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ABSTRACT

As data is a central component of many modern systems, the cause
of a system malfunction may reside in the data, and, specifically,
particular properties of data. E.g., a health-monitoring system that
is designed under the assumption that weight is reported in lbs will
malfunction when encountering weight reported in kilograms. Like
software debugging, which aims to find bugs in the source code or
runtime conditions, our goal is to debug data to identify potential
sources of disconnect between the assumptions about some data and
systems that operate on that data. We propose DataPrism, a frame-
work to identify data properties (profiles) that are the root causes of
performance degradation or failure of a data-driven system. Such
identification is necessary to repair data and resolve the discon-
nect between data and systems. Our technique is based on causal
reasoning through interventions: when a system malfunctions for
a dataset, DataPrism alters the data profiles and observes changes
in the system’s behavior due to the alteration. Unlike statistical
observational analysis that reports mere correlations, DataPrism
reports causally verified root causes—in terms of data profiles—of
the system malfunction. We empirically evaluate DataPrism on
seven real-world and several synthetic data-driven systems that fail
on certain datasets due to a diverse set of reasons. In all cases, Dat-
aPrism identifies the root causes precisely while requiring orders
of magnitude fewer interventions than prior techniques.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • Information systems→Data cleaning; •Computing

methodologies→ Causal reasoning and diagnostics.

KEYWORDS

Debugging, root-cause identification, data profiles, causal testing
ACM Reference Format:

Sainyam Galhotra, Anna Fariha, Raoni Lourenço, Juliana Freire, Alexandra
Meliou, and Divesh Srivastava. 2022. DataPrism: Exposing Disconnect be-
tween Data and Systems. In Proceedings of the 2022 International Conference
on Management of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3517864

USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3514221.
3517864

1 INTRODUCTION

Traditional software debugging aims to identify errors and bugs in
the mechanism—such as source code, configuration files, and run-
time conditions—thatmay cause a system tomalfunction [26, 36, 50].
However, in modern systems, data has become a central component
that itself can cause a system to fail. Data-driven systems comprise
complex pipelines that rely on data to solve a target task. Prior work
addressed the problem of debugging machine learning models [14]
and finding root causes of failures in computational pipelines [52],
where certain values of the pipeline parameters—such as a specific
model and/or a specific dataset—cause the pipeline failure. However,
just knowing that a pipeline fails for a certain dataset is not enough;
naturally, we ask: what properties of a dataset caused the failure?

Two common reasons for malfunctions in data-driven systems
are: (1) incorrect data, and (2) disconnect between the assumptions
about the data and the design of the system that operates on the data.
Such disconnects may happen when the system is not robust, i.e.,
it makes strict assumptions about metadata (e.g., data format, do-
mains, and distributions), and when new data drifts away from the
data over which the system was tested on before deployment [60]
(e.g., when a system expects a data stream to have a weekly fre-
quency, but the data provider suddenly switches to daily data).

Therefore, in light of a failure, one should investigate potential is-
sues in the data. Some specific examples of commonly observed sys-
tem malfunctions caused by data include: (1) decline of a machine
learning model’s accuracy (due to out-of-distribution data), (2) un-
fairness in model predictions (due to imbalanced training data),
(3) excessive processing time (due to a system’s failure to scale to
large data), and (4) system crash (due to invalid input combination
in the data tuples beyond what the system was designed to handle).
These examples indicate a common problem: disconnect ormismatch
between the data and the system design. Once the mismatch is iden-
tified, possible fixes can be either to repair or reformat the data to
comply with the system design, or to adjust the system design (i.e.
modify source code) to accommodate data with different properties.

A naïve approach to deal with potential issues in the data is to
identify outliers: report tuples as potentially problematic based on
how atypical they are with respect to the rest of the tuples in the
dataset. However, without verifying whether the outliers actually
cause unexpected outcomes, we can never be certain about the
actual root causes. As pointed out in prior work [9]: “With respect
to a computation, whether an error is an outlier in the program’s input
distribution is not necessarily relevant. Rather, potential errors can be
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spotted by their effect on a program’s output distribution.” Tomotivate
our work, we start with an example inspired from a real-world inci-
dent, where Amazon’s delivery service was found to be racist [44].

Example 1 (Biased Classifier). An e-commerce company wants
to build an automated system to offer customer discounts. To this
end, they organize data of customers’ purchases over a year into a
dataset with attributes name, gender, age, race, zip_code, phone,
products_purchased, etc. Anita, a data scientist, is asked to develop
amachine learning (ML) pipeline over this dataset to predict whether a
customer will spend over a certain amount, and, subsequently, should
be offered discounts. Anita decides to use an off-the-shelf ML algorithm
that is trained over historical data. To avoid discrimination over any
group and to ensure that the classifier trained on this dataset is fair,
Anita decides to drop the sensitive attributes—race and gender—
during the pre-processing step of the ML pipeline, before feeding it to
the classifier. However, despite this effort, the trained classifier turns
out to be highly biased against African Americans and women. After
a close investigation, Anita discovers that: (1) in the training data,
race is highly correlated with zip_code, and (2) the training dataset
is imbalanced: a larger fraction of customers who purchase expensive
products are male. Now she wonders: if these two properties did not
hold in the dataset, would the learned classifier be fair? Have either
(or both) of these properties caused the observed unfairness?

Existing tools [9] that blame individual cells (values) cannot help
here, as no single cell in the training data is responsible for the
observed discrimination, rather, global statistical properties (e.g.,
correlation) that involve multiple attributes over the entire data
are the actual culprits. Also, Anita only identified two potential,
merely correlated data issues that may not be the actual cause of
the unfairness. To distinguish mere correlation from true causation,
we need to dig deeper. Example 1 is one among many incidents in
real-world applications where issues in the data caused systems to
malfunction [11, 34]. A recent study of 112 high-severity incidents
in Microsoft Azure services showed that 21% of the bugs were due
to inconsistent assumptions about data format by different software
components or versions [51]. The study further found that 83% of
the data-format bugs were due to inconsistencies between data
producers and data consumers, while 17% were due to mismatch be-
tween interpretations of the same data by different data consumers.
Similar incidents happened due to misspelling and incorrect date-
time format [63], and issues pertaining to data fusion where schema
assumptions break for a new data source [21, 75]. We provide an-
other example where a system times out when the distribution of
the data, over which the system operates, exhibits significant skew.

Example 2 (Process Timeout). A toll collection software EZGo
checks if vehicles passing through a gate have electronic toll passes
installed. If it fails to detect a toll pass, it uses external OCR software
to extract the registration number from images of the vehicle license
plates. At midnight, EZGo processes all images in a batch mode and
is expected to finish processing within 4 hours and generate a report.
However, on certain days, EZGo fails to produce the report after 4
hours. A close investigation reveals that the externalOCR software uses
an algorithm that is extremely slow for images of black license plates
captured in low illumination. As a result, when a batch contains a large
number of such cases (significantly skewed distribution), EZGo fails.

The aforementioned examples bring forth two key challenges.
First, we need to correctly identify potential causes of unexpected
outcomes and generate hypotheses that are expressive enough to
capture the candidate root causes. For example, “outliers cause
unexpected outcomes” is just one of the many possible hypotheses,
which offers very limited expressivity. Second, we need to verify the
hypotheses to confirm or refute them, which enables us to pinpoint
the actual root causes, eliminating false positives.
Data profile as root cause. Towards solving the first challenge, our
observation is that data-driven systems often function properly for
certain datasets, but malfunction for others. Such malfunction is
often rooted in certain properties of the data, called data profiles [1],
that distinguish passing and failing datasets. Examples include size
of a dataset, domains and ranges of attribute values, correlations
between attribute pairs, conditional independence [77], functional
dependencies and their variants [16, 25, 41, 46, 56], and other more
complex data profiles [20, 27, 49, 57, 72].
Oracle-guided root cause identification. Our second observation is
that an oracle that indicates whether the system functions desirably
or not, can help verify our hypotheses, and allows us to precisely
isolate the correct root causes of the undesirable malfunction from
a set of candidate causes. Here, an oracle is a mechanism that can
characterize whether the system functions properly over the input
data. The definition of proper functioning is application-specific;
for example, processing the input dataset under a certain time con-
straint may indicate proper functioning for streaming applications
and achieving a certain accuracy may indicate proper function-
ing for an ML pipeline. Such oracles are often available in many
practical settings, and have been considered in prior work [26, 52].

Solution sketch. We propose DataPrism, a framework that iden-
tifies and exposes data profiles that cause an opaque data-driven
system (i.e., a system whose internal mechanisms are unknown)
to malfunction. Our framework involves two main components:
(1) an intervention-based mechanism that alters the profiles of a
dataset, and (2) a mechanism that speeds up analysis by carefully
selecting appropriate interventions. Given a scenario where an
opaque system malfunctions (fails) over a dataset but functions
properly (passes) over another, DataPrism focuses on the discrimi-
native profiles, i.e., data profiles that significantly differ between the
two datasets. DataPrism’s intervention mechanism modifies the
“failing” dataset to alter one of the discriminative profiles; it then ob-
serves whether this intervention causes the system to perform desir-
ably, or the malfunction persists.DataPrism speeds up this analysis
by favoring interventions on profiles that are more likely causes
of the malfunction. To estimate this likelihood, we leverage three
properties of a profile: (1) coverage: the more tuples an intervention
affects, the more likely it is to change the system behavior, (2) dis-
criminating power : the bigger the difference between the failing and
the passing datasets over a profile, the more likely that the profile is
a cause of the malfunction, and (3) attribute association: if a profile
involves an attribute that is also involved with a large number of
other discriminative profiles, then that profile has high likelihood to
be a root cause. This is because altering such a profile is likely to pas-
sively repair other discriminative profiles as a side-effect (through
the associated attribute). While an intervention may involve a large
number of tuples, it is conceptually succinct (e.g., gender=male).



Scope. In this work, we only focus on the cases where system
malfunction is due to some holistic profile(s) over the input dataset.
Note that prior data-debugging approaches target different classes
of data issues [8, 63] and assume access to the internal mechanisms
of the system. In contrast, DataPrism is completely agnostic to the
type of data-driven system and can support any system ranging
from machine learning prediction models (e.g., binary classifiers,
regression models, deep neural networks, etc.) that learn from data
(Example 1) to other general software that just operate on data
(Example 2). In Section 5, we demonstrate the efficacy of DataPrism
over a diverse set of opaque systems that internally deploy different
ML models such as logistic regression, neural network, AdaBoost,
and random forest classifier. However,DataPrism cannot be used to
prevent malfunctions from happening in the first place as it requires
the knowledge of contrasting scenarios where the system under
consideration malfunctions (fails) over a dataset versus functions
properly (passes) over another dataset.

