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ABSTRACT

As data is a central component of many modern systems, the cause
of a system malfunction may reside in the data, and, specifically,
particular properties of the data. For example, a health-monitoring
system that is designed under the assumption that weight is re-
ported in imperial units (lbs) will malfunction when encountering
weight reported in metric units (kilograms). Similar to software
debugging, which aims to find bugs in the mechanism (source code
or runtime conditions), our goal is to debug the data to identify
potential sources of disconnect between the assumptions about the
data and the systems that operate on that data. Specifically, we
seek which properties of the data cause a data-driven system to mal-
function. We propose DataExposer, a framework to identify data
properties, called profiles, that are the root causes of performance
degradation or failure of a system that operates on the data. Such
identification is necessary to repair the system and resolve the dis-
connect between data and system. Our technique is based on causal
reasoning through interventions: when a system malfunctions for a
dataset, DataExposer alters the data profiles and observes changes
in the system’s behavior due to the alteration. Unlike statistical ob-
servational analysis that reports mere correlations, DataExposer
reports causally verified root causes—in terms of data profiles—of
the system malfunction. We empirically evaluate DataExposer on
three real-world and several synthetic data-driven systems that fail
on datasets due to a diverse set of reasons. In all cases, DataEx-
poser identifies the root causes precisely while requiring orders of
magnitude fewer interventions than prior techniques.
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1 INTRODUCTION

Traditional software debugging aims to identify errors and bugs in
the mechanism—such as source code, configuration files, and run-
time conditions—thatmay cause a system tomalfunction [25, 35, 49].
However, in modern systems, data has become a central component
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that itself can cause a system to fail. Data-driven systems comprise
complex pipelines that rely on data to solve a target task. Prior work
addressed the problem of debugging machine-learning models [12]
and finding root causes of failures in computational pipelines [51],
where certain values of the pipeline parameters—such as a specific
model and/or a specific dataset—cause the pipeline failure. However,
just knowing that a pipeline fails for a certain dataset is not enough;
naturally, we ask: what properties of a dataset caused the failure?

Two common reasons for malfunctions in data-driven systems
are: (1) incorrect data, and (2) disconnect between the assumptions
about the data and the design of the system that operates on the data.
Such disconnects may happen when the system is not robust, i.e.,
it makes strict assumptions about metadata (e.g., data format, do-
mains, ranges, and distributions), and when new data drifts from the
data over which the system was tested on before deployment [58]
(e.g., when a system expects a data stream to have a weekly fre-
quency, but the data provider suddenly switches to daily data).

Therefore, in light of a failure, one should investigate poten-
tial issues in the data. Some specific examples of commonly ob-
served system malfunctions caused by data include: (1) decline of a
machine-learned model’s accuracy (due to out-of-distribution data),
(2) unfairness in model predictions (due to imbalanced training
data), (3) excessive processing time (due to a system’s failure to
scale to large data), and (4) system crash (due to invalid input com-
bination in the data tuples beyond what the system was designed
to handle). These examples indicate a common problem: disconnect
ormismatch between the data and the system design. Once the mis-
match is identified, then possible fixes could be either to repair the
data to suit the system design, or to adjust the system design (e.g.,
modify source code) to accommodate data with different properties.

A naïve approach to deal with potential issues in the data is to
identify outliers: report tuples as potentially problematic based on
how atypical they are with respect to the rest of the tuples in the
dataset. However, without verifying whether the outliers actually
cause unexpected outcomes, we can never be certain about the
actual root causes. As pointed out in prior work [7]: “With respect
to a computation, whether an error is an outlier in the program’s input
distribution is not necessarily relevant. Rather, potential errors can be
spotted by their effect on a program’s output distribution.” Tomotivate
ourwork, we start with an example taken from a real-world incident,
where Amazon’s delivery service was found to be racist [43].

Example 1 (Biased Classifier). An e-commerce company wants
to build an automated system that suggests who should get discounts.
To this end, they collect information from the customers’ purchases
over one year and build a dataset over the attributes name, gender,
age, race, zip_code, phone, products_purchased, etc. Anita, a
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data scientist, is then asked to develop a machine learning (ML)
pipeline over this dataset to predict whether a customer will spend
over a certain amount, and, subsequently, should be offered discounts.
Within this pipeline, Anita decides to use a logistic regression classifier
for prediction and implements it using an off-the-shelf ML library.
To avoid discrimination over any group and to ensure that the classi-
fier trained on this dataset is fair, Anita decides to drop the sensitive
attributes—race and gender—during the pre-processing step of the
ML pipeline, before feeding it to the classifier. However, despite this ef-
fort, the trained classifier turns out to be highly biased against African
American people and women. After a close investigation, Anita dis-
covers that: (1) In the training data, race is highly correlated with
zip_code, and (2) The training dataset is imbalanced: a larger frac-
tion of the people who purchase expensive products are male. Now
she wonders: if these two properties did not hold in the dataset, would
the learned classifier be fair? Have either (or both) of these properties
caused the observed unfairness?

