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ABSTRACT

Data mining is a relatively new and promising field of com-
puter science. It is used for extracting valuable information
or knowledge from large database. Data mining requires
searching for frequent patterns from large database. Fre-
quent substructure mining is also denoted by graph mining.
Some of the graph mining algorithms were Apriori based
and path based. gIndex is more robust algorithm for min-
ing graphs. Given a query graph, this algorithm finds the
supergraphs of that query graph from the graph database.
gInder maintains an index of graph database according to
discriminative fragments. In this paper, a further improve-
ment over the existing glndez algorithm is proposed. More
information is stored in the index data structure to quickly
answer the graph query, discarding the unnecessary graphs.
The proposed method in this paper handles sudden change
in database graph patterns efficiently and is capable of pro-
cessing queries in dynamic and evolving database which gIn-
dex can not handle. It also ensures a good running time for
processing graph queries.
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1. INTRODUCTION

Data mining refers to the process of discovering knowledge
and determine patterns and their relationships by analyzing
large database. A primary reason for using data mining is
to assist in the analysis of collections of observations of be-
havior [1]. Many business decisions are greatly benefited by
data mining. It is a powerful technology with great potential
to help industries to focus on the most important informa-
tion. Data mining is applicable in biological and chemical
research, bank, business companies, government decisions,
computer security, education, finance, customer relationship
management and many other areas. Many industries use
data mining to increase sales and guess future investments.
Subject-based data mining is also being used to search the
associations between individuals in data. There are various
fields of data mining. Frequent pattern mining, classifica-
tion, clustering, graph mining, web mining are some notable
fields of data mining.

Discovery of frequent patterns is the most important top-
ic of investigation in the field of data mining. For a given
database, a minimum threshold is defined. Patterns having
their frequency exceeding the minimum threshold are fre-
quent patterns. In business, mining frequent patterns may
ailm at finding regularities in the behavior of customer of
sudden markets. It is also useful in ordering the items in a
supermarket.

A special kind of frequent pattern mining is frequent sub-
structure mining [2, 3, 4, 5, 6, 7]. Substructures can be
represented by graphs. This opens a new and special field of
data mining, Graph Mining. Graphs are widely used da-
ta structures for representing schema less data in biological,
chemical and other important fields. Proteins, DNA, WE-
B and XML documents, links, circuits and chemical com-
pounds are represented using graphs [8, 9]. These are com-
plicated structures and graph is the best data structure to
represent them. Graph represents not only the properties
of the elements, but also the relationship between the el-
ements. As a result, graph becomes the most appropriate
data structure for representing schema less and complicated
structures. Web mining, biological network analysis, social
networks and bioinformatics fields are based on graph ap-
plications. Efficient retrieval of the wealth of information



in graph-based models is an essential task in pattern recog-
nition and draws attention from database community. Sys-
tems are required to search for all occurrences of a query
graph in a graph database. The problem of processing sub-
graph queries on a database is finding the set of graphs in
the database that are supergraphs of the query. The main
challenge to solve this problem is the size of the database
and the NP completeness of subgraph isomorphism problem
[10] that is heavily required in answering subgraph queries
[11, 12, 13, 14]

Apriori based frequent substructure mining algorithm, which

proceeds in a bottom-up manner, adopting a level-wise min-
ing methodology, shares similar characteristics with Apriori-
based frequent itemset mining algorithms. The gSpan algo-
rithm is a path based graph mining algorithm, designed to
reduce the generation of duplicate graphs. But it is not effi-
cient to search the whole database for answering the graph
query. Sequential scan not only searches the whole database,
it also checks each graph in the database whether that is a
supergraph of the query graph, which is an NP complete
problem. As a result, a better approach has to be proposed.
An index of the graph database can be maintained to answer
the graph queries [15],[16].