DataPrism requires knowledge of the classes of (domain-specific)
data profiles that encompass the potential root causes. E.g., in Exam-
ple 1, we assume the knowledge that correlation between attribute
pairs and disparity between the conditional probability distribu-
tions (the probability of belonging to a certain gender, given price
of items bought) are potential causes of malfunction. This assump-
tion is realistic because: (1) For a number of tasks there exists a
well-known set of relevant profiles: e.g., class imbalance and corre-
lation between sensitive and non-sensitive attributes are common
causes of unfairness in classification [10]; and violation of con-
formance constraints [27], missing values, and out-of-distribution
tuples are well-known causes of ML model’s performance degra-
dation. (2) Domain experts are typically aware of the likely class
of data profiles for the specific task at hand and can easily pro-
vide this additional knowledge as a conservative approximation, i.e.,
they can include extra profiles just to err on the side of caution.
Notably, this assumption is also extremely common in software
debugging techniques [26, 50, 79], which rely on the assumption
that the “predicates” (traps to extract certain runtime conditions)
are expressive enough to encode the root causes, and software test-
ing [53], validation [48], and verification [38] approaches, which
rely on the assumption that the test cases, specifications, and in-
variants reasonably cover the codebase and correctness constraints.

Data profiles. While we use data profiles to explain the cause of
malfunction, developing data profiling techniques [1] is orthogonal
to our work. A number of data profiling primitives exist in the lit-
erature along with corresponding techniques to extract them from
a dataset. DataPrism assumes access to a suite of data-profiling
techniques and uses them to extract profiles from the data. Dat-
aPrism then examines these profiles to identify the causes of system
malfunction. To support a new data profile, DataPrism needs the
corresponding mechanisms for their discovery and intervention.
We discuss some common classes of data profiles as representa-
tive ones, which are currently supported in the implementation
of DataPrism, and the corresponding discovery and intervention
techniques. For data-profile discovery, we rely on prior work on
pattern discovery [58], statistical-constraint discovery [77], data-
distribution learning [37], knowledge-graph-based concept iden-
tification [31], conformance-constraint discovery [27], etc. While

our evaluation covers specific data profiles (for which efficient dis-
covery techniques exist), DataPrism is generic and works for any
class of data profiles, as long as the corresponding discovery and
intervention techniques are available.

Limitations of prior work. To find potential issues in data, Dag-
ger [62, 63] provides data debugging primitives for human-in-the-
loop interactions with data-driven computational pipelines. Other
explanation-centric efforts [7, 19, 24, 75] report salient properties
of historical data based only on observations. In contrast with
observational techniques, the presence of an oracle allows for inter-
ventional techniques [52] that can query the oracle with additional,
system-generated test cases to identify root causes of system mal-
function more accurately. One such approach is CheckCell [9],
which presents a ranked list of cells of data rows that unusually
affect output of a given target function. CheckCell uses a fine-
grained approach: it removes one cell of the data at a time, and
observes changes in the output distribution. While it is suitable
for small datasets, where it is reasonable to expect a human-in-the-
loop paradigm to fix cells one by one, it is not suitable for large
datasets, where no individual cell is significantly responsible, rather,
a holistic property of the entire dataset (profile) causes the problem.
Capuchin [69] is an interventional approach that, similar to our ap-
proach, alters the dataset to remove attribute correlations, a prime
cause for prediction bias inML algorithms. However, Capuchin does
not verify if there is indeed a causal connection between attribute
correlation and prediction bias. In contrast, DataPrism offers a
general solution to verify and isolate the true root cause of system
malfunction for a diverse set of systems.

Interpretable machine learning is related to our problem, where
the goal is to explain behavior of machine learning models. How-
ever, prior work on interpretable machine learning [65, 66] typi-
cally provide local (tuple-level) explanations, as opposed to global
(dataset-level) explanations. While some approaches provide fea-
ture importance as a global explanation for model behavior [17],
they do not model feature interactions as possible explanations.

Contributions. In this paper, we make the following contributions:
• We formalize the novel problem of identifying root causes (and
fixes) of the disconnect between data and data-driven systems in
terms of data profiles (and interventions). (Section 2)
• We design a set of data profiles that are common root causes of
system malfunctions, and discuss their discovery and interven-
tion techniques based on available technology. (Section 3)
• We design and develop a novel interventional approach to pin-
point causally verified root causes. The approach leverages a few
properties of the data profiles to efficiently explore the space of
candidate root causes with a small number of interventions.
• We evaluate DataPrism on seven real-world applications, where
data profiles are responsible for causing system malfunction,
and demonstrate that DataPrism successfully explains the root
causes with very few interventions (fewer than 10). Furthermore,
DataPrism requires 10–1000× fewer interventions compared
to two state-of-the-art techniques for root-cause analysis: Bug-
Doc [52] and Anchors [66]. Over synthetic pipelines, we further
show that the number of required interventions by DataPrism
increases sub-linearly with the number of discriminative profiles.



2 PRELIMINARIES & PROBLEM DEFINITION

In this section, we first formalize the notions of system malfunction
and data profile, its violation, and transformation function used
for intervention. We then proceed to define explanation (cause
and corresponding fix) of system malfunction and formulate the
problem of data-profile-centric explanation of system malfunction.
Basic notations. We use R(𝐴1, 𝐴2, . . . , 𝐴𝑚) to denote a relation
schema over𝑚 attributes, where𝐴𝑖 denotes the 𝑖𝑡ℎ attribute.We use
Dom𝑖 to denote the domain of attribute 𝐴𝑖 . Then the set Dom𝑚 =

Dom1 × · · · × Dom𝑚 specifies the domain of all possible tuples. A
dataset 𝐷 ⊆ Dom𝑚 is a specific instance of the schema R. We use
𝑡 ∈ Dom𝑚 to denote a tuple in the schema R. We use 𝑡 .𝐴𝑖 ∈ Dom𝑖
to denote the value of the attribute 𝐴𝑖 of the tuple 𝑡 and use 𝐷.𝐴 𝑗

to denote the multiset of values all tuples in 𝐷 take for attribute 𝐴 𝑗 .
We use ®𝐴 to denote an ordered list of all attributes.

2.1 Quantifying System Malfunction

To measure how much the system malfunctions over a dataset, we
use the malfunction score.

Definition 3 (Malfunction score). Let 𝐷 ⊆ Dom𝑚 be a
dataset, and 𝑆 be a system operating on 𝐷 . The malfunction score
𝑚𝑆 (𝐷) ∈ [0, 1] is a real value that quantifies how much 𝑆 malfunc-
tions when operating on 𝐷 .

The malfunction score 𝑚𝑆 (𝐷) = 0 indicates that 𝑆 functions
properly over 𝐷 and a higher value indicates a higher degree of
malfunction, with 1 indicating extreme malfunction. A threshold
𝜏 defines the acceptable degree of malfunction and translates the
continuous notion of malfunction to a Boolean value. If𝑚𝑆 (𝐷) ≤ 𝜏 ,
then 𝐷 is considered to pass w.r.t 𝑆 ; otherwise, a mismatch between
𝐷 and 𝑆 exists, whose cause (and fix) we aim to expose.

Example 4. For a binary classifier, its misclassification rate (addi-
tive inverse of accuracy) over a dataset can be used as a malfunction
score. Given a dataset 𝐷 , if a classifier 𝑆 makes correct predictions for
tuples in 𝐷 ′ ⊆ 𝐷 , and incorrect predictions for the remaining tuples,
then 𝑆 achieves accuracy |𝐷

′ |
|𝐷 | , and, thus,𝑚𝑆 (𝐷) = 1 − |𝐷

′ |
|𝐷 | .

Example 5. In fair classification, we can use disparate impact [40],
the ratio between the fraction of tuples with favorable outcomes within
the unprivileged and the privileged groups, to measure malfunction.

2.2 Profile-Violation-Transformation (PVT)

Once we detect a mismatch, the next step is to investigate its cause.
We use data profiles to model the possible causes of mismatch. The
schema of a data profile is given as a template that can be param-
eterized with different values. Populating a profile template with
a particular set of values produces an instantiation of the profile
(𝑃 ). Given a dataset 𝐷 , we use existing data-profiling techniques to
discover parameter values, such that 𝐷 satisfies the corresponding
profile instances. To measure how much a dataset 𝐷 satisfies or
violates a data profile, we need a violation function (𝑉 ) that gives
semantics to the data profiles. Finally, to repair a dataset 𝐷 , with
respect to a data profile and its corresponding violation function,
we need a transformation function (𝑇 ). Transformation functions
provide an intervention mechanism to alter data and suggest re-
pairs to remove the cause of malfunction. DataPrism requires the

following three components over the schema ⟨Profile, Violation
function, Transformation function⟩, PVT in short:
(1) 𝑃 : an instantiated profile, which follows the schema ⟨profile

type, parameters⟩.
(2) 𝑉 (𝐷, 𝑃): a violation function that computes how much the

dataset 𝐷 violates the profile 𝑃 and returns a violation score.
(3) 𝑇 (𝐷, 𝑃,𝑉 ): a transformation function that transforms the dataset

𝐷 to another dataset 𝐷 ′ such that 𝐷 ′ no longer violates the pro-
file 𝑃 with respect to the violation function𝑉 . (When clear from
the context, we omit the parameters 𝑃 and 𝑉 in the notation of
transformation functions.)
For a PVT triplet 𝑋 , we use 𝑋𝑃 , 𝑋𝑉 , and 𝑋𝑇 to denote its profile,

violation function, and transformation function, respectively. As
an example, consider a profile 𝑃 in a PVT ⟨𝑃,𝑉 ,𝑇 ⟩ over a dataset
𝐷 : 𝑃 may correspond to the ideal domain of an attribute 𝐴 in 𝐷 ,
specified by Dom(𝐴),𝑉 (𝐷, 𝑃) may correspond to the fraction of out-
of-domain values in 𝐷.𝐴, and𝑇 (𝐷, 𝑃,𝑉 ) can be to remove all tuples
𝑡 ∈ 𝐷 that contain out-of-domain values (i.e., 𝑡 .𝐴 ∉ 𝐷𝑜𝑚(𝐴) ). We
provide detailed examples and additional discussion on data profiles,
violation functions, and transformation functions in Section 3. We
proceed to formalize these notions.

