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Abstract— In the field of extracting valuable information
or knowledge from large database, data mining is a
powerful tool. Frequent substructure mining, also denoted
by graph mining, requires searching for frequent
substructures or sub-graphs from large structured or
graph database. glndex is a more robust algorithm for
mining graphs, especially for indexing frequent sub-graph
patterns over previous Apriori or path based graph mining
algorithms. glndex finds the super-graphs of the given
query graph from the graph database. The main specialty
of glndex is to maintain an index of graph database
according to discriminative fragments. This research work
proposes a further improvement over the existing glndex
algorithm. The proposed algorithm in this paper is
specially designed for handling sudden change in database
graph patterns. The algorithm, EGDIM, is capable of
processing queries in dynamic and evolving database
which glndex can not handle. To achieve the same
performance for evolving graph databases, more
information is stored in the index data structure to quickly
answer the graph query, discarding the unnecessary
graphs. EGDIM also ensures a good running time for
processing graph queries in the evolving graph databases.

Index Terms— Data mining, Knowledge discovery, Graph
mining, Indexing.

I. INTRODUCTION

The process of discovering knowledge and determining
patterns and their relationships by analyzing large database is
called data mining. Frequent patterns are patterns (such as
itemsets, subsequences, or substructures) that appear in a data
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set frequently [10, 11]. Apriori algorithm is an innovative way
to find association rules on large scale databases, allowing
implication outcomes that consist of more than one item.
Despite the simplicity of Apriori algorithm, it is costly for
mining frequent itemsets in large database, so FP-growth [10]
approach is proposed for better performance.

Structured data mining is the process of finding and
extracting useful information from semi-structured data sets.
Frequent substructure mining is a special kind of frequent
pattern mining [1, 2]. Graphs are widely used data structures
for representing schema less data in biological, chemical and
other important fields. A new and special field of data mining,
Graph Mining, is used to mine data, or sub-graphs, from
complicated structures. Graph represents not only the
properties of the elements, but also the relationship between
the elements. The main challenge to solve the problem of
processing sub-graph queries on a database, by finding the set
of graphs in the database that are super-graphs of the query, is
the size of the database and the NP completeness of sub-graph
isomorphism problem [3, 4, 5, 6].

In Graph mining, we have to be able to search in the
database for the presence of a query graph. In the core of
graph mining problem, there lies the sub-graph query
problem. Apriori-based frequent substructure mining
algorithms, which proceed in a bottom-up manner and adopt a
level-wise mining methodology, share similar characteristics
with Apriori-based frequent itemset mining algorithms. The
problem of Apriori based algorithm is, it generates duplicate
patterns and scans the database many times. In order to avoid
such overhead, non-Apriori-based algorithms have recently
been developed, most of which adopt the pattern-growth
methodology like gSpan [1] and GraphGrep [9]. gSpan
algorithm and GraphGrep, which are path based graph mining
algorithms, were not efficient to search the whole database for
answering the graph query. For answering graph queries faster,
an index of the graph database can be [7, 8] kept. Both
frequent pattern and path or substructure can be used as
indexing feature. For faster query search, an improved version
of graph mining algorithm, glndex [2] is proposed, which uses
frequent substructure as its indexing feature. glndex builds
graph indices to help processing graph queries and retrieve
related graphs and is used in indexing sequences, trees, and
other complex structures.

Features of glndex algorithms are, size-increasing support
constraint, that uses low minimum support on small fragments
for effectiveness and high minimum support on large
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fragments for compactness, discriminative fragments as
indexing feature and Apriori pruning, that enables glndex
to optimize its efficiency.

Although paths are easy to manipulate and taking paths as
the indexing feature leaves the indexing space predefined,
frequent substructures, being more expressive in representing
the properties of a graph, preserving the structural information,
are ideal candidate for the indexing feature. The problem of
glndex is, it only takes into account those frequent
substructures which are discriminative enough and assumes
that the database is stable to updates. Performance of glndex
degrades due to random growth of database, because it does
not take into account any nearly frequent substructures.

