weight ≥ t. Let max(Gi) denotes
the largest and min(Gi) denotes the smallest edge weights in Gi, respectively.
For maximal clique detection, at first we apply threshold to the compressed

Gi at different weight level t to get G
(t)
i , where t = {max(Gi), . . . ,min(Gi)}.

BronKerbosch with pivoting algorithm [12] is used at every G
(t)
i to identify all

the maximal cliques. All the cliques found in G
(t)
i at different weight levels,

{G(t)
i }

max(Gi)

t=min(Gi)
, are represented as the clique union set Ci of graph Gi. This

procedure is shown in Figure 2 and detailed in Algorithm 1.
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Algorithm 1. Clique Detection in Compressed Graph

Input : Graph Gi, size of the compressed node space N
Output: Clique set Ci of graph Gi

1 begin

2 Gi ← Edge−Hash(Gi, N)
3 Ci ← φ

4 for t ← max(Gi) to min(Gi) do

5 G
(t)
i ← 1(Gi ≥ t)

6 C
(t)
i ← Bron−Kerbosch− with− pivoting(G

(t)
i )

7 Ci ← Ci ∪ C
(t)
i

8 end for

9 end

2.2 Clique Hashing

Each graph received from the stream is compressed and decomposed into maxi-
mal cliques and then frequent and discriminative cliques are identified to build
a rule based classifier. As there can be 3n/3 maximal cliques [13] from a graph
of n vertices, so there can be exponential number of cliques generated from
the compressed node space. It makes the task of quantifying clique patterns for
discriminative feature mining infeasible. To tackle this problem, each clique is
hashed into a fixed-size feature space and the regarding information is updated
in an in-memory pattern class table.

An in-memory pattern class table Δ0, consisting of P rows and M columns,

Algorithm 2. Clique Hashing

Input : Clique set Ci of graph Gi

Output: Update graph linkage structure summary table Δ0

1 begin
2 for j ← 1 to size(Ci) do
3 Hi,j = hash(Ci,j)
4 Δ0[Hi,j , Li] = Δ0[Hi,j , Li] + 1

5 end for

6 end

where P is the size of the feature space and M is the number of distinct class
labels in stream, is maintained for storing the graph structure summary. For
each clique Ci,j in clique set Ci of graph Gi, a hash value Hi,j ∈ {1, . . . , P} is
generated. When a clique with class label Li generates hash value Hi,j , the entry
at Δ0[Hi,j , Li] is incremented by 1, so that the clique pattern Ci,j contributes
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to the class label Li. This in-memory clique pattern class table Δ0 is continu-
ously updated by cliques as with the progression of the stream. The steps of this
procedure is given in Algorithm 2.

2.3 Side Information Hashing

As the total number of aggregated side attributes associated with each received
graph from the stream can be potentially infinite and it is not feasible to store
them directly, so hashing is applied to save a summary of the side information.
There are d pattern class tables for storing the summary of the d different types
of side information. Each table consists of P rows and M columns where P
is predefined size of the feature space and M is the number of distinct class
labels in the stream. All types of side information values are hashed into the
same fixed-size feature space {1, . . . , P} using the same hash function. Each side
information value Slj , where j = 1, 2, . . . , q and q is a finite number, of type
Tl, where l = 1, 2, . . . , d, associated with each graph Gi of the graph stream is
hashed to generate a hash index Hi,lj ∈ {1, . . . , P}. The i’th graph has class
label Li. Then the entry Δl[Hi,lj , Li], in the side information pattern-class table
Δl is incremented by 1. These steps are shown in Algorithm 3.

Algorithm 3. Side Information Hashing

Input : An array of sets of all types of side information SIi of graph Gi

Output: Update the corresponding side information summary table Δl

for each type l of side information, where l = 1, . . . , d

1 begin
2 for l ← 1 to d do
3 for j ← 1 to size(SIi[l]) do
4 Hi,lj = hash(SIi[l]j)

5 Δl[Hi,lj , Li] = Δl[Hi,lj , Li] + 1

6 end for

7 end for

8 end

2.4 Discriminative Feature Extraction and Classifier Construction

GSCS uses (d+1) in-memory pattern class tables where Δ0 is for saving graph
linkage structure summary and Δ1, . . . , Δd are for storing a sketch of each types
of side information in their corresponding table. α and θ, two parameters are
used for discriminative feature extraction from these tables. α is the frequent
pattern threshold used for selecting frequent features and θ is the discriminative
pattern threshold used for selecting frequent yet discriminative patterns [6].

At first, for identifying frequent features, the values in each row of a table are
summed up and divided by the maximum row sum in that table. The resulting
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Fig. 3. A small example of frequent and discriminative feature mining. (a) Pattern
class table Δ0 which stores graph structure summary, composed of 7 clique patterns
{p1, . . . , p7} (feature space size is 7) and 3 class labels {m1, m2,m3}. (b) The row sum
of each clique pattern with corresponding occurrence frequency (i.e. each row sum in a
table is divided by the maximum row sum of that table). (c) Frequent clique patterns
with frequencies above the frequent pattern threshold α. (d) Each clique patterns
occurrence ratio in each classes. (e) Finally, selected frequent and discriminative clique
patterns where maximum ratio of each pattern is greater or equal to discriminative
pattern threshold θ.

values indicate the occurrence frequency of a set of cliques in the graph stream.
Frequent threshold parameter α is then used to filter out the infrequent patterns
whose occurrence frequency are less than α. The remaining patterns are candi-
date for the discriminative feature selection.

