
An Efficient Method for Extracting Subtrees Against Forest
Query

Shafaet Ashraf
Department of Computer Science and

Engineering
University of Dhaka

Bangladesh
shafaet.csedu@gmail.com

Sheikh Muhammad Sarwar
Institute of Information Technology

University of Dhaka
Bangladesh

smsarwar@du.ac.bd

Md. Abeed Hassan
Department of Computer Science and

Engineering
University of Dhaka

Bangladesh
abeedcsedu@gmail.com

Dr. Saifuddin Md. Tareeq
Department of Computer Science and

Engineering
University of Dhaka

Bangladesh
smtareeq@cse.univdhaka.edu

Anna Fariha
Department of Computer Science and

Engineering
University of Dhaka

Bangladesh
anna@cse.univdhaka.edu

ABSTRACT
In this paper, we present an algorithm to search and rank
top-k approximately matched subtrees from a tree database,
where the query is a collection of trees i.e. a forest. Even
though existing algorithms can handle a single tree query,
we argue that forest query would be significantly useful in
some real life applications including biological domain. To
address the issue we have proposed a method to find rele-
vant subtrees and rank those given a tree database and a
forest query. Tree edit distance is used to find and rank a
set of subtrees with a pruning technique to improve the per-
formance of the algorithm. We have tested our algorithm
on different data sets and the efficiency of the searching and
ranking process show promising results. Experimental re-
sults suggest that our algorithm improve run time at this
stage and in future we would like to make it more useful for
practical large data set.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

IMCOM ’15, January 8-10, 2015, Bali, Indonesia
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3377-1/15/01$15.00
http://dx.doi.org/10.1145/2701126.2701195 .

Categories and Subject Descriptors
H.3.3 [[Information Storage and Retrieval]: Informa-
tion Search and Retrieval—search process

General Terms
Algorithm, Data Structure

Keywords
XML Retrieval, Forest Query

1. INTRODUCTION
There is a growing need of subtree matching algorithms

in various fields. It is particularly useful for XML docu-
ments [1]. It is used to join heterogeneous XML documents
when two documents with different structures convey ap-
proximately the same information [2, 3]. Tree matching al-
gorithms can be used for matching diverse data structures
like molecular networks or SQL data types modelled as a
graph [4, 5]. In many of the cases finding exact matching is
not possible but approximate matching can serve the pur-
pose. Thus, an efficient algorithm for finding approximate
matching is important [6]. State-of-the-art algorithms can
find top-k subtrees from tree database in polynomial time [1,
6], but handling query as a forest is still an issue that haven’t
been addressed yet.

In any kind of text search engine, query usually takes the
form of a list of keywords. The search engine finds a set
of documents that matches all or a subset of the keywords.
After that it ranks those set of documents under certain cri-
teria. If query keywords appear more closely in a document,
it is considered more relevant and hence ranked higher in

the result set. Analogous to that searching inside an XML
document it is very likely that the query can come as a forest
of trees instead of multiple keywords. For example, a user
may search for some books in a book store that categorizes
and stores their content as an XML file. The XML database
may look like the one shown in figure 1. Now, suppose that
a user wants to search for two books and naturally the query
may take the form of a forest as shown in figure 2.

Figure 1: Sample Database

Figure 2: Sample Forest Query

In this scenario, exact match is not enough, approximate
matching can be useful to the user too. Existing algorithms
can find approximate matching only when query comes as a
tree but they don’t support approximate matching against
forest query. In this paper, we present an algorithm that
takes forest query as its input and returns a collection of
sub-trees extracted from a tree structured document. We
rank those collection of sub-trees on the basis of tree edit
distance and compactness. Tree edit distance reflects how
closely each tree component of the query matched a sub-
tree in the tree structured document. Compactness reflects
closeness of resulting subtrees in the document and it is ana-
logues to proximity in keyword search.

2. BACKGROUND AND RELATED WORK

2.1 Basic Definitions

2.1.1 Tree
A tree is a connected acyclic graph. Each two vertices

of the graph are connected by exactly one path. A tree
contains V vertices and E edges where E = V −1. A tree is
called a rooted tree if one vertex has been designated as the
root. All other nodes have orientation away from the root.
In this section, each reference to tree will refer to a rooted
ordered connected acyclic tree.

2.1.2 Forest
A forest is an acyclic graph. Forests therefore consist only

of (possibly disconnected) trees and hence named as forest.
A forest F = (T1, T2, ..., Tn) is a disjoint ordered union of
trees. A forest is ordered and rooted when all its trees are
ordered and rooted.