This research extends the existing glndex algorithm to
achieve an even better performance for evolving database. A
new method, EGDIM (Evolving Graph Database Indexing
Method), is proposed, which keeps track of the recent semi-
frequent substructures having support close to minimum
support. These semi-frequent substructures are considered as
indexing features when their support reaches the minimum
support. An idea to remove the least recently encountered
discriminative frequent sub-structure from the index structure
is also proposed for memory efficiency.

II. PRELIMINARIES

Some terms and definitions required for the understanding
of EGDIM algorithm is discussed in this section.

Definition 1. Graph isomorphism: In graph theory, an
isomorphism of graphs 4 and B is a bijection between the
vertex sets of A and B, f: V(A) — V(B), such that any two
vertices u and v of A are adjacent in A4 if and only if f{w) and
f(v) are adjacent in B [12].

Definition 2. Sub-graph isomorphism problem: The sub-
graph isomorphism problem is a computational task in which,
given two graphs 4 and B, one must determine whether A
contains a sub-graph that is isomorphic to B [13].

Definition 3. Support or Frequency: Given a labeled
graph data set, D = {G};, G, ..., G,}, we define support(g) or
frequency(g) as the percentage (or number) of graphs in D
where g is a sub-graph [10]. |Dg| is the number of graphs in D
where g is a sub-graph [2].

Definition 4. Minimum support: For a database D, and a
timestamp 7, a value is defined as the minimum threshold for
support to identify fragments for further consideration. It is
called minimum support or min_sup in short.

Definition 5. Frequent fragment: A frequent fragment (or
graph, sub-structure, sub-graph) is a graph whose support is no
less than min_sup [10].

Definition 6. DFS code and DFS lexicographic order:
DFS code is an edge sequence for subscripting graphs to build
an order among different graph sub-scripting.

Definition 7. Minimum DFS code: Based on the DFS
lexicographic ordering, the minimum DFS code of a given
graph G, written as dfs(G), is the minimal one among all the
DFS codes. The subscripting that generates the minimum DFS

code is called the base subscripting.

Definition 8. Feature set: The set of sub-graphs that are
considered as a property of a graph. The graph feature set is
denoted by F. For any graph feature f € F, Dyis the set of

graphs containing f;, D,y=1{g;|fS g, g8i€ D,} [2].

Definition 9. Candidate query answer set: The first step
of query processing, searching, enumerates all the features in a
query graph, ¢, to compute the candidate query answer set, C,

=Ny Ds(fS q and fS F); each graph in C, contains all ¢'s
features in the feature set. Therefore, Dy is a subset of C, [2].
Definition 10. Redundant fragment: Fragment x is

redundant with respect to feature set F if D, = Ny¢ pa s « Dy

[2]. That means if a fragment's presence can be predicted by
the presence of it's sub-graphs, then it is a redundant fragment.
Definition 11. Discriminative fragment: Fragment x is
discriminative with respect to feature set Fif D, « Nye paye «
D[2].
Definition 12. Prefix tree: It is an efficient tree data

structure used for indexing graphs according to their prefixes
after translating fragments into sequences.

III. EGDIM- EVOLVING GRAPH DATABASE INDEXING
METHOD

Although glndex started a new way to answer the sub-graph
queries through an indexing approach, it has some drawbacks.
The main drawback of glndex algorithm is that, when it starts
with small size of initial database, it creates a lot of fragments
which are not necessary for indexing and it also may discard
fragments which may be frequent on later updates. Another
lacking of glndex is, it can not handle random change in
database updates. This lacking occurs because glndex only
stores the fragments which have their frequencies above the
minimum support. For the absence of this feature, once the
preprocessing is done in glndex algorithm, if fragments,
having frequencies close to the minimum support, are
encountered later, they will not be added to the glndex tree, no
matter how many times they are encountered.