To find the discriminative features, we need to start comparing the occurrence
ratios of the features in M classes. For a candidate feature, its occurrence ratio
in column i, where i = 1, 2, . . . ,M , indicates the probability that the feature
belongs to class label i. Higher occurrence ratio of a feature on a certain class
indicates a better discriminative capability. Discriminative threshold parameter
θ is used to select features whose maximum ratios ≥ θ. The process of finding
discriminating features from pattern class table using the threshold pair (α, θ)
is shown in Figure 3.

Then, a majority voting rule-based classifier is constructed, which has (d+1)
sets of discriminative features, 1 set corresponds to the discriminative clique
patterns and another d sets correspond to the sets of discriminative features
extracted from the d side information pattern class tables. Given, a test graph
Gtest, the clique set C of Gtest is extracted using Algorithm 1. All distinct types
of side information are directly hashed and stored into the array of sets SI ac-
cording to their side information type. Then, all the extracted features from
graph Gtest are given to the majority voting based classifier and for each hashed
feature that has a corresponding discriminative pattern of its own type, the class
label of that discriminative pattern is taken a vote for the class label of the graph
Gtest. Finally the label of the test graph Gtest is determined from the majority
of the class label votes from the classifier. This is detailed in Algorithm 4.
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Algorithm 4. Graph Stream Classification with Side Information

Input : A test graph Gtest from the stream
Output: Predict the class label of Gtest

1 begin
2 L ← φ
3 Ctest = Clique −Detect(Gtest);
4 for i ← 1 to size(Ctest) do
5 H0,i ← hash(Ci)
6 L0,i ← Find−Rule(Δ0,H0,i)

7 end for
8 for l ← 1 to d do
9 for i ← 1 to size(SIl) do

10 Hl,i ← hash(SIl,i)
11 Ll,i ← Find−Rule(Δl,Hl,i)

12 end for

13 end for
14 Label = Majority − V oting − Classifier(L)

15 end

3 Experimental Results

In this section we will present the experimental results and techniques. We tested
our proposed approach, GSCS for effectiveness and efficiency and compared the
results with existing DICH [6] approach. We used two real word data sets, CORA
[14] and IMDB [15].

CORA Data Set. The CORA data set contains scientific articles on computer
science. To create a graph stream from the articles we considered the co-author
relationship as edges of the graph. Research topics were used as class labels.
Terms and citations were used as side information.

IMDB Data Set. The Internet Movie Database, IMDB, is a website which
contains detailed information about movies and TV shows. We scraped a sample
of movies from IMDB which contains 3535 movies released in United States
during 2000-2015. We created graph object from each movies using actor-pair
as edges. The genre of the movies were used as class labels. We extracted two
types of side information: (a) plot keywords and (b) directors.

We used 90% of each data set as training data and used the other 10% as
testing data. There are 4 parameters to consider while using GSCS and DICH,
frequent pattern threshold α, dicriminative pattern threshold θ, the node space
size N, the hash space size P. We vary the parameters and show how GSCS
performs in comparison to DICH. The default values for parameters are: α =
.05, θ = .3, N = 500, P = 10000.
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All tests were run on an Asus K550JK running Windows 8.1 x64 with a 2.8
GHz Intel Core i5-4200H CPU and 8 GB of main memory. Both approaches were
implemented with C++ and were compiled with tdm-gcc 4.9.2.

Figure 4, 5, 6 and 7 shows different effectiveness measures for GSCS and
DICH in both data sets. We measured precision, recall, balanced accuracy and
F1 score for multi-class classification [16]. From the graph it is apparent that
GSCS performs better than DICH in terms of classification effectiveness. The
extra dimensionality provided by the side information helps GSCS to be more
effective.

Fig. 4. Balanced accuracy comparison between GSCS and DICH by varying α

Fig. 5. F1 score comparison between GSCS and DICH by varying α

Fig. 6. Precision comparison between GSCS and DICH by varying α

Figure 8 shows that GSCS takes a little bit extra time than DICH. This is
the overhead of processing the side information along with the graph structure.
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Fig. 7. Recall comparison between GSCS and DICH by varying α

GSCS spends most of its time in feature extraction from the graph and side
information. GSCS can process on an average 600 graphs per second in both
data sets which is quite good for the stream scenario.

(a) CORA (b) IMDB

Fig. 8. Time comparison between GSCS and DICH by varying data set size

Since GSCS does not store any data other than in-memory tables for graph
and side information, the memory usage is almost constant. In our experiments
with both data sets the maximum memory used by GSCS was 100MB. This
makes GSCS ideal for the stream scenario.

From the above experimentation, we can conclude that, GSCS is effective in
classification of graphs with side information and efficient in the graph stream
scenario. Also GSCS outperforms the state of the art graph stream classification
approach DICH by providing better performance.

4 Conclusions

In this paper we proposed the first approach which incorporates side information
in the classification process of graph streams. The existing graph stream clas-
sification algorithms only consider the graph structure and do not utilize side
information in the classification process. Many real life applications generate
graph streams where side information is associated with each graph, which con-
tains semantically meaningful information relevant to the graph structure, thus
can help to build a more accurate classification model. Mining graph streams is
a challenging problem because of the high computational cost for graph struc-
ture mining and storage difficulty in stream scenario. In our proposed approach
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GSCS, a graph is first compressed and decomposed into maximal cliques. Then
both clique patterns and side information are hashed and stored into correspond-
ing in-memory summary tables for discriminative feature extraction to build a
majority voting classifier. The experimental results show that our proposed ap-
proach significantly outperforms state-of-the-art method [6] which only considers
graph structure and thus depicts the potential of side information in the graph
classification process. Experimental results also infer that our approach is effi-
cient and scalable enough to be applied in real life graph stream scenario.
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