
DATAMORPHER: Automatic Data Transformation Using LLM-based
Zero-Shot Code Generation

Ankita Sharmaa, Jaykumar Tandela, Xuanmao Lia, Lanjun Wangb, Anna Farihac, Liang Zhangd,
Syed Arsalan Ahmed Naqvie, Irbaz Bin Riaze, Lei Caod, Jia Zoua

Arizona State Universitya, Tianjin Universityb, University of Utahc, University of Arizonad, Mayo Clinic-Arizonae

Abstract—Data transformation is a critical challenge in mod-
ern data management systems, particularly when handling com-
plex operations over multiple data sources. However, existing
approaches rely on supervised learning, which requires tremen-
dous data labeling and training overhead. To alleviate such
overhead while improving accuracy, we demonstrate a novel
system DATAMORPHER that leverages Large Language Models
(LLMs) to generate code that transforms source datasets into
a user-specified target format. To generate a high-quality and
token-efficient prompt, we leverage data profiling to extract
features from the source datasets and historical examples of the
target data. We also select a subset of features to reduce noise
and costs using a ranking algorithm. These selected features are
finally translated into a declarative language, which is inspired
by SQL’s data definition language (DDL), before being added to
the prompt. We will demonstrate the workflow and effectiveness
of DATAMORPHER using real-world data transformation work-
flows from Microsoft’s GitHub benchmark, smart building, and
medical data integration. (A 5-min video of our demo is available
at https://youtu.be/CuDm46K- eA).

I. INTRODUCTION

Integrating and transforming data collected from heteroge-
neous sources into a desired target format requires tremendous
human domain expertise and manual efforts, estimated to
account for more than 90% of the total costs associated
with data science pipelines [1]. For example, in a movie
recommendation pipeline, the user rating table needs
to be joined with the movie table and the user table to
extract features, which will be fed to a recommendation model
to obtain recommendation decisions. A small change in the
source datasets, e.g., renaming movie_id to title_id,
will cause the data-integration code to fail, resulting in a crash
of the recommendation pipeline. Repetition of human efforts
can be required to locate and fix such issues. To automate the
data integration process and alleviate human efforts, we focus
on the following problem in this demonstration.

Problem Definition. Given (1) multiple source datasets, (2) a
schema of the transformed data, termed target schema, and
(3) examples that illustrate the patterns of the transformed data,
termed target examples, which do not need to correspond to
any tuples in the source dataset, we would like to provide a
mechanism that automatically transforms the source datasets
to the target data that conforms to the target schema and
follows the patterns of the target examples. It is known as
the Transform-By-Target (TBT) problem [2].

State-of-the-art approaches to the TBT problems [2], [3] of-
ten struggle with achieving high accuracy in complex scenarios

that involve large, heterogeneous source files, and numerous
transformation operators. They also heavily use supervised
learning models and suffer from tremendous training data
labeling and training overheads.

Recent developments in large language models (LLMs) have
shown promise in automating complex transformations via
zero-shot learning, eliminating the need for curated training
data. At a high level, there are two approaches to using LLMs:
(1) A data generation approach, which packs all the source
datasets, the target schema, and the target examples into a
prompt and instructs an LLM to output the target dataset. and
(2) A code generation approach, which instructs an LLM to
generate code that will transform the source datasets to the
target. In this work, we adopt the code generation approach
since the data generation approach does not scale to large-
scale datasets, considering the token limit and the expensive
costs associated with large LLM prompts and responses. For
instance, OpenAI’s ChatGPT-4-turbo API (used in this work)
charges $10 per million of prompt tokens and $30 per million
of sampled tokens. ChatGPT-4o is even more expensive.