Indexing a graph database can be done using two types of
features. One is frequent pattern and the other is path or
substructure. GraphGrep [17] is an example of path based
graph mining algorithm. gIndez [4] is an even better and
robust algorithm for mining graphs. gIndex uses frequen-
t substructure as its indexing feature. Although paths are
easy to manipulate and taking paths as the indexing feature
leaves the indexing space predefined, frequent substructures
are more expressive in representing the properties of a graph.
Using paths as the indexing features causes many structural
information to be lost. So frequent substructures are ideal
candidate for the indexing feature. This research extends
the existing gIndex algorithm to achive an even better per-
formance for evolving database.

gIndez focuses on some optimizations when designing the
graph index. gIndez only takes into account those frequen-
t substructures which are discriminative enough. In order
to avoid the exponential growth of the number of frequent
subgraphs, the support threshold is progressively increased
when the subgraphs grow large. That is, gInder uses low
minimum support for small subgraphs and high minimum
support for large subgraphs. Moreover, the concept of dis-
criminative structure is introduced to reduce the redundancy
among the frequent subgraphs selected as indexing features
[4].

gIndex assumes that the database is stable to updates.
As gIndex does not take into account any nearly frequent
substructures, performance degrades due to random growth
of database. The problems of gInder motivated us to pro-
pose a better method over glndex. The proposed method,
EGDIM (Evolving Graph Database Indexing Method ),
keeps track of the recent semi-frequent substructures hav-
ing support close to minimum support. When the sup-
port of these substructures reaches the minimum support,
these substructures are considered as indexing features. For
memory efficiency, an idea to remove the least recently en-
countered discriminative frequent substructre from the in-
dex structure is also proposed.

2. RELATED WORK

Frequent patterns are patterns (such as itemsets, subse-
quences, or substructures) that appear in a data set fre-
quently. For example, a set of items that appear frequent-
ly together in a transaction data set is a frequent itemset.
Finding such frequent patterns plays an essential role in min-
ing associations, correlations, and many other interesting
relationships among data. Moreover, it helps in data clas-
sification, clustering, and other data mining tasks as well.
Thus, frequent pattern mining has become an important da-
ta mining task and a focused theme in data mining research
[18], [19]. Apriori algorithm is an innovative way to find as-
sociation rules on large scale, allowing implication outcomes
that consist of more than one item. Despite of the simplicity
of Apriori algorithm, it is costly for mining frequent item-
sets in large database, so FP-growth approach is proposed
for better performance.

2.1 gSpan

One problem of Apriori based algorithm is, it generates
duplicate patterns. It also scans the database many times,
that degrades the performance. In order to avoid such over-
head, non-Apriori-based algorithms have recently been de-
veloped, most of which adopt the pattern-growth method-
ology. g¢Span and graphGrep algorithms exist for frequent
substructure mining. In algorithm 1, the procedure of gSpan
is described.

Algorithm 1. gSpan. Pattern growth-based frequent
substructure mining [18]

Input:

s, a DFS code.

D, a graph data set. min_sup, the minimum support thresh-
old.

Output:
The frequent graph set, S.

Method:
S+ ¢
Call gSpan (s, D, min_sup, S)
procedure PatternGrowthGraph (s, D, min sup, S)
if s # dfs (s), then
return
insert s into S
set C to ¢
scan D once, find all the edges e such that s can be
right-most extended to soe;
insert soe into C and count its frequency
6 sort C in DFS lexicographic order
7. for each frequent soe in C do
8
9

DAl

gSpan (soe, D, min_sup, S)
return

2.2 gIndex

Structured data mining is the process of finding and ex-
tracting useful information from semi-structured data set-



s. Graph mining is a special case of structured data min-
ing. For mining graph, we have to be able to search in the
database for the presence of a query graph. In the core
of graph mining lies the subgraph query problem. Apriori-
based frequent substructure mining algorithms share similar
characteristics with Apriori-based frequent itemset mining
algorithms. The problem of Apriori based algorithm is, it
generates duplicate patterns and scans the database many
times. In order to avoid such overhead, non-Apriori-based

algorithms have recently been developed, most of which adop-

t the pattern-growth methodology. Features of ginder algo-
rithms are size-increasing support constraint, that uses low
minimum support on small fragments for effectiveness and
high minimum support on large fragments for compactness,
using discriminative fragments as indexing feature and Apri-
ori pruning, that enables gIndex to optimize its efficiency.

gIndez keeps an index for storing necessary information
about the database. gIndex builds graph indices to help
processing graph queries and retrieve related graphs. It is
also used in indexing sequences, trees, and other complex
structures. It will be described briefly and compared with
EGDIM later.