Figure 3: Rooted Ordered Tree

2.1.3 Lowest Common Ancestor (LCA)
Depth of a vertex v is defined by number of edges in the

path between root vertex and v. Root vertex has zero depth
by the aforementioned definition. Height of a tree T is de-
fined by the depth of the deepest vertex. Ancestor of a
node n is defined as set of nodes Sw such that each element
w ∈ Sw lies in the path from root to u. In figure 3, an-
cestors of vertex 4 are 2 and 1. Common Ancestor for two
vertex u and v is any vertex w such that w ∈ ancestor(u)
and w ∈ ancestor(v). Lowest Common Ancestor for two
vertex u and v is the node w such that it has lowest depth
among all the common ancestors of u and v.

2.2 Tree Edit Distance (TED) Problem
The Tree Edit Distance is defined as the minimum-cost

sequence of node edit operations that transform one tree
into another. Lets assume S is a sequence of edit operations
s1, s2..., sk. Lets define a cost function γ(S) which returns
the cost of the edit sequence S. Then the edit distance
between T1 and T2 is defined by:
δ(T1, T2)=min{γ(S) | S is an edit operation sequence tak-

ing T1 to T2}

2.2.1 Existing Tree edit distance Algorithms
TED is an extension of string edit distance problem. String

edit distance problem finds minimum number of steps to
transfer a string to another string. Tree edit distance algo-
rithm does the same for a tree. In a word it is a similar-
ity measurement between two trees. The problem was first

introduced in 1979 by Kuo-Chung-Tai [7]. Later in 1989
Zhang-Shasha [8] proposed a dynamic programming algo-
rithm to solve this problem. In 2012 Augusten et al. [9]
proposed RTED algorithm which works good for any tree
shape. In this work, we have used Zhang-Shasha algorithm
as a subroutine and this section will be focused on that al-
gorithm.

2.3 Top-k Approximate Subtree Matching Prob-
lem

Let T is a tree database and Q is the query. ti denotes a
subtree of the tree whose root is ti. The problem is to find
a set of subtree St = t1, t2, ..., tk such that TED(T, t1) ≤
TED(T, t2) ≤ ... ≤ TED(T, tk). That means the sub-trees
in the set are sorted in ascending order with respect to edit
distance with the query. Figure 4 shows an example of top-k
approximate subtree matching algorithm.

Figure 4: Top-k Approximate Subtree Matching Ex-
ample

2.3.1 Existing Top-k Approximate Subtree Matching
Algorithm

When we need to find the tree edit distance from a large
XML trees it becomes difficult. Memory efficiency and scal-
ability are very important for the edit distance. In this sec-
tion, we will discuss how to extract Top-k best matched
subtree from a tree database. Augsten et al. proposed an al-
gorithm to compute top-k subtree [10]and Agarwal et al. [6]
presented an algorithm which uses which establishes a one-
to-one correspondence between trees and sequences. In this
work, we have used the algorithm proposed by Augsten et
al. as a subroutine of our algorithm [10].

3. PROPOSED ALGORITHM FOR PROCESS-
ING FOREST QUERY

In this section, we formally define forest query and present
an algorithm to handle forest query. Our algorithm finds at
most k subtrees, which covers the forest fully or partially.
We also propose a heuristic to rank the subtrees.

3.1 Definition of Forest Query

A forest query is a set Q={T1, T2, ..., Tn} where n ≥ 1 and
each Ti ∈ Q is a ordered rooted tree. Existing algorithms
can handle the query when n=1; so tree query is just a
special case of forest query.

3.2 Steps of Proposed Method
Lets assume we have a tree database D, which is a rooted

ordered tree. TASM algorithm [10], which takes a tree
database and a query tree as parameter and returns a set
consists of k trees sorted in ascending order of relevancy.

3.2.1 Extraction of Subtrees
Lets assume, that the input to our algorithm is a forest

query Q contains n subtrees i.e. n components. At the
first stage of our algorithm, we apply a method getdata,
which extracts subtrees using the TASM algorithm. For
each tree Ti in the query Q, getdata extracts subtrees using
the following steps:

1. Let FS be an empty set, FS= φ.

2. For each Ti ∈ Q use top-k function to get top-k rele-
vant subtrees and append the set in FS.

3. Return the set FS.

Therefore getdata will return a set FS where each element
of FS is also a set. Therefore, ith element fsi ∈ FS will
contain top-k relevant subtrees for Ti ∈ Q.

3.3 Finding Candidate Subtrees
As we have n trees in our query the cardinality of set

FS will be n. Now, we generate all possible candidate forest
from the set FS. A candidate forest is a setR = {T1, T2, T3, ...,
Tn} such that n ≥ 1 and Ti ∈ FSi. So R is a set consist-
ing of one subtree from each element of FS and there are
kn candidate forests as there are k elements in each ele-
ment in FS. Finally, for each candidate forest, we find the
candidate subtree that contains the whole forest and that
subtree is the smallest subtree covering the forest is actually
the lowest common ancestor of the root nodes for each sub-
tree Ti ∈ R. Formally we can say that a candidate subtree
generated from a candidate forest R = {T1, T2, T3, ..., Tn}
is LCA(r1, r2, ..., rn) where ri is the root node of Ti. After
finding all candidate subtrees we need to rank them to find
the top-k candidate subtrees and for that reason we need to
compare and sort candidate subtrees.