Unfortunately, existing tools (e.g., CheckCell [7]) that blame in-
dividual cells (values) for unexpected outcomes cannot help here,
as no single cell in the training data is responsible for the observed
discrimination, rather, global statistical properties (e.g., correlation)
that involve multiple attributes over the entire data are the actual
culprits. Furthermore, Anita only identified two potential or cor-
related data issues that may or may not be the actual cause of the
unfairness. To distinguish mere correlation from true causation and
to verify if there is indeed a causal connection between the data
properties and the observed unfairness, we need to dig deeper.

Example 1 is one among many incidents in real-world applica-
tions where issues in the data caused systems to malfunction [9, 33].
A recent study of 112 high-severity incidents in Microsoft Azure
services showed that 21% of the bugs were due to inconsistent as-
sumptions about data format by different software components or
versions [50]. The study further found that 83% of the data-format
bugs were due to inconsistencies between data producers and data
consumers, while 17% were due to mismatch between interpreta-
tions of the same data by different data consumers. Similar incidents
happened due to misspelling and incorrect date-time format [60],
and issues pertaining to data fusion where schema assumptions
break for a new data source [20, 71]. We provide another illustrative
example where a system times out when the distribution of the
data, over which the system operates, exhibits significant skew.

Example 2 (Process Timeout). A toll collection software EZGo
checks if vehicles passing through a gate have electronic toll pass in-
stalled. If it fails to detect a toll pass, it uses an external softwareOCR to
extract the registration number from the vehicle’s license plate. EZGo
operates in a batch mode and processes every 1000 vehicles together by
reserving AWS for one hour, assuming that one hour is sufficient for
processing each batch. However, for some batches, EZGo fails. After a
close investigation, it turns out that the external software OCR uses an
algorithm that is extremely slow for images of black license plates cap-
tured in low illumination. As a result, when a batch contains a large
number of such cases (significantly skewed distribution), EZGo fails.

The aforementioned examples bring forth two key challenges.
First, we need to correctly identify potential causes of unexpected
outcomes and generate hypotheses that are expressive enough to
capture the candidate root causes. For example, “outliers cause

unexpected outcomes” is just one of the many possible hypotheses,
which offers very limited expressivity. Second, we need to verify the
hypotheses to confirm or refute them, which enables us to pinpoint
the actual root causes, eliminating false positives.

Data profile as root cause. Towards solving the first challenge, our
observation is that data-driven systems often function properly for
certain datasets, but malfunction for others. Such malfunction is
often rooted in certain properties of the data, which we call data
profiles, that distinguish passing and failing datasets. Examples
include size of a dataset, domains and ranges of attribute values,
correlations between attribute pairs, conditional independence [73],
functional dependencies and their variants [14, 24, 40, 45, 54], and
other more complex data profiles [18, 48, 55, 69].

Oracle-guided root cause identification. Our second observation is
that if we have access to an oracle that can indicate whether the
system functions desirably or not, we can verify our hypotheses. Ac-
cess to an oracle allows us to precisely isolate the correct root causes
of the undesirable malfunction from a set of candidate causes. Here,
an oracle is a mechanism that can characterize whether the system
functions properly over the input data. The definition of proper
functioning is application-specific; for example, achieving a certain
accuracy may indicate proper functioning for an ML pipeline. Such
oracles are often available in many practical settings, and have been
considered in prior work [25, 51].
Solution sketch. In this paper, we propose DataExposer, a frame-
work that identifies and exposes data profiles that cause a data-
driven system to malfunction. Our framework involves two main
components: (1) an intervention-based mechanism that alters the
profiles of a dataset, and (2) a mechanism that speeds up analysis
by carefully selecting appropriate interventions. Given a scenario
where a system malfunctions (fails) over a dataset but functions
properly (passes) over another, DataExposer focuses on the dis-
criminative profiles, i.e., data profiles that significantly differ be-
tween the two datasets. DataExposer’s intervention mechanism
modifies the “failing” dataset to alter one of the discriminative pro-
files; it then observes whether this intervention causes the system
to perform desirably, or the malfunction persists. DataExposer
speeds up this analysis by favoring interventions on profiles that
are deemed more likely causes of the malfunction. To estimate this
likelihood, we leverage three properties of a profile: (1) coverage:
the more tuples an intervention affects, the more likely it is to fix
the system behavior, (2) discriminating power: the bigger the dif-
ference between the failing and the passing datasets over a profile,
the more likely that the profile is a cause of the malfunction, and
(3) attribute association: if a profile involves an attribute that is also
involved with a large number of other discriminative profiles, then
that profile has high likelihood to be a root cause. This is because
altering such a profile is likely to passively repair other discrim-
inative profiles as a side-effect (through the associated attribute).
We also provide a group-testing-based technique that allows group
intervention, which helps expedite the root-cause analysis further.
Scope. In this work, we assume knowledge of the classes of (domain-
specific) data profiles that encompass the potential root causes. E.g.,
in Example 1, we assume the knowledge that correlation between
attribute pairs and disparity between the conditional probability
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distributions (the probability of belonging to a certain gender, given
price of items bought) are potential causes of malfunction. This as-
sumption is realistic because: (1) For a number of tasks there exists
a well-known set of relevant profiles: e.g., class imbalance and cor-
relation between sensitive and non-sensitive attributes are common
causes of unfairness in classification [8]; and violation of confor-
mance constraints [26], missing values, and out-of-distribution
tuples are well-known causes of ML model’s performance degra-
dation. (2) Domain experts are typically aware of the likely class
of data profiles for the specific task at hand and can easily pro-
vide this additional knowledge as a conservative approximation, i.e.,
they can include extra profiles just to err on the side of caution.
Notably, this assumption is also extremely common in software
debugging techniques [25, 49, 75], which rely on the assumption
that the “predicates” (traps to extract certain runtime conditions)
are expressive enough to encode the root causes, and software test-
ing [52], validation [47], and verification [37] approaches, which
rely on the assumption that the test cases, specifications, and in-
variants reasonably cover the codebase and correctness constraints.