To overcome the drawbacks of glndex algorithm, we
propose a modified approach, EGDIM, over glndex
algorithm. Here, at the beginning of frequent fragment
selection process, not only the fragments which have
frequencies above the minimum support is stored, but also
track of fragments having frequencies close to the minimum
support is kept. Although EGDIM can handle dynamic or
evolving data in the updates of the database, the main
drawback of this approach was, it needs extra memory space
for storing new fragments, where reducing memory space is
one of the major properties of glndex. To overcome this
problem, in EGDIM, if a fragment is very old (according to its
use or update), then that fragment is removed. That means
EGDIM removes the LRU (least recently used) fragment from
stored database for semi-frequent fragments.

Five phases of EGDIM are similar to glndex algorithm but
adds some improvements for performing well in dynamic
database. The first two phases are for building the initial index
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tree from the given database. The next three phases are for
incremental updates. We will describe the phases with
appropriate example in this section for the sample graph
database shown in figure 1.

C e § e e

N e 1)

Figure 1: Example graph database

In discriminative fragment selection phase, all frequent
fragments according to size-increasing support constraint
are generated. To generate these fragments, simple BFS
(breadth first search) approach is used. BFS approach is used
for the level-wise expansion of the fragments, which helps to
differentiate the discriminative fragments from the
redundant fragments. We take into consideration the
discriminative fragments, and eliminate the redundant
fragments. As some fragments of the graph database
(redundant fragments) are not considered for later
computation, it saves a lot of space as well as minimizes the
query processing time. Algorithm 1 provides the pseudo code
for the discriminative fragment selection phase.

Algorithm 1. Feature selection algorithm

Input:

Graph database, D.

Discriminative ratio, Ymin,

Size-increasing support function, y/(1).

Maximum fragment size, maxL.

Constant needed to store the temporary fragments, k.
Minimum support, min_sup.

Output:
Feature set, F.
Temporary feature set, T.

Method:
1. let F= {f¢}, T= {t¢}, Df¢=l), and /=0
2. while I <maxL do

3. for each fragment x, discriminative and having size / do
4 if x is frequent then

5. F=FU {x}

6. else if x € set of previous k x min_sup graphs

7 T=TU {x}

8. I=I+1

9. return F, T

In the process of keeping semi-frequent fragments, only
fragments from last constant x min_sup graphs are stored,
regardless of their being frequent or not. If the minimum
support for a database is min_sup, then all fragments available
from the last k x min_sup graphs of the database are kept.
Here, k is an integer constant, set to a value prior to the
algorithm execution according to the assumed randomness of
graphs in the database. Setting the correct value of k is a vital
point of improvement for EGDIM algorithm. It is because the

10

more the value of k is, the more EGDIM algorithm can cope
up with random occurrences of graphs in database.

)
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Figure 2: Prefix tree

In index conmstruction, canonical labeling is used. For
canonical labeling, DFS code is introduced. If two graphs are
isomorphic, they will share the same minimum DFS code. By
using the minimum DFS code, each fragment can be mapped
into an edge sequence of discriminative fragments in a prefix
tree. This tree is also referred as glndex tree. The prefix tree
records all n-sized discriminative fragments in level n. Figure
2 shows an example prefix tree.

In the index tree, code s is an ancestor of s’ if and only if s
is a prefix of s’. In the prefix tree, all discriminative nodes and
some redundant nodes are present. All leafs of the tree are
discriminative nodes and each has an id list.

Figure 3: Nodes are linked according to the access time

For storing the redundant nodes, Apriori pruning, which
states that, if a fragment is not frequent then there is no need to
check for its super-graphs, is done. The prefix tree is
implemented using graphic hash code. Given a hash function
h, canonical labeling function ¢, and a graph g, h(c(g)) is
called graphic hash code. Since two isomorphic graphs, g and
2’ have the same canonical labeling, so, k(c(g)) = h(c(g’)).