3.4 Scoring Candidate Subtrees
In this section we define a score to compare two candidate

subtrees to sort them. For each candidate subtree we assign
it a score based on following criteria:

Similarity Measure: Each candidate subtree is gen-
erated from a candidate forest R. We use R to measure
similarity. Let Qi be the query tree, which matched ith

component Ti of R. Then similarity score s for a candidate
forest R can be defined as below:

s =
n∑

i=1

TED(Qi, Ti)

In the above equation TED is the Tree Edit Distance func-
tion, which is defined in 2.2. Similarity measure indicates
how similar a candidate subtree is with the forest query.

Lower value of s suggests close similarity and s=0 denotes
exact match.

Compactness: With similarity measure, we also con-
sider the notion of compactness into account to assess the
quality of the results. Compactness depends on root of the
candidate subtree and indicates how closely each component
of the candidate subtree are attached. Let R be the candi-
date subforest and r is the root of the candidate subtree.
Compactness is calculated by following formula:

c =
n∑

i=1

distance(r, Ti)

Based on the above criteria, we have defined a total score
function, which is the result of a simple addition of the sim-
ilarity measure and compactness. Total Score for a subtree
is simply sum of both measures.

score = s+ c.

Less score means a better match while higher score means
a worse match.

3.5 Search Space Pruning
A simple but effecting pruning technique is applied when

we obtain k results. We keep track of the worst result found
so far. When we build a new subtree we check if the score
for it is worse than the worst result found so far. If it is
worse, then there is no need to go in that branch anymore
because that will not yield any better results. In perfor-
mance analysis section we have shown that this branch and
bound technique can reduce lots of branches and thus reduce
running time.

3.6 An Example Showing the Execution of the
Proposed Algorithm

In this section, we show a sample execution of our algo-
rithm. We have implemented the algorithm in Python and
applied the top-k approximate subtree matching algorithm
(TASM) as a subroutine. TASM algorithm uses the tree
edit distance algorithm by Zhang-Shasha to find approxi-
mate matching.

The sample XML document, on which we are going to
search with a forest query is shown in figure 5. In the figure,
the xml document is represented as a tree. Now, we show a
sample forest query in figure 6 and the forest contains two
trees, Q1 and Q2. For this example, we assume k=2 i.e. two
subtrees will be returned for each component of the forest
query. In figure 6, it can be seen that according to tree edit
distance algorithm, best matched subtrees from the XML
document for tree Q1 is M1 and M2 , while for tree Q2,
P1 and P2 are the best matches. As a consequence, in all
combination we would have a set R containing four results
(M1,P1), (M1,P2), (M2,P1), (M2,P2). Now we will find and
rank subtrees that contains both queries.

Figure 7 shows position of the matched subtrees in the
XML tree database. From figure 6, it is easily observable
that the subtree that contains (M1,P1) pair would have the
root node shakespear, which is the LCA of M1 and P1. It is
actually the candidate subtree that we have defined in sec-
tion 3.4. Now, for all the elements of set R we will have to

find the candidate subtrees containing them and finally rank
those subtrees according to the measure we have defined in
3.4.

Figure 8 shows what happens if we choose subtree P1 and
M2. Two nodes have mismatched label; one for P1 and one
for M2. So, from similarity measure we find s = 2. The
LCA of P1 and M2 is the root node, which is labelled as
bookstore. The distance of P1 from LCA(P1,M2) is 3 and
from M2 it is 3 too. Hence, the sum of distances c = 3+3
= 6. As a result, the score for pair (P1,M2) is s+c = 2+6
= 8. Now, for all the pairs in set R we calculate the scores
and rank the pairs in ascending order of scores. We show
the calculation process using figure 8, figure 9 and figure 10.
We can also conclude that the subtree for (P1,M1) is the
best match as it has the lowest score 3 (shown in figure 10).

Figure 5: XML Database

Figure 6: Query Forest and Top-k Approximate
Subtree Matching for Each Query

Figure 7: Position of Matched Subtrees in the XML
Database

Figure 8: Selecting subtree P1 and M2 as a candi-
date forest.

4. PERFORMANCE ANALYSIS
In section 3.5, we have mentioned that our pruning tech-

nique will be able to reduce lots of branches and hence reduce
the execution time. After implementation and experimenta-
tion with generated synthetic database we obtain results and
it proves the aforementioned claim empirically. We mainly
worked on two randomly generated databases, one have only
64 nodes, another have 8890 nodes. According to our ex-
periment, total number of branches largely depend on the
number of trees in the forest. We have experimented for dif-
ferent size trees and found that number of pruned branches
increase rapidly with forest size. Note that performance
doesn’t depend on individual tree size of the query forest,
rather it depends heavily on the number of trees in the forest
as the number of candidate sub-trees increases exponentially
with an increase in the number of trees in the forest.