3. PRELIMINARIES

Some terms and definitions required for the understand-
ing of EGDIM is discussed in this section.

Definition 1. Vertex set: V (g) denotes the vertex
set of a graph g. Each vertex has a label, that denotes its
property.

Definition 2. Edge set: E (g) denotes the edge set of a
graph g. Each edge has a label, that denotes the connection
property of the link between the vertices it connects.

Definition 3. Size of a graph g¢: |E (g)] denotes the
Size of a graph g.

Definition 4. Subgraph and Supergraph: Given a
graph A and a graph B, if removing some vertices and edges
from A generates B, then B is a sub graph of A and A is a
supergraph of B.

Definition 5. Graph isomorphism: In graph theory,
an isomorphism of graphs A and B is a bijection between
the vertex sets of A and B, f: V(A) — V(B), such that any
two vertices v and v of A are adjacent in A if and only if
f(u) and f(v) are adjacent in B [20].

Definition 6. Subgraph isomorphism problem: The
subgraph isomorphism problem is a computational task in
which two graphs A and B are given as input, and one must
determine whether A contains a subgraph that is isomorphic
to B [21].

Definition 7. Support or Frequency: Given a labeled
graph data set, D = {G1,Gs,...,Gy }, we define support(g) or
frequency(g) as the percentage (or number) of graphs in D
where g is a subgraph [18]. |Dgy| is the number of graphs in
D where g is a subgraph. |D,| is called (absolute) support,
denoted by support(g) [4].

Definition 8. Minimum support: For a database
D and a timestamp T, a value is defined as the minimum
threshold for support to identify fragments for further con-
sideration. It is called minimum support or min_sup in short.

Definition 9. Frequent fragment: A frequent frag-
ment (or graph, substructure, subgraph) is a graph whose
support is no less than min sup [18].

Definition 10. Closed frequent subgraph: A fre-
quent graph G is closed if and only if there is no proper
supergraph G that has the same support as G [18].

Definition 11. Maximal frequent graph: A closed
frequent graph G is maximal if and only if there is no prop-
er supergraph G that is also frequent [18].

Definition 12. Right-most vertex: Given a DFS tree
T, of a graph G, the last visited vertex, vy, is called the
right-most vertex [18].

Definition 13. Right-most path: Given a DFS tree
T, of a graph G, we call the starting vertex in T, vo, the
root. The straight path from vy to the right-most vertex vy,
is called the right-most path [18].

Definition 14. Forward extension: Given a graph G
and a DFS tree T'in G, a new edge e can introduce a new
vertex and connect to a vertex on the right-most path. This
type of extension is called forward extension [18].

Definition 15. Backward extension: Given a graph G
and a DFS tree T in G, a new edge e can be added between
the right-most vertex and another vertex on the right-most
path. This type of extension is called backward extension
[18]. Both forward and backward extensions are also known
as right-most extension.

Definition 16. DFS code and DFS lexicograph-
ic order: DFS code is an edge sequence for subscripting
graphs to build an order among different graph subscript-
ings. Two kinds of orderings are necessary to order DFS
codes lexicographically.

Definition 17. Minimum DFS code: Based on the
DFS lexicographic ordering, the minimum DFS code of a
given graph G, written as dfs(G), is the minimal one a-
mong all the DFS codes. The subscripting that generates
the minimum DFS code is called the base subscripting.

Definition 18. Feature set: The set of subgraphs that
are considered as a property of a graph. The graph feature
set is denoted by F. For any graph feature f € F, Dy is the
set of graphs containing f, Dy = {¢:|f C g¢i, g: € Do} [4].

Definition 19. Candidate query answer set: The
first step of query processing, searching, enumerates all the
features in a query graph, ¢, to compute the candidate query
answer set, C; = Ny Dy (f C q and f C F); each graph in
C, contains all ¢’s features in the feature set. Therefore, Dy
is a subset of C; [4].