Since the focus of our work is to reduce human efforts, we
do not consider straightforward human-centric code genera-
tion, where a user iteratively fine-tunes prompts using natural
language to guide an LLM to resolve each data transformation
problem. Instead, we argue for an automated approach to
generate and finetune the prompt to interact with the LLM
for the target problems to satisfy the following challenging
objectives. (1) Prompt Informativeness: The automatically
generated prompt should be sufficiently informative for the
LLM to generate the correct data transformation code. (2)
Prompt Cost-Effectiveness: While informativeness is guaran-
teed, it is important to minimize the size of the prompt to
reduce the monetary costs. (3) Prompt Interpretability: The
prompt should be easily understandable to facilitate auditing
and debugging to reduce the development and deployment
costs. (4) Prompt Robustness: The generated prompt should be
iteratively and automatically improved to fix errors observed
in executing the LLM-generated code.

DATAMORPHER. To achieve these objectives, we present
and demonstrate DATAMORPHER, a novel LLM-based zero-
shot data transformation approach, consisting of four critical
components as illustrated in Fig. 1: (1) Feature Extraction
based on Data Sampling and Profiling: We found that a
prompt mostly consisting of samples of data tuples from the

https://youtu.be/CuDm46K-_eA

Target Samples
['$1,000,000 Duck (1971)', 3462.5, 2031, 3.5,
979943887.25, 32.5, 0.5]
,
['Night Mother (1986), 4064.6, 3112, 3.4,
965988922.0, 35.0, 5.2],

 ['Til There Was You (1997), 3281.8, 779, 3.2,
967709522.8, 18.8, 5.0]

Target Schema:
'title’,
'user_id', 'movie_id',
'rating', 'timestamp’,
'age’,
'occupation'

Source_0 Schema:
'user_id’,
'gender’, 'age',
'occupation', 'zip'

Source_0 Samples :
[1, 'F', 1, 10, '48067’]
[2, 'M', 56, 16, '70072’]
[3, 'M', 25, 15, '55117']

CoT ZeroShot
Prompt

Generation

Feature
Representation

Feature Selection

Generated
Python Code

Feature
Generation

Naïve LLM-Based Data Transformation

Code
Execution

Code
Execution

LLM

LLM
Generated

Python
Code

Transformed
Result

Errors?

No

YesPrompt Update
(Max:5)

DataMorpher LLM Based Data Transformation Flow

Source_1 Schema:
'movie_id', 'title’,
'genres'

Source_1 Samples
[1, 'Toy Story (1995)',Animation|Children's|Comedy\"],
[2, 'Jumanji (1995)',Adventure|Children's|Fantasy\"],
[3, 'Grumpier Old Men (1995)', 'Comedy|Romance']

Source_2 Schema:
'user_id', 'movie_id',
'rating', 'timestamp'

Source_2 Samples
[1155, 296, 4, 974865005], [1883,
3528, 4, 974876785], [1181, 3423, 3,
976070653]

Sec II.A

Sec II.B

Sec II.C

prompt

Sec II.D

Transformed Result

Fig. 1: System Overview and Comparison to the Naive LLM-based Data Transformation using Chain-of-Thoughts in zeroshot style (CoT-Zeroshot)

source datasets and the target examples is not informative
enough to generate correct code for complex data transforma-
tion cases, and it is important to profile table-level, column-
level, cross-column statistics of the datasets as detailed in
Sec. II-A. Each statistic value is indexed by the metric name
and context, composing a feature in the format of a key-value
pair. (2) Feature Selection based on Ranking of Relevance:
We also found that data profiles for complex transformation
problems that involve thousands of columns from hundreds
of source datasets could exceed the token limit due to the
exponentially increased number of attribute pairs for comput-
ing cross-attribute statistics. Therefore, we select features by
grouping the features based on the similarity of key, ranking
the values sharing similar keys, and selecting the most relevant
values, as detailed in Sec. II-B. (3) Feature Representation
using a SQL DDL-like language: Each selected feature will
be translated into a statement following a declarative language
that is similar to SQL’s Data Definition Language (DDL) for
users (and LLMs) to easily understand the features, described
in Sec. II-C. (4) Code Generation and Data Transformation:
The LLM-generated code is run in a sandbox to transform the
source datasets into the target dataset. The execution errors
will be captured and appended to the prompt for repeated
execution. See Sec. II-D for more details.