To support a data profile, DataExposer further needs the corre-
sponding mechanisms for discovery and intervention. In this work,
we assume knowledge of the profile discovery and intervention
techniques, as they are orthogonal to our work. Nevertheless, we
discuss some common classes of data profiles supported in DataEx-
poser and the corresponding discovery and intervention techniques.
For data profile discovery, we rely on prior work on pattern dis-
covery [56], statistical-constraint discovery [73], data-distribution
learning [36], knowledge-graph-based concept identification [30],
etc. While our evaluation covers specific classes of data profiles
(for which there exist efficient discovery techniques), our approach
is generic and works for any class of data profiles, as long as the
corresponding discovery and intervention techniques are available.

Limitations of prior work. To find potential issues in data, Dag-
ger [59, 60] provides data debugging primitives for human-in-the-
loop interactions with data-driven computational pipelines. Other
explanation-centric efforts [5, 17, 23, 71] report salient properties
of historical data based only on observations. In contrast with
observational techniques, the presence of an oracle allows for inter-
ventional techniques [51] that can query the oracle with additional,
system-generated test cases to identify root causes of system mal-
function more accurately. One such approach is CheckCell [7],
which presents a ranked list of cells of data rows that unusually af-
fect output of a given target function. CheckCell uses a fine-grained
approach: it removes one cell of the data at a time, and observes
changes in the output distribution. While it is suitable for small
datasets, where it is reasonable to expect a human-in-the-loop par-
adigm to fix cells one by one, it is not suitable for large datasets,
where no individual cell is significantly responsible, rather, a holistic
property of the entire dataset (profile) causes the problem.

Interpretable machine learning is related to our problem, where
the goal is to explain behavior of machine-learned models. How-
ever, prior work on interpretable machine learning [61, 62] typi-
cally provide local (tuple-level) explanations, as opposed to global
(dataset-level) explanations. While some approaches provide fea-
ture importance as a global explanation for model behavior [15],
they do not model feature interactions as possible explanations.

Software testing and debugging techniques [3, 4, 16, 29, 32, 34, 38,
44, 49, 75] are either application-specific, require user-defined test
suites, or rely only on observational data. The key contrast between
software debugging and our setting is that the former focuses on
white-box programs: interventions, runtime conditions, program
invariants, control-flow graphs, etc., all revolve around program
source code and execution traces. Unlike programs, where lines
have logical and semantic connections, tuples in data do not have
similar associations. Data profiles significantly differ in their se-
mantics, and discovery and intervention techniques from program
profiles, and, thus, techniques for program profiling do not trivially
apply here. We treat data as a first-class citizen in computational
pipelines, while considering the program as a black box.
Contributions. In this paper, we make the following contributions:
• We formalize the novel problem of identifying root causes (and
fixes) of the disconnect between data and data-driven systems in
terms of data profiles (and interventions). (Sec 2)
• We design a set of data profiles that are common root causes of
data-driven system malfunctions, and discuss their discovery and
intervention techniques based on available technology. (Sec 3)
• We design and develop a novel interventional approach to pin-
point causally verified root causes. The approach leverages a few
properties of the data profiles to efficiently explore the space of
candidate root causes with a small number of interventions. Ad-
ditionally, we develop an efficient group-testing-based algorithm
that further reduces the number of required interventions. (Sec 4)
• WeevaluateDataExposer on three real-world applications, where
data profiles are responsible for causing system malfunction,
and demonstrate that DataExposer successfully explains the
root causes with a very small number of interventions (< 5).
Furthermore, DataExposer requires 10–1000× fewer interven-
tions when compared against two state-of-the-art techniques
for root-cause analysis: BugDoc [51] and Anchors [62]. Through
an experiment over synthetic pipelines, we further show that
the number of required interventions by DataExposer increases
sub-linearly with the number of discriminative profiles, thanks
to our group-testing-based approach. (Sec 5)