In order to show the efficiency of our algorithm, at first,
we show performance dependency on the number of trees in

Figure 9: Selecting subtree P2 and M2 as a candi-
date forest.

Figure 10: Selecting subtree P1 and M1 as a candi-
date forest.

the query forest. Performance statistics show the number of
branches pruned and the run-time analysis.

Branch Pruning: Figure 11 shows that the number of
pruned branches is significantly large for a database con-
sisting of 64 nodes and that implies the pruning is fairly
efficient. In figure 12, we show the result for branch pruning
on a larger database containing 8890 nodes and k = 4. In
figure 13, we show the efficiency of pruning by varying the
size of result set obtained for a forest query while keeping
the number of forests constant.

Runtime: As this is a complete search algorithm, run
time increases exponentially with number of forests in query
tree. But the branch pruning has significant impact on run
time. Figure 14 shows run time with and without pruning
for k = 2 and 64 node database. Run time for k = 4 and
8890 node database is shown in figure 15. In figure 16, we
show the run time with and without pruning by varying the

size of result set obtained for a forest query while keeping
the number of forests constant.

Figure 11: Branch Pruning for different query forest
size. k=4, database size=64 nodes

Figure 12: Branch Pruning for different query forest
size. k=4, database size=8890 nodes

Figure 13: Branch Pruning for different k, database
size = 8890 nodes, number of trees in forest query
= 8

Figure 14: Runtime with and without pruning for
k=2 and database size = 64 nodes

Figure 15: Runtime with and without pruning for
k=4 and database size = 8890 nodes

Figure 16: Runtime with and without pruning for
different k. database size = 8890 nodes and number
of trees in forest query = 8

5. CONCLUSION
In this paper we have introduced forest query problem in

the context of top-k approximate matching. We proposed

a method to rank the subtrees according to similarity and
compactness. We also proposed a pruning technique to re-
duce search space. In performance analysis we have shown
that our pruning technique can reduce a significant amount
of branch and improve run time. However, our algorithm
largely depends on tree edit distance algorithm which does
not provide a perfect similarity measure. Future work will
be to find a better similarity measure algorithm with better
pruning strategy.

6. REFERENCES
[1] Nikolaus Augsten, Denilson Barbosa, Michael H.

Böhlen, and Themis Palpanas. Efficient top-k
approximate subtree matching in small memory. IEEE
Trans. Knowl. Data Eng., 23(8):1123–1137, 2011.

[2] Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh
Srivastava, and Ting Yu. Approximate XML joins. In
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison,
Wisconsin, June 3-6, 2002, pages 287–298, 2002.

[3] Nikolaus Augsten, Michael H. Böhlen, Curtis E.
Dyreson, and Johann Gamper. Approximate joins for
data-centric XML. In Proceedings of the 24th
International Conference on Data Engineering, ICDE
2008, April 7-12, 2008, Cancún, México, pages
814–823, 2008.

[4] William W. Cohen. Integration of heterogeneous
databases without common domains using queries
based on textual similarity. In Laura M. Haas and
Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings

ACM SIGMOD International Conference on
Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 201–212. ACM Press, 1998.

[5] Sergey Melnik, Hector Garcia-Molina, and Erhard
Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In
Proceedings of the 18th International Conference on
Data Engineering, San Jose, CA, USA, February 26 -
March 1, 2002, pages 117–128, 2002.

[6] Nitin Agarwal, Magdiel Galan Oliveras, and Yi Chen.
Approximate structural matching over ordered XML
documents. In Eleventh International Database
Engineering and Applications Symposium (IDEAS
2007), September 6-8, 2007, Banff, Alberta, Canada,
pages 54–62, 2007.

[7] Kuo-Chung Tai. The tree-to-tree correction problem.
J. ACM, 26(3):422–433, 1979.

[8] Kaizhong Zhang and Dennis Shasha. Simple fast
algorithms for the editing distance between trees and
related problems. SIAM J. Comput., 18(6):1245–1262,
1989.

[9] Mateusz Pawlik and Nikolaus Augsten. RTED: A
robust algorithm for the tree edit distance. CoRR,
abs/1201.0230, 2012.

[10] Nikolaus Augsten, Denilson Barbosa, Michael H.
Böhlen, and Themis Palpanas. TASM: top-k
approximate subtree matching. In Proceedings of the
26th International Conference on Data Engineering,
ICDE 2010, March 1-6, 2010, Long Beach, California,

USA, pages 353–364, 2010.