In the implementation, a link list between the discriminative
nodes is maintained, according to their update sequence, as
shown in Figure 3. This link list maintains order according to
their access time. To accommodate dynamic change in the
tree, fragments that are not used for a long time are removed
from the prefix tree

In the search section, for a query graph, ¢, like glndex,
EGDIM algorithm also enumerates its fragments up to a
maximum size and searches matches for them in the index tree.
Then it generates a set by intersecting the sets of id lists
associated with these fragments and generates the candidate
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set, C,, with the respective graphs of the id list. Apriori
pruning and hashing is used in this section.

Figure 4: Prefix Tree

To check whether graphs in the candidate set are actually
super-graphs of the query graph, the candidate graphs are
checked one by one and sub-graph isomorphism test is run.

Verification approach in EGDIM algorithm is almost same
as the verification approach used in glndex algorithm except,
whenever a discriminative fragment is found, the current time
in that node is stored as its last access time and link list is
updated. To maintain track of time, a global time counter is
kept, which is incremented after any kind of instruction
execution. For example, if we find a discriminative node which
has a current access time of 10, as shown in figure 4, and
value of the global time counter is 22, the value of last access
time of that node will be updated. For each time a node’s
access time counter is updated, it will surely hold the largest
value so far, so, it is very easy to update the link list in O(1)
time complexity. The updated link list for the example is
shown in figure 5.

s
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Figure 5: Prefix tree after updating link list

In the maintenance section for insertion, the fragments
available from the last k x min_sup graphs in the database are
kept in a temporary section. When inserting a new fragment, it
is checked if this fragment became frequent with respect to the
temporary stored data, illustrated in Figure 6. If the new
fragment becomes frequent, then we add it to the prefix tree.
The maintenance algorithm is shown in algerithm 2.

11

i (it
Figure 6: (i) Temporary fragment set (ii) Current data (iii)
New frequent fragment

Another improvement, proposed in the maintenance section,

is to check the link list for storing the last access time of

fragments. If the oldest node is not accessed for a defined

threshold time, then it is removed from the link list as well as

from the prefix tree. The algorithm keeps checking the link list

as long as a node is found in the link list which has been
accessed within the threshold time period.

(it

Algorithm 2. Maintenance algorithm

Input:
Feature set, F.
Temporary feature set, T.
Link list head, Head.
Link list tail, Tail.
Threshold time, Q.

Method:
for each fragment x
ifx € F then
update x.graph_id_list
else
T=TU {x}
if x.graph_id_list| > min_sup then
F=FU {x}

. T=T-x
. while cur_time - Head.last_access _time > Q
10.

1.
2
3
4
5.
6
7
8
9

Head = Head.next

Ageeis Time 24

e

Figure 7: Prefix tree with discriminative fragment's last
access time
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Figure 8: Updated prefix tree

For example, if the access threshold time is 50, and current
global time is 73, in figure 7, the last access time for the first
discriminative fragment is 24. So this fragment is not accessed
for 75 - 24 = 51 time units which exceeds the threshold time
and this fragment will be removed. This removal will free
some space which is needed for storing the temporary
fragments. After removing the unused fragment, the prefix tree
looks like the one in figure 8. This fulfills the need for extra
space for storing temporary fragments.

IV. EXPERIMENTAL RESULTS

In this section, performance evaluation of EGDIM is
focused using several scenarios to compare EGDIM algorithm
with glndex algorithm for mining frequent graphs from an
evolving graph database and cases where the algorithms start
with a small size of initial database are also discussed.

We worked on chemical data set collected from [14]. The
data set was fed to the algorithms sequentially to make them
behave as evolving data set. The experiment on various values
for the minimum support was performed and tested using
several queries. Given a query, the performance was measured
with the number of super-graphs answered by the algorithms.

by ot

i
B A

Y

tecioss sy = B
N3
combrar of meostood woaphe

retatior it Yod

B 3 S s

3 &
ot o ke 9 bedial skatadsein

Figure 9: Comparison between glndex, EGDIM algorithm
and actual result after inserting two new graphs into the initial
database for the same query