2 PRELIMINARIES & PROBLEM DEFINITION

In this section, we first formalize the notions of system malfunction
and data profile, its violation, and transformation function used
for intervention. We then proceed to define explanation (cause
and corresponding fix) of system malfunction and formulate the
problem of data-profile-centric explanation of system malfunction.
Basic notations. We use R(𝐴1, 𝐴2, . . . , 𝐴𝑚) to denote a relation
schema over𝑚 attributes, where𝐴𝑖 denotes the 𝑖𝑡ℎ attribute.We use
Dom𝑖 to denote the domain of attribute 𝐴𝑖 . Then the set Dom𝑚 =

Dom1 × · · · × Dom𝑚 specifies the domain of all possible tuples. A
dataset 𝐷 ⊆ Dom𝑚 is a specific instance of the schema R. We use
𝑡 ∈ Dom𝑚 to denote a tuple in the schema R. We use 𝑡 .𝐴𝑖 ∈ Dom𝑖
to denote the value of the attribute 𝐴𝑖 of the tuple 𝑡 and use 𝐷.𝐴 𝑗

to denote the multiset of values all tuples in 𝐷 take for attribute 𝐴 𝑗 .

2.1 Quantifying System Malfunction

To measure how much the system malfunctions over a dataset, we
use the malfunction score.
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Definition 3 (Malfunction score). Let 𝐷 ⊆ Dom𝑚 be a
dataset, and 𝑆 be a system operating on 𝐷 . The malfunction score
𝑚𝑆 (𝐷) ∈ [0, 1] is a real value that quantifies how much 𝑆 malfunc-
tions when operating on 𝐷 .

The malfunction score 𝑚𝑆 (𝐷) = 0 indicates that 𝑆 functions
properly over 𝐷 and a higher value indicates a higher degree of
malfunction, with 1 indicating extreme malfunction. A threshold
parameter 𝜏 defines the acceptable degree of malfunction and trans-
lates the continuous notion of malfunction to a Boolean value. If
𝑚𝑆 (𝐷) ≤ 𝜏 , then 𝐷 is considered to pass with respect to 𝑆 ; other-
wise, there exists a mismatch between 𝐷 and 𝑆 , whose cause (and
fix) we aim to expose.

Example 4. For a binary classifier, its misclassification rate (addi-
tive inverse of accuracy) over a dataset can be used as a malfunction
score. Given a dataset 𝐷 , if a classifier 𝑆 makes correct predictions for
tuples in 𝐷 ′ ⊆ 𝐷 , and incorrect predictions for the remaining tuples,
then 𝑆 achieves accuracy |𝐷

′ |
|𝐷 | , and, thus,𝑚𝑆 (𝐷) = 1 − |𝐷

′ |
|𝐷 | .

Example 5. In fair classification, we can use disparate impact [39],
which is defined by the ratio between the number of tuples with
favorable outcomes within the unprivileged and the privileged groups,
to measure malfunction.

2.2 Profile-Violation-Transformation (PVT)

Once we detect existence of a mismatch, the next step is to inves-
tigate its cause. We characterize the issues in a dataset that are
responsible for the mismatch between the dataset and the system
using data profiles. Structure or schema of data profiles is given by
profile templates, which contains holes for parameters. Parameteriz-
ing a profile template gives us a concretization of the corresponding
profile (𝑃 ). Given a dataset 𝐷 , we use existing data-profiling tech-
niques to find out parameter values to obtain concretized data
profiles, such that 𝐷 satisfies the concretized profiles. To evaluate
how much a dataset 𝐷 satisfies or violates a data profile, we need a
corresponding violation function (𝑉 ). Violation functions provide
semantics of the data profiles. Finally, to alter a dataset 𝐷 , with re-
spect to a data profile and the corresponding violation function, we
need a transformation function (𝑇 ). Transformation functions pro-
vide the intervention mechanism to alter data profiles of a dataset
and suggest fix to remove the cause of malfunction. DataExposer
requires the following three components over the schema ⟨Profile,
Violation function, Transformation function⟩, PVT in short:
(1) 𝑃 : a (concretized) profile along with its parameters, which fol-

lows the schema ⟨profile type, parameters⟩.
(2) 𝑉 (𝐷, 𝑃): a violation function that computes how much the

dataset 𝐷 violates the profile 𝑃 and returns a violation score.
(3) 𝑇 (𝐷, 𝑃,𝑉 ): a transformation function that transforms the dataset

𝐷 to another dataset 𝐷 ′ such that 𝐷 ′ no longer violates the pro-
file 𝑃 with respect to the violation function𝑉 . (When clear from
the context, we omit the parameters 𝑃 and 𝑉 when using the
notation for transformation functions.)