2.2.1 Data Profile. Intuitively, data profiles encode dataset char-
acteristics. They can refer to a single attribute (e.g., mean of an
attribute) or multiple attributes (e.g., correlation between a pair of
attributes, functional dependencies, etc.).

Definition 6 (Data Profile). Given a dataset𝐷 , a data profile 𝑃
denotes properties or constraints that tuples in 𝐷 (collectively) satisfy.

2.2.2 Profile Violation Function. To quantify the degree of violation
a dataset incurs with respect to a data profile, we use a profile
violation function that returns a numerical violation score.

Definition 7 (Profile violation function). Given a dataset
𝐷 and a data profile 𝑃 , a profile violation function𝑉 (𝐷, 𝑃) ↦→ [0, 1]
returns a real value that quantifies how much 𝐷 violates 𝑃 .

𝑉 (𝐷, 𝑃) = 0 implies that𝐷 fully complies with 𝑃 (does not violate
it at all). In contrast, 𝑉 (𝐷, 𝑃) > 0 implies that 𝐷 violates 𝑃 . The
higher the value of 𝑉 (𝐷, 𝑃), the higher the profile violation.

2.2.3 Transformation Function. In this work, we assume knowl-
edge of a passing dataset for which the system functions properly,
and a failing dataset for which the system malfunctions. Our goal is
to identify which profiles of the failing dataset caused the malfunc-
tion. We seek answer to the question: how to “fix” the issues within
the failing dataset such that the system no longer malfunctions
on it (mismatch is resolved)? To this end, we apply interventional
causal reasoning: we intervene on the failing dataset by altering its
attributes such that the profile of the altered dataset matches the
corresponding correct profile of the passing dataset. To perform
intervention, we need transformation functions with the property
that it should push the failing dataset “closer” to the passing dataset
in terms of the profile that we are interested to alter. More formally,
after the transformation, the profile violation score should decrease.

Definition 8 (Transformation function). Given a dataset
𝐷 , a data profile 𝑃 , a selection predicate S and a violation function
𝑉 , a transformation function𝑇 (𝐷, 𝑃,𝑉 , S) ↦→ 2Dom

𝑚
alters tuples in

𝜎S (𝐷) to produce 𝐷 ′ such that 𝑉 (𝐷 ′, 𝑃) < 𝑉 (𝐷, 𝑃).



The selection predicate S characterizes the subset of tuples in 𝐷
that can be altered during transformation, and helps limit transfor-
mation to within a certain subset of the data. An empty S indicates
that any tuple can be transformed. A dataset can be transformed
by applying a series of transformation functions, for which we use
the composition operator (◦).

Definition 9 (Composition of transformations). Given a
dataset𝐷 , and two PVT triplets𝑋 and𝑌 , (𝑋𝑇 ◦𝑌𝑇 ) (𝐷) = 𝑋𝑇 (𝑌𝑇 (𝐷)).
Further, if𝐷 ′′ = (𝑋𝑇 ◦𝑌𝑇 ) (𝐷), then𝑋𝑉 (𝐷 ′′, 𝑋𝑃 ) = 𝑌𝑉 (𝐷 ′′, 𝑌𝑃 ) = 0.

2.3 Problem Definition

We expose a set of PVT triplets for explaining the system malfunc-
tion. The explanation contains both the cause and the corresponding
fix: profile within a PVT triplet indicates the cause of system mal-
function with respect to the corresponding transformation function,
which suggests the fix.

Definition 10 (Explanation of system malfunction). Given
(1) a system 𝑆 with a mechanism to compute𝑚𝑆 (𝐷) ∀𝐷 ⊆ Dom𝑚 ,
(2) an allowable malfunction threshold 𝜏 ,
(3) a passing dataset 𝐷pass for which𝑚𝑆 (𝐷pass) ≤ 𝜏 ,
(4) a failing dataset 𝐷fail for which𝑚𝑆 (𝐷fail) > 𝜏 , and
(5) a set of candidate PVT triplets X such that ∀𝑋 ∈ X

𝑋𝑉 (𝐷pass, 𝑋𝑃 ) = 0 ∧ 𝑋𝑉 (𝐷fail, 𝑋𝑃 ) > 0,
the explanation of the malfunction of 𝑆 for 𝐷fail , but not for 𝐷pass , is
a set of PVT triplets X∗ ⊆ X such that𝑚𝑆 ((◦𝑋 ∈X∗𝑋𝑇 ) (𝐷fail)) ≤ 𝜏 .

Informally, X∗ explains the cause: why 𝑆 malfunctions for 𝐷fail ,
but not for 𝐷pass . More specifically, failing to satisfy the profiles of
the PVT triplets in X∗ are the causes of malfunction. Furthermore,
the transformation functions of the PVT triplets in X∗ suggest the
fix: how can we repair 𝐷fail to eliminate system malfunction. How-
ever, there could be many possible such X∗ and we seek a minimal
set X∗ such that a transformation for every 𝑋 ∈ X∗ is necessary
to bring down the malfunction score below the threshold 𝜏 .

Definition 11 (Minimal explanation of system malfunc-
tion). Given a system 𝑆 that malfunctions for 𝐷fail and an allowable
malfunction threshold 𝜏 , an explanation X∗ of 𝑆’s malfunction for
𝐷fail is minimal if ∀X′ ⊂ X∗ 𝑚𝑆 ((◦𝑋 ∈X′𝑋𝑇 ) (𝐷fail)) > 𝜏 .

Note that there could be multiple such minimal explanations and
we seek any one of them, as any minimal explanation exposes the
causes of mismatch and suggests minimal fixes.

DataPrism requires knowledge of a passing dataset to guide the
search for the cause of mismatch between 𝐷fail and 𝑆 . Assuming
availability of such knowledge is realistic in many real-world sce-
narios and has been considered in prior work [26, 50]. For instance,
in ML, the training set can be considered as a passing dataset.

Problem 12 (Discovering explanation of mismatch between
data and system). Given a system 𝑆 that malfunctions for 𝐷fail but
functions properly for 𝐷pass , the problem of discovering the explana-
tion of mismatch between𝐷fail and 𝑆 is to find a minimal explanation
that captures (1) the cause why 𝑆 malfunctions for 𝐷fail but not for
𝐷pass and (2) how to repair 𝐷fail to remove the malfunction.

Certain applications allow access to multiple passing datasets or
multiple malfunction metrics. DataPrism extends to this setting as
well (details are in our technical report [30]).

3 DATA PROFILES, VIOLATION FUNCTIONS,

AND TRANSFORMATION FUNCTIONS

We now provide an overview of the data profiles we consider, how
we discover them, howwe compute the violation scores for a dataset
w.r.t. a data profile, and how we apply transformation functions
to alter profiles of a dataset. While a multitude of data-profiling
primitives exist in the literature, we consider a carefully chosen
subset of them that are particularly suitable for modeling issues
in data that commonly cause malfunction or failure of a system
(Figure 1). We focus on profiles that, by design, can better “discrim-
inate” a pair of datasets as opposed to “generative” profiles (e.g.,
data distribution) that can profile the data better, but nonetheless
are less useful for the task of discriminating between two datasets.
However, the DataPrism framework is generic, and other profiles
can be plugged into it. In this work, we just pick these profiles to
show the efficacy of DataPrism over a set of real-world use cases.

As discussed in Section 2, a PVT triplet encapsulates a profile,
and corresponding violation and transformation functions. Figure 1
provides a list of profiles (not exhaustive) along with the data types
they support, how to learn their parameters from a given dataset,
how to interpret them intuitively, and the corresponding violation
and transformation functions. The PVTs are specified according
to the data types of the attributes (numerical, categorical, dates,
etc.) to reduce the effort of defining PVTs individually for each
attribute1. In this work, we assume that a profile can be associated
with multiple transformation functions (e.g., row 3), but each trans-
formation function can be associated with at most one profile. This
assumption helps us to blame a unique profile as the cause of the
system malfunction when any of its transformation functions is
verified to be a fix. When the assumption does not hold, DataPrism
may blame multiple profiles, which are potentially related via a
disjunctive relationship, as possible cause. In such cases, some of
the reported profiles may be false positives, but the true cause will
never be missed (no false negatives).

PVT triplets can be classified in different ways. Based on the
strictness of the violation function, they can be classified as follows:
• Strict: All tuples are expected to satisfy the profile (rows 1 and 2).
• Thresholded by data coverage: Certain fraction (𝜃 ) of data tuples
are allowed to violate the profile (rows 3–6).
• Thresholded by a parameter: Some degree of violation is allowed
with respect to a specific parameter (𝛼) (rows 7 and 8).
Further, PVT triplets can be classified in two categories based

on the nature of the transformation functions:
• Local transformation functions can transform a tuple in isolation
without the knowledge of how other tuples are being transformed
(e.g., row 1). Some local transformation functions only transform
the violating tuples (e.g., row 3, transformation (2)), while others
transform all values.
• Global transformation functions are holistic, as they need the
knowledge of how other tuples are being transformed while
transforming a tuple (e.g., row 4).
Many transformation functions may exist, including some ex-

treme ones such as removing all tuples from the dataset. Prior
data-cleaning techniques can be used as transformations to obey
1Specifying different PVTs for each attribute and their combination (not just data
types) requires significant user effort but DataPrism is flexible to consider such PVTs.



Profile Data type Discovery over 𝑋 Interpretation Violation by 𝑌 Transformation function

1 ⟨Domain, 𝐴 𝑗 , S⟩ Categorical S =
⋃
𝑡 ∈𝑋
{𝑡 .𝐴 𝑗 } Values are drawn from a spe-

cific domain.

∑
𝑡∈𝑌 J𝑡 .𝐴 𝑗 ∉ SK
|𝑌 |

Map values outside S to values in S
using domain knowledge.

s
t
r
i
c
t

2 ⟨DataSize ⟩ All |𝐷 | Dataset size. |𝑌 |
|𝐷 |

Remove tuples (or add duplicates) to
satisfy the size requirements.