Definition 20. Redundant fragment: Fragment z is
redundant with respect to feature set F'if D, = NycrafcaDy
[4]. That means if a fragment’s presence can be predicted by
the presence of it’s subgraphs, then it is a redundant frag-
ment.

Definition 21. Discriminative fragment: Fragment
z is discriminative with respect to feature set F if D, <
NrerarcaDy [4].

Definition 22. Discriminative ratio: The discrimina-
tive ratio can be calculated by the following formula:

— ‘m'tiﬂ
[Da|

where D, is the set of graphs containing z and N;D,, is
the set of graphs which contain the subgraphs of x in the
feature set [4]. The value of v denotes how discriminative
the fragment is. It is always > 1. If it is > 1, then it is
much discriminative than it’s subgraphs.

Definition 23. Prefix tree: It is an efficient tree data
structure used for indexing graphs according to their prefixes



after translating fragments into sequenc

4. EGDIM - EVOLVING GRAPH DATABASE
INDEXING METHOD

Although gIndex started a new way to answer the sub-
graph queries through an indexing approach, it has some
drawbacks. The main drawback of gIndex algorithm is that,
it can not work efficiently when it has to work with small
size of initial database. When working with small size of
initial database, glndex creates a lot of fragments which are
not necessary for indexing and it also may discard fragments
which may be frequent on later updates. Another lacking
of gInder is, it can not handle random change in database
updates. This lacking occurs because gIndex only stores the
fragments which have their frequencies above the minimum
support. For the absence of this feature, once the prepro-
cessing is done in glnder algorithm, if fragments, having
frequencies close to the minimum support, are encountered
later, they will not be added to the gIndex tree, no matter
how many times they are encountered.

To overcome the drawbacks of glndex algorithm, we pro-
pose a modified approach, EGDIM, over gIndex algorithm.
Here, at the beginning of frequent fragment selection pro-
cess, not only the fragments which have frequencies above
the minimum support is stored, but also track of fragments
having frequencies close to the minimum support is kept.
Another improvement that is showed is, EGDIM approach
can handle dynamic or evolving data in the updates of
the database. For example, let us consider the scenario for
cellphone marketing. Prior to 2007, the database had no
occurrence of iPhone. But in 2007, iPhone selling was start-
ed and soon it became one of the most frequent items in
cellphone market. This change was random with respect to
the initial database. gIndex is unable to handle this sudden
change in database pattern. But EGDIM simply adopts this
new frequent item for mining cellphone market field. The
main drawback of this approach is that, it needs extra mem-
ory space for storing new fragments, where reducing memory
space is one of the major properties of gindex. To overcome
this problem, this approach is extended. The idea is, if a
fragment is very old (according to its use or update), then
that fragment is removed. That means EGDIM removes the
LRU (least recently used) fragment from stored database for
semi-frequent fragments.

The algorithm for substructure mining in evolving database
can be divided into five phases. These phases are similar to
gIndex algorithm but adds some improvements for perform-
ing well in dynamic database. The first two phases are for
preprocessing, that is, for building the initial index tree from
the given database. The next three phases are for incremen-
tal updates. In the following subsections, we will describe
the phases with appropriate exmaple based on the graph
database shown in figure 1.
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Figure 1: Example graph database

4.1 Discriminative fragment selection

In discriminative fragment selection phase, all fre-
quent fragments according to size-increasing support con-
straint are generated. To generate these fragments, simple
BFS (breadth first search) approach is used. BFS approach
is used for the level-wise expansion of the fragments, which
helps to differentiate the discriminative fragments from
the redundant fragments. We take into consideration the
discriminative fragments, and eliminate the redundant frag-
ments. As some fragments of the graph database (redundant
fragments) are not considered for later computation, it saves
a lot of space as well as minimizes the query processing time.
Algorithm 2 provides the pseudo code for the discriminative
fragment selection phase.

Algorithm 2. Feature selection algorithm

Input:

Graph database D.

Discriminative ratio vmin.

Size-increasing support function (1).