The key contributions of this work include:
• We develop DATAMORPHER, a novel tool that lever-
ages LLM to automatically generate code to transform user-
provided source datasets to conform to the target data format
specified by the user, using zero-shot learning.
• DATAMORPHER automatically generates a cost-effective and
interpretable prompt through our unique feature extraction,
feature selection, and feature representation techniques.
• We deploy DATAMORPHER as a web application with an
interactive and easy-to-use interface. We will demonstrate its
effectiveness using a diverse set of data transformation scenar-
ios from the GitHub benchmark [2] developed by Microsoft,
which consists of 700 cases crawled from public GitHub
repositories, 105 data integration cases for smart building

energy usage prediction, and 11 medical data analysis cases.

II. SYSTEM ARCHITECTURE AND EVALUATION

As illustrated in Fig. 1, DATAMORPHER consists of the
following key components (features are also termed as hints):

A. Feature Extraction

For large-scale source datasets and target examples, it is
important to extract a small amount of critical information to
reduce the prompt size and improve the accuracy of LLM
inferences. To this end, we generate a data summary that
includes information useful for inferring the data transforma-
tion operators and their properties (e.g., predicates, functions,
attributes) [4] by profiling the source datasets and target
examples, including but not limited to the following:

• Table-Level Features such as number of tuples in a table and
functional dependencies (FD) analysis in the target examples
to identify the FD constraints that must be preserved during
the data transformation process.

• Column-Level Features including (1) column index of each
column in its table, which is important for predicting key
columns, since key attributes are often placed on the leftmost
side of a table; (2) column distribution statistics, such as max,
min, medium, average, and quantiles in a numerical column,
and peak frequency of distinct values in a categorical column;
(3) Column sortness, e.g., whether the values in a column are
sorted. It can be used to identify key, since tables are often
sorted by their primary key attributes; (4) Number of missing
values in a column; (5) Cardinality, i.e., the number of distinct
values in a specified column. Based on the cardinality and the
number of tuples, we can derive the distinct value ratio. If the
distinct value ratio is one, it indicates the column follows the
Uniqueness constraint.

• Cross-Table Column-Pair Features such as inclusion
dependency between two columns by checking whether two
columns share a lot of common values using the Jaccard
similarity of two discrete columns. For columns that have

continuous values, we use we use Kolmogorov–Smirnov test
to determine whether two columns have similar distributions.

B. Feature Selection

The total number of features increases with the number of
tables and the total number of columns. Particularly, the num-
ber of column-pair features increases exponentially with the
total number of columns. For large-scale data transformation
problems, it is important to prune the features to reduce noise
and keep the prompt size small to reduce costs and inference
latency. To achieve the goal, we conduct feature selection
according to their relevance with potential data transformation
operators, with the following examples. (1) For join, we rank
column pairs based on the probability that they will match
with each other and may serve as attributes in a predicate of
an equi-join. Since most of equi-joins are along the
foreign key relationships, we first prune column pairs where
both columns’ indexes are greater than k1, both columns are
unsorted, of categorical type, with the distinct value ratio
smaller than 1, and the missing value ratio greater than 0,
which indicates that both columns have small probabilities to
be a key attribute in its table. In the rest of the column pairs,
we only keep those that have the highest k2 percentage of
Jaccard similarity to show their column mapping features. (2)
For group-by, we rank columns based on the column’s type,
missing value ratio, distinct value ratio, and peak frequency.
These discrete columns with low missing value ratio, low
distinct value ratio, and high peak frequency are more likely to
be a group-by attribute. We select the top-k4 percentage of
columns ranked accordingly to show the column-level features.
In addition to the aforementioned features, we also sample k5
percentage of examples from the source datasets and the target
examples using a uniform sampling approach. We further
finetune the value of hyperparameters (such as k1, k2, k3, k4,
and k5) through Bayesian optimization.