3 ⟨Outlier, 𝐴 𝑗 , 𝑂 , 𝜃⟩ All
𝜃 =

∑
𝑡∈𝑋 J𝑂 (𝑋 .𝐴𝑗 ,𝑡 .𝐴 𝑗 )K

|𝑋 | ,
where 𝑂 is learned from
𝑋 .𝐴 𝑗 ’s distribution [37]

Fraction of outliers within an
attribute does not exceed a
threshold.

max
(
0,

∑
𝑡∈𝑌 J𝑂 (𝑌 .𝐴 𝑗 ,𝑡 .𝐴 𝑗 )K−𝜃 · |𝑌 |

|𝑌 | · (1−𝜃 )

) (1) Replace outliers with the expected
value (mean, median, mode) of the
attribute.
(2) Map all values above (below)
the maximum (minimum) limit with
highest (lowest) valid value.

4 ⟨Missing, 𝐴 𝑗 , 𝜃⟩ All 𝜃 =

∑
𝑡∈𝑋 J𝑡 .𝐴𝑗=NULLK

|𝑋 |

Fraction of missing values
within an attribute does not ex-
ceed a threshold.

max
(
0,

∑
𝑡∈𝑌 J𝑡 .𝐴𝑗=NULLK−𝜃 · |𝑌 |

|𝑌 | · (1−𝜃 )

) Use missing value imputation tech-
niques.
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5 ⟨Selectivity, P, 𝜃⟩ All 𝜃 =
|𝜎P (𝑋 ) |
|𝑋 |

Fraction of tuples satisfying
a given constraint (selection
predicate) does not exceed a
threshold.

max
(
0, |𝜎P (𝑌 ) |−𝜃 · |𝐷 ||𝐷 | · (1−𝜃 )

) Undersample tuples that satisfy the
predicate P.

6 ⟨Functional, 𝐴𝑖 , 𝐴 𝑗 , 𝜃⟩ All
𝜃 is the fraction of tuples
that satisfy 𝐴𝑖 → 𝐴 𝑗

Fraction of tuples violating a
functional dependency does
not exceed a threshold.

max
(
0,

∑
𝑡∈𝑌 J𝑡 .𝐴𝑖 ̸→𝑡 .𝐴 𝑗 K

|𝑌 |

) Modify the violating tuples using
data cleaning techniques [61].
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7 ⟨Indep, 𝐴 𝑗 , 𝐴𝑘 , 𝛼⟩ Categorical
𝛼 denotes Chi-squared
statistic between 𝑋 .𝐴 𝑗

and 𝑋 .𝐴𝑘

𝜒2 statistic between a pair of
attributes is below a threshold
with a p-value ≤ 0.05.

1 − 𝑒−max(0,𝜒2 (𝑌 .𝐴 𝑗 ,𝑌 .𝐴𝑘 )−𝛼) Modify attribute values to re-
move/reduce dependence.

8 ⟨ConfCons, ®𝐴, ®𝑤, 𝛼⟩ Numerical

Coefficients in ®𝑤 and
threshold 𝛼 are learned
using [27] such that
∀𝑡 ∈ 𝑋 | ®𝑤 · 𝑡 . ®𝐴| ≤ 𝛼

There is a linear arithmetic re-
lationship among the numeri-
cal attributes, captured by low-
variance (𝛼) projections ( ®𝑤 ).

∑
𝑡∈𝑌 max(0, ®𝑤 ·𝑡 . ®𝐴−𝛼,−𝛼− ®𝑤 ·𝑡 . ®𝐴)

𝜎 ( ®𝑤 ·𝑋 . ®𝐴)

Perform linear transformation over
the numerical attributes to satisfy the
conformance constraint.

Figure 1: A list of PVT triplets that we consider in this paper, their syntax, and semantics.

corresponding profiles (e.g., [69] to break correlation). While trans-
formation functions should be designed to minimally alter the data,
the design of minimal transformation functions is orthogonal to
DataPrism. However, the choice of transformation function for
a specific profile has no impact on the correctness of DataPrism.
Nevertheless, with respect to a dataset, some transformations may
incur less cost (e.g., fewer data alterations) or offer greater benefits
(e.g., fewer number of interventions). When multiple transforma-
tions are available, DataPrism estimates their likelihood to reduce
system malfunction using heuristics, which we discuss in Section 4.

Example 13. Domain requires two parameters: (1) an attribute
𝐴 𝑗 ∈ R(𝐷), and (2) a set S specifying its domain. A dataset𝐷 satisfies
⟨Domain, 𝐴 𝑗 , S⟩ if ∀𝑡 ∈ 𝐷 𝑡 .𝐴 𝑗 ∈ S. The profile ⟨Domain, 𝐴 𝑗 , S⟩ is
minimal w.r.t.𝐷 if �S′ ⊂ S s.t.𝐷 satisfies the profile ⟨Domain, 𝐴 𝑗 , S

′⟩.
The technique for discovering a domain S varies depending on the
data type of the attribute. Row 1 shows one, others are in [30].

Peoplefail (Figure 2) satisfies ⟨Domain, gender, {𝐹,𝑀}⟩, as all tu-
ples draw values from {𝐹,𝑀} for the attribute gender. Our case
studies of Sentiment Prediction and Cardiovascular Disease
Prediction show the application of the profile Domain (Section 5).

Example 14. Indep requires three parameters: two attributes
𝐴 𝑗 , 𝐴𝑘 ∈ R(𝐷), and a real value 𝛼 . A dataset 𝐷 satisfies the profile
⟨Indep, 𝐴 𝑗 , 𝐴𝑘 , 𝛼⟩ if the dependency between 𝐷.𝐴 𝑗 and 𝐷.𝐴𝑘 does
not exceed 𝛼 . Different techniques exist to quantify the dependency.
Row 7 models dependency using correlation (others are in [30]).
⟨Indep, race, high_expenditure, 0.67⟩ is satisfied by Peoplefail

using the PVT triplet of row 7, as 𝜒2-statistic between race and
high_expenditure over Peoplefail is 0.67. We show its application in
our case study involving the task of Income Prediction in Section 5.

Figure 1 describesDomain (row 1) and Indep (row 7) for categor-
ical attributes. Other variations for other data-types are discussed

in [30]. While the profiles in Figure 1 are defined over the entire
data, analogous to conditional functional dependency [25], an ex-
tension to consider is conditional profiles, where only a subset of
the data satisfy the profiles. E.g., all PVTs on a subset of the data
having gender=F are considered to be conditioned on gender=F.

4 INTERVENTION ALGORITHM

We now describe our intervention algorithm to explain the mis-
match between a dataset and a system malfunctioning on that
dataset. Our algorithm considers a failing and a passing dataset as
input and reports a collection of PVT triplets (or simply PVTs) as the
explanation (cause and fix) of the observed mismatch. To this end,
we first identify a set of discriminative PVTs—whose profiles take
different values in the failing and passing datasets—as potential
explanation units, and then intervene on the failing dataset to alter
the profiles and observe change in system malfunction. Our greedy
strategy, DataPrism iteratively intervenes one PVT at a time based
on their estimated likelihood to reduce system malfunction. We
start with an example scenario to demonstrate how DataPrism
works and then proceed to describe the algorithm.

4.1 Example Scenario

Consider the task of predicting the attribute high_expenditure to
determine if a customer should get a discount (Example 1). The sys-
tem calculates bias of the trained classifier against the unprivileged
groups (measured using disparate impact [40]) as its malfunction
score. We seek the causes of mismatch between this prediction
pipeline and Peoplefail (Figure 2), for which the pipeline fails with a
malfunction score of 0.75. We assume the knowledge of Peoplepass
(Figure 3), for which the malfunction score is 0.15. The goal is to
identify a minimal set of PVTs whose transformation functions
bring down the malfunction score of Peoplefail below 0.20.



id name gender age race zip code phone high expenditure

𝑡1 Shanice Johnson F 45 A 01004 2088556597 no
𝑡2 DeShawn Bad M 40 A 01004 2085374523 no
𝑡3 Malik Ayer M 60 A 01005 2766465009 no
𝑡4 Dustin Jenner M 22 W 01009 7874891021 yes
𝑡5 Julietta Brown F 41 W 01009 yes
𝑡6 Molly Beasley F 32 W 7872899033 no
𝑡7 Jake Bloom M 25 W 01101 4047747803 yes
𝑡8 Luke Stonewald M 35 W 01101 4042127741 yes
𝑡9 Scott Nossenson M 25 W 01101 yes
𝑡10 Gabe Erwin M 20 W 4048421581 yes

Figure 2: A sample dataset Peoplefail with 10 entities. A logistic re-

gression classifier trained over this dataset discriminates against

AfricanAmericans (race = ‘A’) andwomen (gender = ‘F’) (Example 1).

(Step 1) To identify the profiles whose parameters differ between
Peoplefail and Peoplepass , DataPrism identifies the exhaustive set
of PVTs over Peoplepass and Peoplefail and discards the identical
ones (in terms of profile-parameter values). We call the PVTs of
the passing dataset whose profile-parameter values differ from the
failing one discriminative PVTs. Figure 4 lists a few profiles of the
discriminative PVTs wrt Peoplepass and Peoplefail .

(Step 2) Next, DataPrism ranks discriminative PVTs based on
their likelihood to explain the malfunction. Our intuition here is
that if an attribute𝐴 is related to the malfunction, then many PVTs
containing 𝐴 in their profiles would differ between Peoplefail and
Peoplepass . Additionally, altering𝐴 with respect to one PVT is likely
to automatically “fix” other PVTs associated with 𝐴.2 Based on
this intuition, DataPrism constructs a bipartite graph, called PVT-
attribute graph, with discriminative PVTs on one side and data
attributes on the other side (Figure 5). In this graph, a PVT 𝑋 is
connected to an attribute 𝐴 if 𝑋𝑃 is defined over 𝐴. In this graph,
the degree of an attribute 𝐴 captures the number of discriminative
PVTs associated with 𝐴. During intervention, DataPrism priori-
tizes PVTs associated with a high-degree attribute. For instance,
since high_expenditure has the highest degree in Figure 5, PVTs
associated with it are considered for intervention before others.