For a PVT triplet 𝑋 , we define 𝑋𝑃 as its profile, 𝑋𝑉 as the viola-
tion function and 𝑋𝑇 as the transformation function. We provide
examples and additional discussions on data profiles, violation func-
tions, and transformation functions in Section 3.

2.2.1 Data Profile. Intuitively, data profiles encode dataset char-
acteristics. They can refer to a single attribute (e.g., mean of an
attribute) or multiple attributes (e.g., correlation between a pair of
attributes, functional dependencies, etc.).

Definition 6 (Data Profile). Given a dataset𝐷 , a data profile 𝑃
denotes properties or constraints that tuples in 𝐷 (collectively) satisfy.

2.2.2 Profile Violation Function. To quantify the degree of violation
a dataset incurs with respect to a data profile, we use a profile
violation function that returns a numerical violation score.

Definition 7 (Profile violation function). Given a dataset
𝐷 and a data profile 𝑃 , a profile violation function𝑉 (𝐷, 𝑃) ↦→ [0, 1]
returns a real value that quantifies how much 𝐷 violates 𝑃 .

𝑉 (𝐷, 𝑃) = 0 implies that𝐷 fully complies with 𝑃 (does not violate
it at all). In contrast, 𝑉 (𝐷, 𝑃) > 0 implies that 𝐷 violates 𝑃 . The
higher the value of 𝑉 (𝐷, 𝑃), the higher the profile violation.

2.2.3 Transformation Function. In our work, we assume knowledge
of a passing dataset for which the system functions properly, and a
failing dataset for which the system malfunctions. Our goal is to
identify which profiles of the failing dataset caused the malfunction.
We seek answer to the question: how to “fix” the issues within
the failing dataset such that the system no longer malfunctions
on it (mismatch is resolved)? To this end, we apply interventional
causal reasoning: we intervene on the failing dataset by altering its
attributes such that the profile of the altered dataset matches the
corresponding correct profile of the passing dataset. To perform
intervention, we need transformation functions with the property
that it should push the failing dataset “closer” to the passing dataset
in terms of the profile that we are interested to alter. More formally,
after the transformation, the profile violation score should decrease.

Definition 8 (Transformation function). Given a dataset 𝐷 ,
a data profile 𝑃 , and a violation function𝑉 , a transformation function
𝑇 (𝐷, 𝑃,𝑉 ) ↦→ 2Dom

𝑚
alters 𝐷 to produce 𝐷 ′ such that 𝑉 (𝐷 ′, 𝑃) = 0.

A dataset can be transformed by applying a series of transfor-
mation functions, for which we use the composition operator (◦).

Definition 9 (Composition of transformations). Given a
dataset𝐷 , and two PVT triplets𝑋 and𝑌 , (𝑋𝑇 ◦𝑌𝑇 ) (𝐷) = 𝑋𝑇 (𝑌𝑇 (𝐷)).
Further, if𝐷 ′′ = (𝑋𝑇 ◦𝑌𝑇 ) (𝐷), then𝑋𝑉 (𝐷 ′′, 𝑋𝑃 ) = 𝑌𝑉 (𝐷 ′′, 𝑌𝑃 ) = 0.

2.3 Problem Definition

We expose a set of PVT triplets for explaining the system malfunc-
tion. The explanation contains both the cause and the corresponding
fix: profile within a PVT triplet indicates the cause of system mal-
function with respect to the corresponding transformation function,
which suggests the fix.

Definition 10 (Explanation of system malfunction). Given
(1) a system 𝑆 with a mechanism to compute𝑚𝑆 (𝐷) ∀𝐷 ⊆ Dom𝑚 ,
(2) an allowable malfunction threshold 𝜏 ,
(3) a passing dataset 𝐷pass for which𝑚𝑆 (𝐷pass) ≤ 𝜏 ,
(4) a failing dataset 𝐷fail for which𝑚𝑆 (𝐷fail) > 𝜏 , and
(5) a set of candidate PVT triplets X such that ∀𝑋 ∈ X

𝑋𝑉 (𝐷pass, 𝑋𝑃 ) = 0 ∧ 𝑋𝑉 (𝐷fail, 𝑋𝑃 ) > 0,
the explanation of the malfunction of 𝑆 for 𝐷fail , but not for 𝐷pass , is
a set of PVT triplets X∗ ⊆ X such that𝑚𝑆 ((◦𝑋 ∈X∗𝑋𝑇 ) (𝐷fail)) ≤ 𝜏 .
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Profile Data type Discovery over 𝐷 Interpretation Violation by 𝐷 Transformation function

1 ⟨Domain, 𝐴 𝑗 , S⟩ Categorical S =
⋃
𝑡 ∈𝐷
{𝑡 .𝐴 𝑗 } Values are drawn from a

specific domain.