Maximum fragment size maxL.

Constant needed to store the temporary fragments k.
Minimum support, min _sup.

Output:
Feature set, F.
Temporary feature set, T.

Method:

1. let F={f;}, T={ty}, Dy, =D,and1=0
2. while 1 < maxL do

3. for each fragment x, which is discriminative
having size 1 do

4. if x is frequent then

5. F=FU {x}

6. else if x € set of previous k X min sup
graphs

7. T=TU {x}

8. I=1+1

9. return F, T

In the process of keeping semi-frequent fragments, only
fragments from last constant x min sup graphs are s-
tored. These fragments are stored regardless of their being
frequent or not. If the minimum support for a database is
min sup, then all fragments available from the last k x
min _sup graphs of the database are kept. Here, k is an in-
teger constant, that is set to a value prior to the algorithm
execution according to the assumed randomness of graph-
s in the database. Setting the correct value of k is a vital
point of improvement for EGDIM. It is because the more the
value of k is, the more EGDIM can cope up with random
occurrences of graphs in database.

4.2 Index construction

Here substantial time is wasted in graph isomorphism test,
which is an NP-complete problem. We need to do this
test for finding the graphs in the database which contain
the fragment as their subgraph. For reducing this time, a
new method, canonical labelling, is introduced. In this



method, a graph is translated into a sequence.

o L
ANVANEN

o . Discriminative fragment
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Figure 2: Prefix tree

For canonical labelling, DFS code is introduced. If two
graphs are isomorphic, they will share the same minimum
DFS code. By using the minimum DF'S code, each fragment
can be mapped into an edge sequence of discriminative frag-
ments in a prefix tree. This tree is also referred as glndez
tree. The prefix tree records all n-sized discriminative frag-
ments in level n. Figure 2 shows an example prefix tree.

In the index tree, code s is an ancestor of s’ if and only if
s is a prefix of s’. In the prefix tree, all discriminative nodes
as well as some redundant nodes are present. It increases
the availability of a query fragment. All leafs of the tree are
discriminative nodes and each discriminative node has an id
list.

Discriminative node

Redundant node

Tree edge

» Link list

Figure 3: Prefix tree with linked nodes according to
the access time

For storing the redundant nodes, Apriori pruning can
be made. The Apriori pruning states that, if a fragment is
not frequent then there is no need to check for its super-
graphs. The prefix tree is implemented using a hash table
for quickly locating a fragment and retrieve their id lists.
Both discriminative and redundant nodes are hashed. Giv-
en a hash function h, canonical labelling function ¢, and a
graph g, h(c(g)) is called graphic hash code. Since two
isomorphic graphs, g and g’ have the same canonical label-
ing, h(c(g)) = h(c(g’)). Graphic hash code can help the
process of quickly locating a fragment in the perfix tree.

In the implementation, another task is done in this sec-
tion. The task is, a link list between the discriminative
nodes is maintained, as shown in figure 3, according to their
update sequence. By using this link list, it can easily go
from one discriminative node to the next one. This link list
maintains order according to their access time. Using this

link, fragments that are not used for a long time are removed
from the prefix tree. This helps in the dynamic change of
the tree.

4.3 Search

For a query graph, q, like gIndex, EGDIM also enumerates
its fragments up to a maximum size and searches matches
for them in the index tree. Then it generates a set by inter-
secting the sets of id lists associated with these fragments.
Thus it generates the candidate set, Cq, with the respective
graphs of the id list. Apriori pruning and hashing is used in

this section.
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Figure 4: Prefix tree

The candidate set only tells the possible graphs that may
contain the query graph. So it is necessary to check whether
graphs in the candidate set are actually supergraphs of the
query graph. The simplest approach is to check the candi-
date graphs one by one and run subgraph isomorphism test.
Another approach is to record all the embeddings of paths
in a graph database, rather than doing real subgraph iso-
morphism test. But in many cases, same time is needed in
this approach as the previous approach. Moreover it is much
more complex to implement. For the sake of simplicity, the
first approach is implemented.

o - ) ‘@ .
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> o Discriminative node