(Step 3) DataPrism further ranks the subset of the discrimina-
tive PVTs that are connected to the highest-degree attributes in the
PVT-attribute graph based on their benefit score. Benefit score of
a PVT 𝑋 encodes the likelihood of reducing system malfunction
when the failing dataset is altered using 𝑋𝑇 . The benefit score of 𝑋
is estimated from (1) the violation score that the failing dataset in-
curs w.r.t.𝑋𝑉 , and (2) the number of tuples in the failing dataset that
are altered by 𝑋𝑇 . For example, to break the dependence between
high_expenduture and race, the transformation corresponding
to Indep modifies five tuples in Peoplefail by perturbing (adding
noise to) high_expenditure. In contrast, the transformation for
Missing needs to change only one value (𝑡6 or 𝑡10). Since more
tuples are affected by the former, it has higher likelihood of re-
ducing the malfunction score. The intuition behind this is that if
a transformation alters more tuples in the failing dataset, the more
likely it is to reduce the malfunction score. This holds particularly
in applications where the system optimizes aggregated statistics
such as accuracy, recall, F-score, etc.

(Step 4) DataPrism starts intervening on Peoplefail using
the transformation of the PVT corresponding to the profile

2DataPrism extends to the casewhen altering values of𝐴wrt a PVT increases violation
wrt some other PVTs, however, may require sub-optimal number of interventions.

id name gender age race zip code phone high expenditure

𝑡1 Darin Brust M 25 W 01004 2088556597 no
𝑡2 Rosalie Bad F 22 W 01005 no
𝑡3 Kristine Hilyard F 50 W 01004 2766465009 yes
𝑡4 Chloe Ayer F 22 A 7874891021 yes
𝑡5 Julietta Mchugh F 51 W 01009 9042899033 yes
𝑡6 Doria Ely F 32 A 01101 yes
𝑡7 Kristan Whidden F 25 W 01101 4047747803 no
𝑡8 Rene Strelow M 35 W 01101 6162127741 yes
𝑡9 Arial Brent M 45 W 01102 4089065769 yes

Figure 3: A sample dataset Peoplepass with 9 entities. A logistic re-

gression classifier trained over this dataset does not discriminate

against any specific race or gender, and, thus, is fair (Example 1).

⟨Indep, race, high_expenditure, 0.04⟩ as its transformation offers
the most likely fix. Then, it evaluates the malfunction of the system
over the altered version of Peoplefail . Breaking the dependence be-
tween high_expenditure and race helps reduce bias in the trained
classifier, and, thus, we observe a malfunction score of 0.35w.r.t. the
altered dataset. This exposes the first explanation of malfunction.

(Step 5) DataPrism then removes the processed PVT (Indep)
from the PVT-attribute graph, updates the graph according to the al-
tered dataset, and re-iterates steps 2–4. Now the PVT corresponding
to the profile Selectivity is considered for intervention as it has
the highest benefit score. To do so, DataPrism oversamples tuples
corresponding to female customers with high_expenditure = 𝑦𝑒𝑠 .
This time, DataPrism intervenes on the transformed dataset ob-
tained from the previous step. After this transformation, bias of
the learned classifier further reduces and the malfunction score
falls below the required threshold. Therefore, with these two in-
terventions, DataPrism is able to expose two issues that caused
undesirable behavior of the prediction model trained on Peoplefail .

(Step 6) DataPrism identifies an initial explanation over two
PVTs: Indep and Selectivity. However, to verify whether it is
minimal,DataPrism tries to drop from it one PVT at a time to obtain
a proper subset of the initial explanation that is also an explanation.
This procedure guarantees that the explanation only consists of
PVTs that are necessary, and, thus, is minimal. In this case, both
Indep and Selectivity are necessary, and, thus, are part of the
minimal explanation. DataPrism finally reports the following as a
minimal explanation of the malfunction, where failure to satisfy the
profiles is the cause and the transformations indicate fix (violation
and transformation functions are omitted).

{ ⟨Indep, race, high_expenditure, 0.04⟩,
⟨Selectivity, gender = F ∧ high_expenditure = yes, 0.44⟩ }

4.2 Assumptions and Observations

We now proceed to describe our intervention algorithms more
formally.We first state our assumptions and then proceed to present
our observations that lead to the development of our algorithms.

Assumptions. DataPrism makes the following assumptions:
(A1) The ground-truth explanation of malfunction is captured by

at least one of the discriminative PVTs. This assumption is prevalent
in software-debugging literature where program predicates are
assumed to be expressive enough to capture the root causes [26, 50].

(A2) If the fix corresponds to a composition of transformations,
then the malfunction score achieved after applying the composition
of transformations is less than the malfunction score achieved after
applying any of the constituents, and all these scores are less than
the malfunction score of the original dataset. E.g., consider two



Peoplepass Peoplefail

⟨Domain, age, [22, 51]⟩ ⟨Domain, age, [20, 60]⟩
⟨Missing, zip_code, 0.11⟩ ⟨Missing, zip_code, 0.2⟩
⟨Indep, race, high_expenditure, 0.04⟩ ⟨Indep, race, high_expenditure, 0.67⟩
⟨Selectivity, gender = F ⟨Selectivity, gender = F
∧high_expenditure = yes, 0.44⟩ ∧high_expenditure = yes, 0.1⟩

Figure 4: A list of PVTs that discriminate Peoplepass (Figure 3) and

Peoplefail (Figure 2) based on the scenario of Example 1 . We omit the

violation and transformation functions for ease of exposition.

< Missing, zip-code, ... >

< Indep, race, high-expenditure, … >

age

race

gender

high-expenditure< Selectivity, gender = X ∧ high-expenditure = Y, … >

AttributesPVTs

< Domain, age, ... >

zip-code

Figure 5: PVT-attribute graph. The attribute high_expenditure is as-
sociated with two discriminative PVTs. For ease of exposition, we

only show profile within a PVT to denote the entire PVT.

discriminative PVTs𝑋 and𝑌 and a failing dataset𝐷fail . Our assump-
tion is that if {𝑋,𝑌 } corresponds to a minimal explanation, then
𝑚𝑆 ((𝑌𝑇 ◦𝑋𝑇 ) (𝐷fail)) < 𝑚𝑆 (𝑋𝑇 (𝐷fail)) < 𝑚𝑆 (𝐷fail) and𝑚𝑆 ((𝑌𝑇 ◦
𝑋𝑇 ) (𝐷fail)) < 𝑚𝑆 (𝑌𝑇 (𝐷fail)) < 𝑚𝑆 (𝐷fail). Intuitively, this assump-
tion states that 𝑋 and 𝑌 have consistent (independent) effect on
reducing the malfunction score, regardless of whether they are in-
tervened together or individually in any order. This assumption gen-
erally holds when different causes of malfunction involve different
attributes. Consider a failing dataset that contains formatting error
in address and correlation between race and income. Here, the trans-
formation to fix the formatting issues in address does not affect race
or income. Therefore, applying transformations in any order would
have similar effect on system malfunction. We empirically observed
that this assumption generally holds for most real-world scenarios.

Observations. We make the following observations:
(O1) If the ground-truth explanation of malfunction corresponds

to an attribute, then multiple PVTs that involve the same attribute
are likely to differ across the passing and failing datasets. This ob-
servation motivates us to prioritize interventions based on PVTs
that are associated with high-degree attributes in the PVT-attribute
graph. Additionally, intervening on the data based on one such
PVT is likely to result in an automatic “fix” of other PVTs con-
necting via the high-degree attribute. For example, adding noise to
high_expenditure in Example 1 breaks its dependence with not
only race but also with other attributes.

(O2) The PVT for which the failing dataset incurs higher viola-
tion score is more likely to be a potential explanation of malfunction.

(O3) A transformation function that affects a large number of
data tuples is likely to result in a higher change in the malfunction
score, after the transformation is applied.
PVT-attribute graph. DataPrism leverages observation O1 by
constructing a bipartite PVT-attribute graph (𝐺𝑃𝐴), with all at-
tributes 𝐴 ∈ R(𝐷) as nodes on one side and all discriminative
PVTs 𝑋 ∈ X on the other side. An attribute 𝐴 is connected
to a PVT 𝑋 if and only if 𝑋𝑃 has 𝐴 as one of its parameters.

Algorithm 1: DataPrism
Input: Failing dataset 𝐷fail , passing dataset 𝐷pass , malfunction

score threshold 𝜏
Output: A minimal explanation set of PVTs X∗

1 X𝑓 ← Discover-PVT(𝐷fail)
2 X𝑝 ← Discover-PVT(𝐷pass)
3 X∩ ← X𝑓 ∩ X𝑝 /* Common PVTs */

4 X ← X𝑝 \ X∩ /* Discriminative PVTs */

5 𝐺𝑃𝐴 (𝑉𝐺 , 𝐸𝐺 ) ← Construct-PVT-Attr-Graph(X, 𝐷fail)
6 𝐵 ← Calculate-Benefit-Score(X,𝐺𝑃𝐴, 𝐷fail)
7 X∗ ← ∅ /* Initialize minimal explanation set to be empty */

8 𝐷 ← 𝐷fail /* Initialize dataset to the failing dataset */

9 while𝑚𝑆 (𝐷) > 𝜏 do

10 Xhda = {𝑋 ∈X | (𝑋,𝐴) ∈𝐸𝐺∧𝐴= argmax𝐴∈R(𝐷 ) 𝑑𝑒𝑔𝐺 (𝐴) }
/* PVTs adjacent to high-degree attributes in 𝐺𝑃𝐴 */

11 𝑋 = argmax𝑋 ∈Xhda 𝐵 (𝑋 ) /* Highest-benefit PVT */

12 Δ←𝑚𝑆 (𝐷) −𝑚𝑆 (𝑋𝑇 (𝐷)) /* Malfunction reduction */

13 𝐺𝑃𝐴 ← 𝐺𝑃𝐴 .Remove(𝑋 ) /* Update 𝐺𝑃𝐴 */

14 if Δ > 0 then /* Reduces malfunction */

15 𝐷 ← 𝑋𝑇 (𝐷) /* Apply transformation */

16 𝐺𝑃𝐴 .Update(𝐷) /* Update the PVT-attribute graph */

17 𝐵.Update(𝐷) /* Update benefit scores */

18 X∗ ← X∗ ∪ {𝑋 } /* Add 𝑃 to explanation set */

19 X ← X \ {𝑋 } /* Remove 𝑃 from the candidates */

20 X∗ =Make-Minimal(X∗) /* Obtain minimality of X∗ */

21 return X∗ /* X∗ is a minimal explanation */

E.g., Figure 5 shows the PVT-attribute graph w.r.t. Peoplefail and
Peoplepass (Example 1). In this graph, the PVT corresponding to
⟨Indep, race, high_expenditure⟩ is connected to two attributes,
race and high_expenditure. Intuitively, this graph captures the
dependence relationship between PVTs and attributes, where an
intervention with respect to a PVT 𝑋 modifies an attribute 𝐴 con-
nected to it. If this intervention reduces the malfunction score then
it could possibly fix other PVTs that are connected to 𝐴.