∑
𝑡∈𝐷J𝑡 .𝐴𝑗 ∉ SK
|𝐷 |

Map values outside S to values in
S using domain knowledge.

2 ⟨Domain, 𝐴 𝑗 , S⟩ Numerical

S = [lb, ub], where
lb = min

𝑡 ∈𝐷
𝑡 .𝐴 𝑗

ub = max
𝑡 ∈𝐷

𝑡 .𝐴 𝑗

Values lie within a bound.
∑

𝑡∈𝐷J𝑡 .𝐴𝑗 ∉ SK
|𝐷 |

(1) Use monotonic linear transfor-
mation and transform all values.
(2) Use winsorization techniques
to replace the violating values
only.s

t
r
i
c
t

3 ⟨Domain, 𝐴 𝑗 , S⟩ Text

S = [𝑡 ∈ Dom𝑗 | 𝑡 |= P],
where P is a regex
over 𝐷.𝐴 𝑗 learned via
pattern discovery [56]

Values satisfy a regular ex-
pression or length of val-
ues lie within a bound.

∑
𝑡∈𝐷J𝑡 .𝐴𝑗 ∉ SK
|𝐷 |

Minimally alter data to satisfy
regular expression. For example,
insert (remove) characters to in-
crease (reduce) text length.

4 ⟨Outlier, 𝐴 𝑗 , 𝑂 , 𝜃⟩ All
𝜃 =

∑
𝑡∈𝐷J𝑂 (𝐷.𝐴 𝑗 ,𝑡 .𝐴 𝑗 )K

|𝐷 | ,
where 𝑂 is learned from
𝐷.𝐴 𝑗 ’s distribution [36]

Fraction of outliers within
an attribute does not ex-
ceed a threshold.

max
(
0,

∑
𝑡∈𝐷J𝑂 (𝐷.𝐴 𝑗 ,𝑡 .𝐴 𝑗 )K−𝜃 · |𝐷 |

|𝐷 | · (1−𝜃 )

) (1) Replace outliers with the
expected value (mean, median,
mode) of the attribute.
(2) Map all values above (below)
the maximum (minimum) limit
with highest (lowest) valid value.

5 ⟨Missing, 𝐴 𝑗 , 𝜃⟩ All 𝜃 =

∑
𝑡∈𝐷J𝑡 .𝐴𝑗=NULLK

|𝐷 |

Fraction of missing values
within an attribute does
not exceed a threshold.

max
(
0,

∑
𝑡∈𝐷J𝑡 .𝐴𝑗=NULLK−𝜃 · |𝐷 |

|𝐷 | · (1−𝜃 )

) Use missing value imputation
techniques.
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6 ⟨Selectivity, P, 𝜃⟩ All 𝜃 =
|𝜎P (𝐷) |
|𝐷 |

Fraction of tuples satisfy-
ing a given constraint (se-
lection predicate) does not
exceed a threshold.

max
(
0, |𝜎P (𝐷) |−𝜃 · |𝐷 ||𝐷 | · (1−𝜃 )

) Undersample tuples that satisfy
the predicate P.

7 ⟨Indep, 𝐴 𝑗 , 𝐴𝑘 , 𝛼⟩ Categorical
𝛼 denotes Chi-squared
statistic between 𝐷.𝐴 𝑗

and 𝐷.𝐴𝑘

𝜒2 statistic between a pair
of attributes is below a
threshold with a p-value
≤ 0.05.

1 − 𝑒−max(0,𝜒2 (𝐷.𝐴 𝑗 ,𝐷.𝐴𝑘 )−𝛼) Modify attribute values to re-
move/reduce dependence.

8 ⟨Indep, 𝐴 𝑗 , 𝐴𝑘 , 𝛼⟩ Numerical
𝛼 denotes Pearson
correlation coefficient
between 𝐷.𝐴 𝑗 and 𝐷.𝐴𝑘

PCC between a pair at-
tributes is below a thresh-
old with a p-value ≤ 0.05.

max
(
0, |PCC(𝐷.𝐴 𝑗 ,𝐷.𝐴𝑘 ) |− |𝛼 |

1−|𝛼 |
) Add noise to remove/reduce

dependence between attributes.
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9 ⟨Indep, 𝐴 𝑗 , 𝐴𝑘 , 𝛼⟩
Categorical,
numerical

Learn causal graph and
causal coefficients (𝛼)
using TETRAD [66]

A causal relationship be-
tween a pair of attributes
is unlikely (with causal co-
efficient less than 𝛼).

max
(
0, |coeff(𝐴 𝑗 ,𝐴𝑘 ) |−𝛼

1−𝛼
) Change data distribution to mod-

ify the causal relationship.