Redundant node

| Coe

Iree edge

» Link list
Figure 5: Prefix tree after updating link list

4.4 Verification

Verification approach in EGDIM is almost same as the
verification approach used in gIndez algorithm. The only ex-
ception is that, whenever a discriminative fragment is found,
the current time in that node is stored as it’s last access time
and link list is updated. To maintain track of time, a global
time counter is kept. Value of this counter is incremented
after any kind of instruction execution. For example, if we
find a discriminative node which has a current access time



of 10, as shown in figure 4, and value of the global time
counter is 22, the value of last access time of that node will
be updated. It is clear that, for each time a nodeSs access
time counter is updated, it will surely hold the largest value
so far. Using this method, it is very easy to update the link
list in O(1) time complexity. The updated link list for the
example is shown in figure 5.

4.5 Maintenance

In the gIndex algorithm, maintenance section only updates
the graph id lists of discriminative nodes. But in EGDIM all
the fragments available from the last k X min sup graph-
s in the database are kept in a temporary section. When
inserting a new fragment, it is checked if this fragment be-
came frequent with respect to the temporary stored data.
Figure 6 illustrates the idea. If the new fragment becomes
frequent, then we add it to the prefix tree. The maintenance
algorithm is shown in algorithm 3.

Figure 6: (i) Temporary fragment set (ii) Current
data (iii) New frequent fragment

Another improvement, that is proposed in the mainte-
nance section, is to check the link list for storing the last
access time of fragments. If the oldest node is not accessed
for a certain period of time, a defined threshold time, then
it is removed from the link list as well as from the prefix
tree. The algorithm keeps checking the link list as long as a
node found in the link list which has been accessed within
the threshold time period. This threshold value has to be
defined at the beginning of processing for a certain data set.

Algorithm 3. Maintenance algorithm.

Input:

Feature set F'.
Temporary feature set T.
Link list head Head.
Link list tail Tail.
Threshold time Q.

Method:
for each fragment x
if x € F then
update x.graph_id_list
else
T=TU {x}
if size of x.graph_id_list > min_sup then
F=FU x
T=T-x
while current_time - Head.last_access_time >Q
0. Head = Head.next

N i I o

Let us give an example. Assume the access threshold
time is 50, and current global time is 75. In figure 7, we
see that the last access time for the first discriminative frag-
ment is 24. So this fragment is not accessed for 75 - 24 = 51
time units. This value exceeds the threshold time. So this
fragment will be removed.

4 Tail
Lo~ ¢ .

l \ﬁess Time.36 \

00 O~ ~O
A
v
Head »© @ viciminaive node

f O Redundant node

" <«

Access Time 24
——» Treeedge

» Link list

Figure 7: Prefix tree with discriminative fragment’s
last access time

This removal will free some space which is needed for s-
toring the temporary fragment. After removing the unused
fragment, the prefix tree looks like the one in figure 8. Thus
the second approach complements the first approach, the
need for extra space for storing temporary fragments.

e
| o N

!
0.0

Access Time 36.

Redundant node
o —» Trecedge
» Link list

Figure 8: Updated prefix tree

We worked on improving the glndez algorithm for pro-
ducing better query processing for evolving database. To
achieve this, in EGDIM mainly the feature selection part
and the maintenance part of the gindex algorithm are up-
dated.

5. EXPERIMENTAL RESULTS

In this chapter, we will present the performance evaluation
of EGDIM. We will focus on several scenarios to compare
EGDIM with glndex algorithm for mining frequent graphs
from a graph database. We will also consider cases where
the algorithm starts with a small size of initial database. We
will show the experimental results on various scale updates
over the initial database and present a performance com-
parison between the glndez algorithm and EGDIM. Finally,
we will discuss about some tuning of our used constants for



storing extra fragments. Memory space concern will also be
briefly discussed. At the end of this chapter, we will try
to analysis the cost of the algorithm using the cost analysis
model presented in section 2.3.