Figure 9 shows an experimental result. Here, the initial
database size was different for different test sets. As the size of
initial database increases, both the glndex and EGDIM
algorithm converges to the actual result. But, initially, for very
small size of initial database, EGDIM algorithm outperforms
glndex algorithm. For later cases, EGDIM algorithm
performs at least as much as glndex algorithm but no less than
it. The value of k, a constant needed to store the temporary
fragments in EGDIM algorithm, was set to 3 and minimum
support was set to 2. Two new graphs were inserted to the
initial database and it is showed that glndex does not perform
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well

enough where EGDIM algorithm copes up with the

change of the database.
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Figure 10: Comparlson between glndex, EGDIM algorithm
actual result for various numbers of new inserted graphs into

the initial database for a query

For fixed size initial database, the next experiment is
performed. Figure 10 shows result for a scenario where the
number of graphs in the initial database is 2. As number of

new

inserted graphs increases, EGDIM algorithm produces

result almost as good as the real result for an individual query
where glndex algorithm doesn't even find the query. As the

size

of initial database is very small, glndex can not assume

the characteristics of the database. But EGDIM algorithm
casily copes up with the evolving database.
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Figure 11: Comparlson between glndex and EGDIM

algorithm for various numbers of new inserted graphs into the

Fi

initial database for different sets of queries

gure 11 shows an experimental result where a comparison

is shown between the glndex algorithm and EGDIM

algorithm using different sets of queries,

and properly

answered number of queries. This experiment also shows that,
as the number of newly inserted graphs increases, EGDIM
algorithm easily copes up with the evolving database.
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size of initial datbase = 10

number of inserted graphs = 15
40 [ umber of query = 100
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o
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Figure 12: Performance of EGDIM algorithm for various

values of k for a fixed number of queries
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example database

EGDIM —

80 |- R S
minimm support, = 2

size of initial datbase = 10
average graph size = 10
number: of query =10
k=3

60

40

success probability (%)

20 -

0
o 2 4 6 8 10 12

average number of fragments stored for each graph in database
Figure 13: Performance of EGDIM algorithm for various
numbers of fragments stored for each graph in database for a
fixed number of queries

For various values of k, the constant to decide how many
fragments will be stored from the new updates, EGDIM
algorithm responses in different ways shown in Figure 12. As
the value of k increases, more fragments will be stored in the
temporary memory and probability of answering the query
properly will increase. As this performance comes with the
cost of memory, it is necessary to select a suitable value of k
that will enable EGDIM to perform optimally.

Another important issue is, if more fragments of each graph
are stored, it also increases the probability of proper response
to the query. Figure 13 shows an experimental result on
various numbers of fragments stored for each graph in the
database. When the amount of fragments stored is increased,
EGDIM algorithm's response tends to 100% accuracy. As it is
memory consuming to store too much fragments, we have to
face a trade-off in selecting the value of k. Tuning the proper
value for k and number of fragments to be stored in the
memory for each graph, is a vital and sensitive issue.

The main part we have focused in EGDIM algorithm is the
candidate set generation phase. EGDIM algorithm focuses on
providing correct result with the cost of memory space.
Experimental result also proves this fact that EGDIM
algorithm performs better with evolving data than glndex
algorithm. It will never give a wrong result when glndex will
provide a right one.

V. CONCLUSION

In this research work, an idea to improve the existing
glndex algorithm is developed to make it work for evolving
database. EGDIM algorithm, using some extra memory space,
stores some fragments of new updates of database and easily
adjusts with evolving databases, where glndex algorithm was
unable to work properly with small sized initial database and
cope up with dynamic change in database updates.
Maintaining a link list for keeping track of the access time of
the fragments is necessary in EGDIM, because it identifies the
least recently accessed fragment in the index tree. Deletion of
unnecessary fragments, which helps in providing extra
memory space necessary for storing extra fragments, were also
presented in EGDIM. As the experiments reflect, EGDIM
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algorithm performs better in the field of evolving databases
than glndex algorithm. This result is showed with the help of
small sized initial database and later sequential updates of the
database. Although EGDIM algorithm's performance may be
slower than glndex in a few cases, it will guarantee more
accurate result than glndex.
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