C. Feature Representation

To effectively represent the profiled statistics for users
to better understand the selected features, we designed a
declarative language by augmenting the SQL DDL. We chose
SQL DDL as the base language because (1) Compared to
other existing structured languages, SQL is the most relevant
to data transformation tasks, which mostly involve relational
operators and data. In addition, SQL DDL is the most suitable
for describing data profiling results since it is designed to de-
scribe/define the types and integrity constraints of data, which
are meant to be discovered by the data profiling operators.
Compared to designing a new language, LLM is more familiar
with SQL DDL, given its popularity and representativeness in
publicly available code bases.

We leveraged the column unique/non-null/check statement,
table primary key and foreign key definitions, etc., from SQL
DDL. For example, a column having high inclusion depen-
dency with the key of a remote table, is a strong indicator of
a foreign key relationship. Therefore, we leverage the foreign
key constraints in SQL DDL to represent such dependencies,

e.g., CONSTRAINT FOREIGN KEY ASU_Person (ID)
REFERENCES Persons(PersonID). Due to the limited
set of commands available in SQL DDL, we also extend it
to represent more profiling results. For example, to repre-
sent the functional dependency relationship, we added
keywords such as DETERMINES, e.g.,Target(ItemID)
DETERMINES Count, Price, representing that in the tar-
get table, if ItemID is given, the values of Count and Price
are determined.

D. Code Generation and Execution

Once the prompt is created, it is sent to the LLM to generate
the data transformation code. When the response from LLM is
received, it will be parsed and the code will be extracted and
executed in a sandbox to avoid security risks. We will execute
the code multiple times. If it meets an execution error, e.g.,
thrown by the Python script or the relational database (i.e.,
we used PostgreSQL), the error(s) will be appended to the
prompt and sent to the LLM again in the hope that LLM
will resolve the issue in the next response. The examples
of errors that we met and are resolved by LLM through
iterative execution include “name ‘datetime’ is not defined”
for SQL and “module ‘pandas’ has no attribute ‘read corpus”’
for Python. The iteration will continue until the execution
is successful or the maximal number of executions has been
reached (five times by default).

Evaluation. We evaluate DATAMORPHER using three types
of workload, detailed as follows: (1) Github Benchmark [2],
which includes 700 data transformation cases crawled from
the Github public repositories by Microsoft. In this bench-
mark, we compared our approach with three baselines,
the naive LLM-based data transformation using Chain-of-
Thoughts (CoT) planning in a zero-shot style, called CoT-
zeroshot, AutoPipeline [2], and AutoSuggest [3]. The results
showed that DATAMORPHER can successfully transform 79%
of 700 cases, while CoT-zeroshot achieved 40%, AutoPipeline
achieved 77%, and AutoSuggest achieved 30%. Note that both
AutoPipeline and AutoSuggest rely on multiple supervised
learning models, while DATAMORPHER is zero-shot. (Au-
toPipeline and AutoSuggest are not publicly available, and
their results are obtained from [2].) (2) Smart Building Bench-
mark [5], which consists of 105 real-world data transformation
cases collected from 20 utility companies in the United States.
On this benchmark, DATAMORPHER achieved 77% success
rate, outperforming CoT-zeroshot (48%) and SQL-Morpher [5]
(28%). (3) Synthetic Medical Data Transformation. Our study
employs 11 cases representing structured clinical data that
were synthetically generated by two Mayo Clinic clinicians,
mapped from electronic health records (EHR), and datasets for
medical systematic reviews and meta-analysis. In this dataset,
CoT-zeroshot only successfully transformed four cases, while
DATAMORPHER’s success rate is 91%.

III. DEMONSTRATION SCENARIOS

We developed a web interface for DATAMORPHER as
illustrated in Fig. 2. We demonstrate it on an example from the

1 2 Generate prompt w/o

features (hints)
3

4 Send prompt to LLM9

Execute code and check

backend LLM interaction logs

Upload the ground truth file for comparing

to the actual transformed dataset.