Benefit score calculation. DataPrism uses the aforementioned
observations to compute a benefit score for each PVT to model their
likelihood of reducing system malfunction if the corresponding
transformation is used to modify the failing dataset𝐷fail . Intuitively,
it assigns a high score to a PVT with a high violation score (O2)
and if the corresponding transformation function modifies a large
number of tuples in the dataset (O3). Formally, the benefit score of
a PVT 𝑋 is defined as the product of violation score of 𝐷fail w.r.t.
𝑋𝑉 and the “coverage” of 𝑋𝑇 . The coverage of 𝑋𝑇 is defined as the
fraction of tuples that it modifies. Note that the benefit calculation
procedure acts as a proxy of the likelihood of a PVT to offer an
explanation, without actually applying any intervention.

4.3 Greedy Approach

Algorithm 1 presents the pseudocode of our greedy technique Dat-
aPrism, which takes a passing dataset 𝐷pass and a failing dataset
𝐷fail as input and returns the set of PVTs that corresponds to a
minimal explanation of system malfunction.
Lines 1-2 Identify two sets of PVTs X𝑓 and X𝑝 satisfied by 𝐷fail
and 𝐷pass , respectively.



Lines 3-4 Discard the PVTs X𝑓 ∩ X𝑝 from X𝑝 and consider the
remaining discriminative ones X ≡ X𝑝 \ X𝑓 as candidates for
potential explanation of system malfunction.
Line 5 Compute the PVT-attribute graph 𝐺𝑃𝐴 , where the candi-
date PVTsX correspond to nodes on one side and the data attributes
correspond to nodes on the other side.
Line 6 Calculate the benefit score of each discriminative PVT 𝑋 ∈
X w.r.t. 𝐷fail . This procedure relies on the violation score using the
violation function of the PVT and the coverage of the corresponding
transformation function over 𝐷fail .
Line 7-8 Initialize the solution set X∗ to ∅ and the dataset to per-
form intervention on 𝐷 to the failing dataset Dfail . In subsequent
steps, X∗ will converge to a minimal explanation set and 𝐷 will be
transformed to a dataset for which the system passes.
Line 9 Iterate over the candidate PVTsX until the dataset𝐷 (which
is being transformed iteratively) incurs an acceptable violation score
(less than the allowable threshold 𝜏).
Line 10 Identify the subset of PVTs Xhda ⊆ X such that all 𝑋 ∈
Xhda are adjacent to at least one of the highest degree attributes in
the current PVT-attribute graph (Observation O1).
Line 11 Choose the PVT 𝑋 ∈ Xhda that has the maximum benefit.
Line 12 Calculate the reduction in malfunction score if the dataset
𝐷 is transformed according to the transformation 𝑋𝑇 .
Line 13 Remove 𝑋 from 𝐺𝑃𝐴 as it has been explored.
Lines 14-19 If the malfunction score reduces over 𝑋𝑇 (𝐷), then 𝑋
is added to the solution set X∗, and 𝐷 is updated to 𝑋𝑇 (𝐷), which
is then used to update the PVT-attribute graph and benefit of each
PVT. The update procedure recalculates the benefit scores of all
PVTs that are connected to the attributes adjacent to 𝑋 in 𝐺𝑃𝐴 .
Line 20 Post-process the set X∗ to identify a minimal subset that
ensure that malfunction score remains less than the threshold 𝜏 .
This procedure iteratively removes one PVT at a time (say 𝑋 ) from
X∗ and recalculates the malfunction score over the failing dataset
𝐷fail transformed according to the transformation functions of the
PVTs in the set X′ = X∗ \ {𝑋 }. If the transformed dataset incurs a
violation score less than 𝜏 then X∗ is replaced with X′.

Generalization. Algorithm 1 assumes that the system is evaluated
on a single malfunction metric. DataPrism extends to multiple
notions of malfunction by calculating malfunction reduction wrt
each notion in line 12 (say Δ𝑖 for malfunction𝑚𝑖

𝑆
) and changing

line 14 to ensure that malfunction score is reduced wrt some notion
(∃ 𝑗 Δ 𝑗 > 0) without hurting others (Δ𝑖 ≥ 0,∀𝑖). Details are in [30].

5 EXPERIMENTAL EVALUATION

Our experiments aim to answer the following research questions:
• (RQ1) In practice, can DataPrism correctly identify the cause and
corresponding fix of mismatch between a system and a dataset
for which the system fails? (Section 5.1)
• (RQ2) How sensitive is DataPrism to the choices of system pa-
rameters and facets of the framework? (Sections 5.2 and 5.3)
• (RQ3) Is DataPrism scalable and robust to varying problem com-
plexity? (Section 5.4)
• (RQ4) How efficient is DataPrism compared to other alternative
techniques? (Sections 5.1 and 5.4)

Baselines. Since no prior work supports dataset-level interven-
tions guided by PVTs, we adapted state-of-the-art interventional

debugging and explanation techniques that aim to explain the cause
of system failure. To adapt these approaches to our problem setting,
we replaced their intervention mechanism with the transformation
functions we use in DataPrism. We consider three baselines:

– BugDoc [52] is a recent debugging technique that explores dif-
ferent parameter configurations of the system. We adapt BugDoc to
consider each PVT as a parameter of the system configuration and
interventions as modified configurations.

– Anchors [66] is a local explanation technique that explains
individual predictions of a classifier based on a surrogate model.
We consider each intervention as a data point and PVTs as features
for the surrogate model to predict whether the system malfunctions
over a dataset or not.

– GroupTest (GT) [22] is an adaptive group-testing approach
that performs group interventions to expose the mismatch between
the input dataset and the system. It recursively partitions the PVTs
until a PVT that reduces system malfunction is identified. However,
it requires additional assumptions, which we discuss in our case
study involving cardiovascular-disease prediction (Section 5.1.3).
Settings. We consider open-source implementations of Anchors
and BugDoc with the default parameter settings. Since BugDoc re-
quires a budget on the number of interventions, we specify the
smallest value that guarantees BugDoc to expose the ground-truth
cause as budget. We implemented DataPrism in Python 3.6.

DataPrism uses attribute types (text, categorical, or numerical)
to construct PVTs of each attribute. If an attribute contains values of
heterogenous types, then DataPrism constructs different PVTs for
each homogenous partition. E.g., for an attribute with 90% numeri-
cal and 10% text values, DataPrism generates two Domain PVTs,
one for text and one for numerical values. DataPrism generates all
PVTs discussed in Section 3. Additionally, DataPrism generates
conditional PVTs by considering the subset of tuples that share
the same value for other categorical attribute(s). E.g., consider a
dataset with two attributes: 𝑋 ∈ {𝑥1, . . . , 𝑥4} and 𝑌 ∈ {𝑦1, . . . , 𝑦10}.
DataPrism generates 14 conditional PVTs: 4 pivoting on 𝑋 and 10
pivoting on 𝑌 . One such conditional PVT is Domain of 𝑌 over the
tuples where 𝑋 = 𝑥2.

For synthetic pipelines (Section 5.4) we generate numerical at-
tributes in a dataset within the range [1, 10]. We inject error in
the data by randomly choosing noisy attributes and then modify-
ing their data distribution. Unless otherwise specified, all datasets
for the synthetic pipelines contain 10 attributes, the ground-truth
cause of malfunction is characterized by the Domain PVT, and the
malfunction-score threshold is 0.

5.1 Real-world Case Studies

We design seven case studies focusing on real applications—
consisting of a diverse set of ML models [3, 4, 59] and data-analysis
tasks—as opaque systems over real-world datasets. Figure 6 presents
a summary of our evaluation results.

5.1.1 Sentiment Prediction. The system in this study predicts sen-
timent of input text (reviews/tweets) and we consider misclassi-
fication rate as the malfunction score. Internally, it uses flair [4],
a neural-network model. The system assumes that for the target
attribute, ‘1’ indicates positive sentiment and ‘-1’ indicates negative
sentiment. We test the system over two datasets: IMDb [42] (∼ 50𝐾



Number of Interventions Execution Time (seconds)

Case study DP BugDoc Anchors GT DP BugDoc Anchors GT

Sentiment 4 4 303 4 25.1 64.6 4594.9 21.2
Income 2 20 103 10 11.8 20.0 195.5 98.4
Cardiovascular 5 100 3503 – 7.6 62.1 8602.9 –
Flights 5 78 601 – 27.5 1037.7 10509.2 –
Amazon 2 8 303 4 7.3 14.80 207.58 8.1
Open Data 8 14 102 – 1.34 7.64 73.97 –
Physicians 30 46 104 47 2.25 78.29 34.5 18.2

Figure 6: Comparison wrt number of interventions and execution

time of DataPrism (denoted byDP) with other baselines. ‘–’ denotes

that the technique failed to identify the cause of malfunction be-

cause assumption A3 did not hold.

tuples) and twitter [71] (∼ 1.6M tuples). The malfunction score
of the system over IMDb is only 0.09 while it is 1.0 over twitter.

We consider IMDb as the passing dataset and twitter as the
failing dataset and use DataPrism to find the cause of mismatch
between twitter and the system. DataPrism identifies a total of
4 discriminative PVTs, including Domain of the target attribute
that differs between the two datasets: {−1, 1} for IMDb and {0, 4} for
twitter. DataPrism performs four interventions and finds that a
64% reduction in malfunction score is achieved when the following
transformation is applied on the target attribute in twitter: map
0 → −1 and 4 → 1. Consequently, DataPrism reports this as
a cause of the malfunction. With a close investigation, we found
that twitter uses ‘4’ to denote positive and ‘0’ to denote negative
sentiment [71], which matches the reported explanation.

When compared with other baselines, GroupTest and BugDoc
require 4 interventions to explain the cause while and Anchors
requires 303 interventions. Note that Anchors calculates system
malfunction on many datasets that are transformed according to
various local perturbations guided by the PVTs.