5.1 Comparison of gindex, EGDIM and Ac-
tual Result

In this section, we will try to show a number of scenar-
ios and present some experimental results using graphs to
show the comparison between the gIndex algorithm, EGDIM
and the actual result. We worked on chemical data set col-
lected from [22]. The data set was fed to the algorithms
sequentially to make them behave as evolving data set. We
also applied a brute force method for finding the actual re-
sult. We performed the experiment on various values for
the minimum support. We tested the algorithm using sev-
eral queries. Given a query, the performance was measured
with the number of supergraphs answered by EGDIM and
glndez.

exanple database

T
glndex ——
EGDIM
3.5 actual resuit

number of inserted graphs = 1

number of supergraphe found

number of graphs in initial database

Figure 9: Comparison between glndexr, EGDIM and
actual result after inserting one new graph into the
initial database for the same query

Figure 9 shows an experimental result. Here, the initial
database size was different for different test sets. As the
size of initial database increases, both the glnder algorithm
and EGDIM converges to the actual result. But initially,
for very small size of initial database, EGDIM outperforms
the gIndez algorithm. For later cases, EGDIM performs at
least as much as gIndex algorithm but no less than it. We
set the value of k, a constant needed to store the temporary
fragments in EGDIM, to 3 and minimum support was set
to 2. We inserted one single graph to the initial database
and showed that gindex does not perform well enough where
EGDIM copes up with the change of the database.

exanple database

glndes
EGDIM and actual result ———

minimum support = 2
k=3
number of inserted graphs = 2

numbor of cupergraphs found

o 1 ‘2 ‘3 ‘4 5 B
numker of graphs in initial database
Figure 10: Comparison between gInder, EGDIM

and actual result after inserting two new graphs into
the initial database for the same query

Figure 10 shows another test experiment result. The only
difference from figure 9 is two new graphs are inserted into
the initial database. Like in the previous experiment, in this
experiment, also, EGDIM outperforms the gIndez algorith-
m. Even in this case, EGDIM produces the accurate result
and graph for the actual result and our result is the same in
this experiment.

exanple database

number of supergraphs found

nunber of new inserted graphs

Figure 11: Comparison between gInder, EGDIM
and actual result for various numbers of new insert-
ed graphs into the initial database for a query

For fixed size initial database, the next two experiments
are performed. Figure 11 shows result for a scenario where
the number of graphs in the initial database is 2. As number
of new inserted graphs increases, EGDIM produces result
almost as good as the real result for an individual query.
But gIndez algorithm doesn’t even find the query. This is
because the fragments necessary to answer the query were
not frequent. It proves that the glndez algorithm doesn’t
cope up well with the new inserted graphs. As the size of
initial database is very small, gindex can not assume the
characteristics of the database. But EGDIM easily copes up
with the evolving database.
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Figure 12: Comparison between gInder, EGDIM
and actual result for various numbers of new insert-
ed graphs into the initial database for another query

Figure 12 shows another experimental result similar to
the one in the previous example. In this example, all three
results are same. This ensures that, in worst case, EGDIM
works as good as gIndex algorithm but never degrades than
it.
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Figure 13: Comparison between glndex and EGDIM
for various numbers of new inserted graphs into the
initial database for different sets of queries

Figure 13 shows an experimental result where a compar-
ison is shown between the glndex algorithm and EGDIM
using a different metric. We used different sets of queries
and noted down the number of queries properly answered
by each of the algorithms. This experiment also shows that,
as the number of newly inserted graphs increases, EGDIM
easily copes up with the evolving database. But gIndex fails
to cope up with the evolving database and so it degrades
more and more with the increasing rate of newly inserted
random graphs.

This section mainly focuses on handling the evolving database.

Here, in all experiments, EGDIM performed at least as ac-
curate as the gInder algorithm and in most of the cases, it
outperformed the gIndex algorithm.