Figure 1: A list of PVT triplets that we consider in this paper, their syntax, and semantics.

Informally, X∗ explains the cause: why 𝑆 malfunctions for 𝐷fail ,
but not for 𝐷pass . More specifically, failing to satisfy the profiles of
the PVT triplets in X∗ are the causes of malfunction. Furthermore,
the transformation functions of the PVT triplets in X∗ suggest the
fix: how can we repair 𝐷fail to eliminate system malfunction. How-
ever, there could be many possible such X∗ and we seek a minimal
set X∗ such that transformation for every 𝑋 ∈ X∗ is necessary to
bring down the malfunction score below the threshold 𝜏 .

Definition 11 (Minimal explanation of system malfunc-
tion). Given a system 𝑆 that malfunctions for 𝐷fail and an allowable
malfunction threshold 𝜏 , an explanation X∗ of 𝑆’s malfunction for
𝐷fail is minimal if ∀X′ ⊂ X∗ 𝑚𝑆 ((◦𝑋 ∈X′𝑋𝑇 ) (𝐷fail)) > 𝜏 .

Note that there could be multiple such minimal explanations and
we seek any one of them, as any minimal explanation exposes the
causes of mismatch and suggests minimal fixes.

Problem 12 (Discovering explanation of mismatch between
data and system). Given a system 𝑆 that malfunctions for 𝐷fail but
functions properly for 𝐷pass , the problem of discovering the explana-
tion of mismatch between𝐷fail and 𝑆 is to find a minimal explanation
that captures (1) the cause why 𝑆 malfunctions for 𝐷fail but not for
𝐷pass and (2) how to repair 𝐷fail to remove the malfunction.

3 DATA PROFILES, VIOLATION FUNCTIONS,

& TRANSFORMATION FUNCTIONS

We now provide an overview of the data profiles we consider, how
we discover them, howwe compute the violation scores for a dataset
w.r.t. a data profile, and how we apply transformation functions to
alter profiles of a dataset. While a multitude of data-profiling primi-
tives exist in the literature, we consider a carefully chosen subset of
them that are particularly suitable for modeling issues in data that
commonly cause malfunction or failure of a system. We focus on
profiles that, by design, can better “discriminate” a pair of datasets
as opposed to “generative” profiles (e.g., data distribution) that can
profile the data better, but nonetheless are less useful for the task of
discriminating between two datasets. However, the DataExposer
framework is generic, and other profiles can be plugged into it.

As discussed in Section 2, a PVT triplet encapsulates a profile, and
corresponding violation and transformation functions. Figure 1 pro-
vides a list of profiles along with the data types they support, how to
learn their parameters from a given dataset, how to interpret them
intuitively, and the corresponding violation and transformation
functions. In this work, we assume that a profile can be associated
with multiple transformation functions (e.g., rows 2 and 4), but
each transformation function can be associated with at most one
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profile. This assumption helps us to blame a unique profile as cause
of the system malfunction when at least one of the transformation
functions associated with that profile is verified to be a fix.

PVT triplets can be classified in different ways. Based on the
strictness of the violation function, they can be classified as follows:
• Strict: All tuples are expected to satisfy the profile (rows 1–3).
• Thresholded by data coverage: Certain fraction (𝜃 ) of data tuples
are allowed to violate the profile (rows 4–6).
• Thresholded by a parameter: Some degree of violation is allowed
with respect to a specific parameter (𝛼) (rows 7–9).
Further, PVT triplets can be classified in two categories based

on the nature of the transformation functions:
• Local transformation functions can transform a tuple in isolation
without the knowledge of how other tuples are being transformed
(e.g., rows 1–3). Some local transformation functions only trans-
form the violating tuples (e.g., row 2, transformation (2)), while
others transform all values (e.g., row 2, transformation (1)). For in-
stance, in case of unit mismatch (kilograms vs. lbs), it is desirable
to transform all values and not just the violating ones.
• Global transformation functions are holistic, as they need the
knowledge of how other tuples are being transformed while
transforming a tuple (e.g., rows 6 and 9).

Example 13. Domain requires two parameters: (1) an attribute
𝐴 𝑗 ∈ R(𝐷), and (2) a set S specifying its domain. A dataset𝐷 satisfies
⟨Domain, 𝐴 𝑗 , S⟩ if ∀𝑡 ∈ 𝐷 𝑡 .𝐴 𝑗 ∈ S. The profile ⟨Domain, 𝐴 𝑗 , S⟩ is
minimal w.r.t.𝐷 if �S′ ⊂ S s.t.𝐷 satisfies the profile ⟨Domain, 𝐴 𝑗 , S

′⟩.
The technique for discovering a domain S varies depending on the
data type of the attribute. Rows 1–3 of Figure 1 show three different
domain-discovery techniques for different data types.