5.1.2 Income Prediction. The issue here is unfairness in ML predic-
tions. The system trains a random forest classifier [59] to predict
the income of individuals. We use normalized disparate impact [40]
(a metric to measure discrimination) of the trained classifier wrt
the sensitive attribute (sex) as the malfunction score.

We create two datasets—from subsets of census records [23]
that contain demographic attributes of individuals—and manually
add noise to one of them to break the correlation between income
(target attribute) and sex (sensitive attribute). The system incurs
a malfunction score of 0.195 for the noisy dataset and 0.58 for the
other. The malfunction (unfairness) here is caused by the existence
of correlation between income and sex.

DataPrism identifies 132 discriminative PVTs and constructs a
PVT-attribute graph, where income has a degree of 19 and all other
attributes have smaller degrees. As a result, DataPrism prioritizes
exploring PVTs that involve income. The transformations corre-
sponding to the PVT Indep between income and other attributes
break the dependence between income and all other attributes,
thereby, reducing the malfunction score to 0.32. DataPrism re-
quires only 2 interventions to discover the cause of malfunction.
This study demonstrates the effectiveness of intervening on PVTs
in non-increasing order of benefit (observations O2 and O3).

GroupTest requires 10 interventions, which is in the order of
log𝑛 where 𝑛 is the number of discriminative PVTs (132 in this
case). BugDoc and Anchors do not identify discriminative PVTs

explicitly and consider all PVTs (136 in this case) for intervention.
Anchors performs 103 local interventions to find the correct cause,
while BugDoc finds a valid cause with an intervention budget of 20.

5.1.3 Cardiovascular Disease Prediction. This system trains an Ad-
aBoost classifier [3] on patients’ medical records [15]—containing
age, height (in centimeters), weight etc.—to predict patients with
disease. The pipeline returns the additive inverse of recall as the
malfunction score. We tested the pipeline with two datasets gen-
erated through a random selection of tuples: (1) the passing dataset
satisfies the format assumptions of the pipeline; (2) for the failing
dataset we inject noise by converting height to inches.

DataPrism identifies 87 discriminative PVTs and considers the
Domain of height as the fifth intervention, where it alters the fail-
ing dataset by applying a linear transformation, which reduces the
malfunction from 0.71 to 0.30. This explanationmatches the ground-
truth cause of malfunction. In contrast, BugDoc and Anchors per-
form 100 and 3500 interventions, respectively. GroupTest does
not identify the ground-truth cause of system malfunction because
performing groups of transformations together increases system
malfunction. Specifically, we observe that the malfunction score
with a composition of transformation functions is higher than that
of the original dataset if the composition involves the PVT Indep.
This behavior is observed because adding noise to intervene with
respect to Indep worsens the classifier performance. GroupTest is
applicable only in cases where different groups of interventions do
not worsen the malfunction score, i.e., if𝑋 and 𝑌 correspond to any
two discriminative PVTs, then𝑚𝑆 ((𝑌𝑇 ◦ 𝑋𝑇 ) (𝐷fail)) < 𝑚𝑆 (𝐷fail)
if𝑚𝑆 (𝑌𝑇 (𝐷fail)) < 𝑚𝑆 (𝐷fail) or𝑚𝑆 (𝑋𝑇 (𝐷fail)) < 𝑚𝑆 (𝐷fail).

Conditional PVTs.We consider amodified failing dataset where
the heights of admitted (𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = 1) individuals were recorded
in inches but others were in centimeters. The malfunction score
in the failing dataset is 0.55 and the goal is to reduce it to below
0.30. In this case, we augmented the PVTs discussed in Figure 1
with conditional PVTs. The number of conditional PVTs is about
12 times the number of the original PVTs. DataPrism requires
12 interventions to identify that transforming the height of indi-
viduals with 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = 1 reduces the system malfunction to 0.30.
This explanation matches the ground-truth cause of the malfunc-
tion. During the search process, DataPrism prioritizes PVTs that
contain height before others, as height has the highest degree in
the PVT-attribute graph. However, transformations involving all
tuples have a higher benefit and are considered before the condi-
tional PVTs. Therefore, it explores multiple different conditional
PVTs that involve height to identify that only the subset having
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = 1 should be transformed.

5.1.4 Flight Delay Prediction. This system considers a logistic re-
gression based pipeline trained by Fariha et al. [27] to predict flight
delays. The pipeline is trained on a dataset containing more than
5.4M tuples and is tested on two different datasets correspond-
ing to daytime flights and overnight flights, respectively [27]. The
system returns mean absolute error (MAE) of the predicted delay
for the test dataset. We observe that the unnormalized malfunc-
tion score is less than 20 for daytime flights (passing dataset) and
81 for overnight flights (failing dataset). As reported in [27], the
ground-truth explanation of system malfunction is the violation



of conformance constraints by certain overnight flights, where the
arrival time (next day) is before the departure time (previous day).
DataPrism identifies 81 discriminative PVTs on these datasets and
the ground-truth cause of malfunction is ranked 8 according to
the benefit of discriminative PVTs, which is identified as the cause
of system malfunction in fewer than 10 interventions. In contrast,
violation of conformance constraints was identified as a root cause
by BugDoc and Anchors in 78 and 601 interventions, respectively.
GroupTest does not apply to this dataset because intervening on
multiple PVTs worsens system malfunction even if one of the in-
volved PVTs is the ground-truth cause of malfunction.

5.1.5 Amazon Entity Linking. The system comprises of an NLP
pipeline that identifies entities in the input text and maps them to
a knowledge graph. The pipeline returns two malfunction scores,
where the first score is 1 if the average time taken per row is more
than 200ms, and the second malfunction score is 1 if the pipeline
fails due to timeout (runs for more than 30min). We test the system
with a dataset containing short text like Amazon product titles (∼
10K tuples) as a passing dataset.

A dataset containing Amazon product reviews (∼ 100K tuples)
is considered failing as the pipeline’s runtime exceeded 30 minutes,
incurring a malfunction score of 1 wrt both criteria. The larger
text length of reviews and size of the dataset are the ground-truth
causes of malfunction.

DataPrism identifies numerous discriminative PVTs, among
which the PVT DataSize is connected to all attributes in the PVT-
attribute graph, thereby, ranking it as the most beneficial PVT.
DataPrism identifies it as a cause of malfunction in the first inter-
vention. After performing this intervention, it ranks the length of
review text as the most beneficial PVT and considers it for interven-
tion. Therefore, DataPrism identifies both ground-truth causes of
timeout in 2 interventions. GroupTest identifies the ground-truth
cause in 4 interventions, while BugDoc and Anchors require 8 and
303 interventions, respectively.

5.1.6 Open data analysis and visualization. The system in this study
clusters different locations in the input dataset according to their
attributes and generates a visualization. The system extracts first
three characters of telephone number as area code, which is used
for clustering. The dataset from NYC Open Data repository con-
tains telephone numbers in different formats. For example, many
tuples contain the area code in parentheses, e.g., (213) 352-0235.
For such tuples, area code is incorrectly identified as ‘(21’, which
is not numerical. This causes the distance estimation function of
the clustering algorithm to throw an exception, causing a crash.
The system returns a malfunction score of 1 if it crashes or the
clusters are inaccurate, and 0 otherwise. We tested the pipeline
by considering the aforementioned dataset as failing, and a small
cleaned dataset as passing with a malfunction threshold of 0.

DataPrism identifies different domains for telephone number
(captured byDomain) as one of the discriminative PVTs. The subse-
quent components intervene on this PVT in fewer than 8 interven-
tions. The corresponding transformation of removing parentheses
from telephone numbers is identified as the ground-truth transfor-
mation. GroupTest fails to identify the ground-truth explanation
because the simultaneous transformations lead to inaccurate clus-
tering output. BugDoc finds the ground truth in 14 interventions,

Application DataPrism DataPrism𝑁𝑜−𝐺 DataPrism𝑁𝑜−𝐵

Sentiment 4 4 4
Income 2 15 5

Cardiovascular 5 8 60
Flights 5 14 20
Amazon 2 2 3
Open Data 8 5 9
Physicians 30 75 63

Figure 7: Comparison of number of interventions

where Anchors makes more than 100 interventions only to report
an incorrect cause, as it does not operate on non-numeric PVTs.
Conditional PVTs. To test the effect of conditional PVTs, we
consider a modified pipeline that identifies area code from the
postal code of a tuple. If the postal code is missing, it uses telephone
number to identify the area code. The noisy dataset for this study
is generated by randomly removing postal code of some tuples.
In this case, the ground-truth explanation is a conditional PVT
that transforms telephone number of tuples where postal code is
missing. Transforming all tuples is a valid intervention that reduces
system malfunction, but is not minimal. DataPrism identifies that
transforming all tuples is sufficient to reduce system malfunction in
8 interventions but requires 3 additional interventions to identify
the minimal cause. Therefore, DataPrism successfully identifies
the ground-truth cause of malfunction in 11 interventions.

5.1.7 Physicians: Data Integration. The system here ensures data
quality by testing functional dependencies involving zip code, state,
and county such that two tuples with the same zip code must have
the same state and county (Zip Code→ State, County), and two
tuples with the same county must have the same state. It outputs the
fraction of tuples that do not satisfy these functional dependencies
as the malfunction score. Physicians dataset has a number of data-
quality issues like ‘0’ is mistakenly written as ‘o’, ‘xl’ instead of ‘al’
(Alaska), and so on. We construct two datasets through a random
selection of tuples, considering one of them as failing, and repair
the other using HoloClean [61] to be used as a passing dataset.

The failing (passing) dataset returns a malfunction score of 0.12
(0). We test DataPrism with a malfunction threshold of 0. The
minimal ground-truth cause of malfunction comprises of violation
of two functional dependencies (1) ZipCode→ CountyName, and
(2) CountyName → State. DataPrism returns the ground truth
cause of malfunction in fewer than 30 interventions. Intervening
with respect to the functional dependency “ZipCode→ County-
Name” alone reduces malfunction to 0.02 and it is identified as
one of the causes of malfunction in 11 interventions. DataPrism
requires the rest of the interventions to identify the second PVT
to reduce malfunction to 0. Anchors finds the ground-truth in 104
interventions while BugDoc needs 46.