12

Wrong target data6

Correct target data11

Features (hints)

represented in

declarative language

8Add declarative

hints to prompt

8

Raw features (hints)

represented in key-

value format 7

ab

Modify the hints and

try againa

12
Upload other datasets or users’
own data and try again.b

Wrong code 10
Correct

code
5

Fig. 2: DATAMORPHER GUI and Demonstration Outline.

Github benchmark that integrates two source datasets (Test0
and Test1) into a target dataset using join, groupby, and
aggregate. We will also encourage users to try their own
datasets and/or other data transformation cases that we used for
evaluation. A demonstration consists of the following steps:
Step 1 : Upload source datasets, such as test0.csv and
test1.csv, of which the schemas are extracted and shown, and
their data can be reviewed using File Visualization.
Step 2 : Upload target examples, e.g., target.csv, which
can be a target dataset resulting from a previous integration of
earlier versions of the source datasets, of which the schema
and data can also be reviewed by the user.
Step 3 : Generate the naive prompt without any features
(hints). The prompt includes a few samples of test0.csv,
test1.csv, and target.csv, a description of the data transforma-
tion task, and an instruction that asks LLM to reason and plan
the steps of the data transformation process.
Step 4 : The naive prompt is sent to the LLM to generate
a Python script. Users can review the script and experienced
users will notice that the generated code missed the groupBy.
Step 5 : The user will run the script to transform the
source into the target in a sandbox. The user can check the
background logs to monitor how the tool interacts with LLM
iteratively to fix execution errors.
Step 6 : Users can visualize the target dataset and will
find it does not follow the expected target schemas, which
indicates a failure of the transformation process.
Step 7 : Trigger the data profiling process to gener-
ate features (hints) represented in naive key-value format.
Users can scroll down to review table-level, column-level,
and column-pair-level raw features, such as target: func-
tional dependencies: {‘sex’: {‘G3’, ‘G2’, ‘G1’}}.

Step 8 : Select features represent them in our declarative
language to reduce the number of features (hints) and improve
their interpretability, e.g., Target (‘sex’) Determines ({‘G3’,
‘G2’, ‘G1’}) 8a , and add hints to the prompt 8b .

Steps 9 and 10 : Similar to steps 4 and 5 .

Step 11 : Similar to step 6 . The user will find that
the target data exactly meets the requirement and further
confirm the consistency by uploading the ground truth file for
comparison.
Step 12 : Users can edit the selected hints,e.g., removing
or adding a hint, modifying the representation of a hint, to
check how the selection and representation of the hints will
influence the quality of the generated code and transformed
datasets (12a). They can also choose different transformation
cases or upload their own data for more interactions (12b).

REFERENCES

[1] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis, M. Balazinska, P. Bern-
stein, P. Boncz, S. Chaudhuri, A. Cheung, A. Doan et al., “The seattle
report on database research,” ACM Sigmod Record, vol. 48, no. 4, pp.
44–53, 2020.

[2] J. Yang, Y. He, and S. Chaudhuri, “Auto-pipeline: synthesizing complex
data pipelines by-target using reinforcement learning and search,” Pro-
ceedings of the VLDB Endowment, vol. 14, no. 11, pp. 2563–2575, 2021.

[3] C. Yan and Y. He, “Auto-suggest: Learning-to-recommend data prepa-
ration steps using data science notebooks,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, 2020,
pp. 1539–1554.

[4] Z. Jin, Y. He, and S. Chauduri, “Auto-transform: learning-to-transform
by patterns,” Proceedings of the VLDB Endowment, vol. 13, no. 12, pp.
2368–2381, 2020.

[5] A. Sharma, X. Li, H. Guan, G. Sun, L. Zhang, L. Wang, K. Wu,
L. Cao, E. Zhu, A. Sim et al., “Automatic data transformation using
large language model an experimental study on building energy data,”
arXiv preprint arXiv:2309.01957, 2023.

	Introduction
	System Architecture and Evaluation
	Feature Extraction
	Feature Selection
	Feature Representation
	Code Generation and Execution

	Demonstration Scenarios
	References