5.2 Performance for Different Values of Con-
stants

In this section, we will observe two things. The first thing
we will observe is, for various values of k, the constant to
decide how many fragments will be stored from the new up-
dates, EGDIM responses in different ways. Figure 14 shows
this impact of the value of k on EGDIM. As we increase the
value ok k, more fragments will be stored in the temporary
memory. As a result the probability of answering the query

properly will increase. This performance comes with the
cost of memory. The more the value of k is, the more we are
using memory. So it is necessary to select a suitable value
of k that will enable this algorithm to process properly and
respond accurately.
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Figure 14: Performance of EGDIM for various val-
ues of k for a fixed number of queries

Another important issue to notice is, if we store more
fragments of each graph in the database, it also increases
the probability of proper response to the query. Figure 15
shows an experimental result on various numbers of frag-
ments storing for each graph in the database. As expected,
when we increase the amount of fragments stored, EGDIM’s
response tends to 100% accuracy. But it is memory space
consuming to store too much fragments. Here we have to
trade off also, like selecting the value of k.
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Figure 15: Performance of Our algorithm for vari-
ous numbers of fragments stored for each graph in
database for a fixed number of queries

It is clear from this section that, tuning the proper value
for k and number of fragments to be stored in the memory
for each graph is a vital and sensitive issue. The algorith-
m’s performance improves with the cost of memory space.
So properly selecting these values plays a vital role in the
performance issue of EGDIM.

5.3 Cost Analysis

We will now calculate the cost of EGDIM. The main part
we have focused in EGDIM is the candidate set generation
phase. If we can properly generate the candidate set, it is
highly probable that we will provide correct result. EGDIM
focuses on providing correct result with the cost of memory



space.

Although it is always appreciable to optimize memory us-
age, it was one of the primary goals of glndez too, often we
have to sacrifice it because of the precise result. There is
a trade off between memory space usage and performance
accuracy. The main advantage of EGDIM over the glndex
algorithm is, it can work with evolving data. Our experi-
ment also proves this fact that EGDIM performs better with
evolving data than gIndex algorithm.

As we generate more graphs in candidate set than the
gIndex algorithm for providing accuracy, our algorithm may
perform slower or take a bit more time than glndez algorith-
m due to the overhead for handling evolving data. But it will
never give a wrong result when glndex will provide a right
one. The cost is increased in EGDIM for the adaptability of
EGDIM with random and dynamic data updates. The sub-
graph isomorphism test is same in g/ndez algorithm and our
algorithm. The only difference is our algorithm keeps track
of more fragments that comes with a cost of more memory
space usage.

EGDIM performs better in the field of evolving databases
than gIndez algorithm. We showed this result with the help
of small sized initial database and later sequential updates
of the database. In short, we can say that with a small cost
of memory usage, we provide advancement over the gIndex
algorithm for working with evolving data. This surely serves
the field of dynamic or evolving database.

6. CONCLUSIONS

In this research work, an idea to improve the existing
gIndex algorithm is developed to make it work for evolv-
ing database. gIndex algorithm was unable to work prop-
erly with small sized initial database and also was unable
to cope up with dynamic change in database updates. In
EGDIM, some extra memory space is used to store some
fragments of new updates of database. In this paper, we
discussed the idea elaborately. This idea helps in the pro-
cess of identifying newly generated frequent fragments. As a
result, the method easily adjusts with evolving or dynamic
database. The idea to maintain a link list for keeping track
of the access time of the fragments is also discussed. This
information identifies the least recently accessed fragment in
the index tree. The process of deletion of unnecessary frag-
ments were also presented. This process helps in providing
extra memory space necessary for storing extra fragments.
EGDIM performs better in the field of evolving databases
than glnder algorithm. This result is showed with the help
of small sized initial database and later sequential updates
of the database. Two points can be focused for future im-
provements over our algorithm. First, our algorithm does
not guarantee that the newly generated fragments are dis-
criminative. It is beneficiary to only generate the discrimi-
native fragments while storing new fragments from database
updates. This constraint will save some memory space and
minimize the search time, because, in that case, the prefix
size will be shorter than the current prefix size. Second, if
we can implement a mechanism to adjust the the accura-
cy of proper fragment removal, that will be very useful for
properly maintaining the memory space usage. We can also
implement some learning tools for these adjustments.Finally,
we can conclude that, although EGDIM’s performance may
be slower than gIndez in a few cases, it will always guarantee
more accurate result than glndex.
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