5.2 Ablation Study

In this section, we test the quality of two different variants of Dat-
aPrism. (i) DataPrism𝑁𝑜−𝐺 does not construct the PVT-attribute
graph and directly considers all discriminative PVTs for subsequent
steps. (ii)DataPrism𝑁𝑜−𝐵 does not perform benefit calculation and
ranks PVTs only based on their degree in the PVT-attribute graph.
Figure 7 presents the number of interventions required by these
variants. Overall, we observed that DataPrism requires the least



number of interventions across all pipelines. Whenever the highest-
degree attribute in the PVT-attribute graph correctly captures the
ground truth cause of malfunction, ignoring benefit calculation does
not worsen the number of required interventions drastically (in-
come case study). However, in the income case study, ignoring the
PVT-attribute graph prioritizes the PVTs that have high benefit but
are focussed on low-degree attributes. Therefore, DataPrism𝑁𝑜−𝐺
requires 15 interventions as compared to 2 interventions by Dat-
aPrism. The varied advantages of PVT-attribute graph and benefit
calculation across different scenarios justify the two-step procedure
of DataPrism. The only case where ignoring the PVT-attribute
graph reduces the number of interventions is open data pipeline,
where observation O1 does not hold (the Domain of telephone
numbers has a smaller degree than other attributes).
Efficiency. Figure 6 presents the execution time of the techniques
for the real-world applications. DataPrism is highly efficient and
require less than 30 seconds to find the ground-truth cause of mal-
function. In contrast, Anchors is extremely inefficient, needing
more than 143 minutes for cardiovascular, while BugDoc and
GrpTest explain the malfunction within 100 seconds.
Key takeaways. Among all real-world case studies, DataPrism
requires the fewest interventions to explain the cause of malfunc-
tion. Anchors requires the highest number of interventions, as it
performs many local transformations (small changes to profiles of
the failing dataset) to identify the cause of failure. BugDoc optimizes
interventions by leveraging combinatorial design: it requires more
interventions than DataPrism but fewer than Anchors. GroupTest
requires fewer interventions than BugDoc and Anchorswhenever it
is applicable. GroupTest assumes that intervening groups of PVTs
improve system malfunction if any of the constituent PVT reduces
system malfunction when applied individually.

5.3 Effect of Malfunction Threshold

In this experiment, we test the effect of varying the malfunction
threshold on the number of required interventions. First, we test the
cardiovascular pipeline with malfunction threshold varied from 0
to the malfunction of the failing dataset (in intervals of 0.10). In this
case, failing dataset has a malfunction of 0.71 and no combination of
transformations achieves less than 0.30malfunction. Whenever the
malfunction threshold is varied in the range (0.30, 0.70],DataPrism
identifies the ground truth cause of malfunction correctly in fewer
than 5 interventions. However, when the malfunction threshold is
in the range [0, 0.30], our algorithm returns a PVT that transforms
the height from inches to centimeters. This PVT reduces the system
malfunction to 0.31 and it is the minimum achievable malfunction
for this dataset. Therefore, DataPrism’s explanation guarantees a
minimal set of PVTs having the minimum achievable malfunction if
the input requirement is not feasible. We observe a similar trend in
open data case study, where higher malfunction threshold requires
fewer interventions as compared to lower values of the threshold.

To further investigate the effect of malfunction threshold, we
considered synthetic pipelines where a system fails due to a) wrong
domain of input data and b) missing data. In this experiment, all
values of malfunction threshold are feasible. Figure 9 shows the
effect of increasing malfunction threshold on the number of re-
quired interventions. Overall, the number of interventions is stable

across a small change in the threshold and it shows a downward
trend on average. This evaluation justifies that the effort spent by
DataPrism reduces as the malfunction threshold increases.

5.4 Scalability and Robustness

In this experiment, we test the effect of different parameters on
the quality of the identified explanation, number of required inter-
ventions, and running time of DataPrism. We investigate several
configurations by varying the number of data attributes, number of
discriminative PVTs, and type of ground truth cause of malfunction.

5.4.1 Effect of the Number of Attributes and PVTs. This experiment
tests the effect of the number of dataset attributes and the number
of discriminative PVTs on the efficacy of DataPrism, and contrasts
those with other state-of-the-art baselines for synthetically gen-
erated pipelines. We also investigate the influence of the number
of PVTs involved in the root causes and their interactions on the
number of interventions each method requires.

Figure 8(a) presents the effect of changing the number of at-
tributes in the datasets on the number of required interventions.
DataPrism requires fewer than 5 interventions on average. In
contrast, BugDoc and Anchor require orders of magnitude more
interventions. The number of interventions required by BugDoc
grows linearly with the number of attributes. At the same time,
Anchor perturbs all PVTs to solve a multi-armed bandit problem:
the more PVTs affect the pipeline errors, the more interventions are
needed. GroupTest requires more interventions than DataPrism,
and grows logarithmically with the number of data attributes.

Figure 8(b) depicts the effect of the number of discriminative
PVTs on the number of required interventions. DataPrism shows
superior performance, requiring fewer than 10 interventions even
with more than 100 discriminative PVTs. Here, we observe trends
similar to the one in Figure 8(a) for other baselines as the number
of PVTs are positively correlated with the number of attributes.

5.4.2 Effect of the size of ground-truth cause. The pipelines pre-
sented in Figures 8(a) and 8(b) have a single PVT as the ground-truth
cause of the malfunction. In Figure 8(c), we fix the number of at-
tributes to 15 and the number of discriminative PVTs between the
passing and the failing datasets to 136. We modify the ground-truth
cause to be a conjunction over a set of PVTs of varying cardinali-
ties. We find that the cardinality of the root-cause set (length of the
conjunctive cause) does not impact the number of interventions as
much as the number of attributes and the number of discriminative
PVTs do. However, having more than one cause for malfunction
(i.e., a disjunctive cause) requires many more interventions for
Anchor and GroupTest, as shown in Figure 8(d). DataPrism still
needs orders of magnitude fewer interventions than these other
approaches, although the probability of failing to find any feasible
transformation, which decreases malfunctions scores, increases
with the number of possible root causes within the disjunction.

We performed this analysis on another set of synthetic pipelines,
where a constant fraction of values are deleted from the noisy
dataset and the system returns the fraction of missing values as
the malfunction score. We observed similar patterns for all the
experiments. The average number of interventions for all methods
increases as the number of discriminative PVTs increases..
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Scalability. We compare running time of different approaches
with increasing number of attributes and discriminative PVTs. The
time required by DataPrism to explain the malfunction grows sub-
linearly in the number of attributes and discriminative PVTs. We
observe a similar trend of the number of required interventions
on varying these parameters. This experiment demonstrates that
DataPrism requires fewer than 𝑂 ( |X|) interventions in practice
(where X denotes the set of discriminative profiles).

5.4.3 Effect of the set of input PVTs. In this experiment, we consider
the synthetic pipelines with 5 attributes (same as Figure 8) and vary
the input set of PVTs. We generated a random sample of the set
of PVTs as input and added the ground truth cause if it is not
present in the sample. We observe that DataPrism is stable (fewer
than 10 interventions across different settings) and requires fewer
interventions than BugDoc and Anchors.

6 RELATEDWORK

Interventional debugging. AID [26] uses an interventional ap-
proach to blame runtime conditions of a program for causing failure;
but it is limited to software bugs and does not intervene on datasets.
BugDoc [52] finds parameter settings in an opaque-box pipeline as
root causes of pipeline failure; but it only reports whether a dataset
is a root cause and does not explain why a dataset causes the failure.
Prior techniques on data-cleaning [61, 64], fair ML [32, 54, 69, 73],
and data profiling [1, 2] evaluate the quality of a dataset for a spe-
cific application and propose data transformations for data cleaning
or bias removal. These techniques can be modeled using PVTs in
DataPrism framework. We demonstrated the flexibility of Dat-
aPrism by considering two representative data-cleaning techniques:
(1) HoloClean [61] to transform a dataset with respect to functional
dependencies, and (2) techniques described in [27] to transform a
dataset with respect to conformance constraints. Identifying useful
PVTs for a given application is orthogonal to our contribution.
Data explanation. Explanations for query results have been abun-
dantly studied [7, 8, 19, 24, 75]. Some techniques find causes of
errors in data generation processes [75], while others discover
relationships among attributes [7, 24], and across datasets [19].

Unlike interventional efforts, which DataPrism focuses on, these
approaches operate on observational data.
Model explanation. Machine learning interpreters [65, 66] per-
turb test data to learn a surrogate for models, but their goal is not
to find mismatch between data and models. Debugging methods for
ML pipelines are similar to data explanation [13, 14], where training
data may cause model’s underperformance. [74] and [47] discuss
principled ways to find reasons for malfunctions. Wu et al. [76]
allows users to complain about outputs of SQL queries, and presents
data points whose removal resolves the complaints. [70] validates
when models fail on certain datasets and assumes knowledge of
the mechanism that corrupts the data. In contrast, we aim to find
discriminative profiles among datasets without such knowledge.
Causal debugging. Data-driven approaches have been taken for
causal-inference-based fault localization [5, 6, 18, 35, 68], software
testing [28, 29, 33, 39, 43, 45, 78], and statistical debugging [50, 79].
However, they assume transparency of the software or are
application-specific. Our work shares similarity with BugEx [67],
which generates test cases to isolate root causes. However, it
assumes complete knowledge of the program and data-flow paths.
Data debugging. Porting concepts of debugging from software to
data has gained attention in data-management community [12, 55].
Dagger [62, 63] provides data-debugging primitives for transparent
interactions with data-driven pipelines. CheckCell [9] ranks data
cells that unusually affect output of a given target. However, it is not
meant for datasets where single cells are unlikely to cause malfunc-
tion. DataPrism is general-purpose and application-agnostic, iden-
tifying causally verified mismatch between the data and the system.

7 SUMMARY AND FUTURE DIRECTIONS

We introduced the problem of identifying causes and fixes of mis-
match between data and systems that operate on data. To this end,
we presentedDataPrism, a framework that reports violation of data
profiles as causally verified root causes of system malfunction and
reports fixes in the form of transformation functions. We demon-
strated the effectiveness and efficacy of DataPrism in explaining
the reason of mismatch in several real-world and synthetic data-
driven pipelines, significantly outperforming the state of the art. In
future, we plan to extend DataPrism to support multi-objective
requirements to generate minimal and interpretable explanations.
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