Peoplefail (Figure 2) satisfies ⟨Domain, gender, {𝐹,𝑀}⟩, as all tu-
ples draw values from {𝐹,𝑀} for the attribute gender. Our case
studies of Sentiment Prediction and Cardiovascular Disease
Prediction show the application of the profile Domain (Section 5).

Example 14. Outlier requires three parameters: (1) an attribute
𝐴 𝑗 ∈ R(𝐷), (2) an outlier detection function𝑂 (𝐴, 𝑎) ↦→ {True, False}
that returns True if 𝑎 is an outlier w.r.t. the values within 𝐴, and
False otherwise, and (3) a threshold 𝜃 ∈ [0, 1]. A dataset 𝐷 sat-
isfies ⟨Outlier, 𝐴 𝑗 ,𝑂, 𝜃⟩ if the fraction of outliers within the at-
tribute 𝐴 𝑗—according to 𝑂—does not exceed 𝜃 . Otherwise, we com-
pute how much the fraction of outliers exceeds the allowable fraction
of outliers (𝜃 ) and then normalize it by dividing by (1 − 𝜃 ). The
profile ⟨Outlier, 𝐴 𝑗 ,𝑂, 𝜃⟩ is minimal if �𝜃 ′ < 𝜃 s.t. 𝐷 satisfies
⟨Outlier, 𝐴 𝑗 ,𝑂, 𝜃

′⟩.
An outlier detection function 𝑂1.5 identifies values that are more

than 1.5 standard deviation away from the mean as outliers. In
Peoplefail , age has a mean 34.5 and a standard deviation 11.78. Ac-
cording to 𝑂1.5, only 𝑡3—which is 0.1 fraction of the tuples—is an
outlier in terms of age as 𝑡3’s age 60 > (34.5 + 1.5 × 11.78) = 52.17.
Therefore, Peoplefail satisfies ⟨Outlier, age,𝑂1.5, 0.1⟩.

Example 15. Indep requires three parameters: two attributes
𝐴 𝑗 , 𝐴𝑘 ∈ R(𝐷), and a real value 𝛼 . A dataset 𝐷 satisfies the profile
⟨Indep, 𝐴 𝑗 , 𝐴𝑘 , 𝛼⟩ if the dependency between𝐷.𝐴 𝑗 and𝐷.𝐴𝑘 does not
exceed 𝛼 . Different techniques exist to quantify the dependency and
rows 6–9 of Figure 1 show three different ways to model dependency,
where the first two are correlational and the last one is causal.

id name gender age race zip code phone high expenditure

𝑡1 Shanice Johnson F 45 A 01004 2088556597 no
𝑡2 DeShawn Bad M 40 A 01004 2085374523 no
𝑡3 Malik Ayer M 60 A 01005 2766465009 no
𝑡4 Dustin Jenner M 22 W 01009 7874891021 yes
𝑡5 Julietta Brown F 41 W 01009 yes
𝑡6 Molly Beasley F 32 W 7872899033 no
𝑡7 Jake Bloom M 25 W 01101 4047747803 yes
𝑡8 Luke Stonewald M 35 W 01101 4042127741 yes
𝑡9 Scott Nossenson M 25 W 01101 yes
𝑡10 Gabe Erwin M 20 W 4048421581 yes

Figure 2: A sample dataset Peoplefail with 10 entities. A logistic re-

gression classifier trained over this dataset discriminates against

AfricanAmericans (race = ‘A’) andwomen (gender = ‘F’) (Example 1).

id name gender age race zip code phone high expenditure

𝑡1 Darin Brust M 25 W 01004 2088556597 no
𝑡2 Rosalie Bad F 22 W 01005 no
𝑡3 Kristine Hilyard F 50 W 01004 2766465009 yes
𝑡4 Chloe Ayer F 22 A 7874891021 yes
𝑡5 Julietta Mchugh F 51 W 01009 9042899033 yes
𝑡6 Doria Ely F 32 A 01101 yes
𝑡7 Kristan Whidden F 25 W 01101 4047747803 no
𝑡8 Rene Strelow M 35 W 01101 6162127741 yes
𝑡9 Arial Brent M 45 W 01102 4089065769 yes

Figure 3: A sample dataset Peoplepass with 9 entities. A logistic re-

gression classifier trained over this dataset does not discriminate

against any specific race or gender, and, thus, is fair (Example 1).

⟨Indep, race, high_expenditure, 0.67⟩ is satisfied by Peoplefail
using the PVT triplet of row 7, as 𝜒2-statistic between race and
high_expenditure over Peoplefail is 0.67. We show the application
of the profile Indep in our case study involving the task of Income
Prediction in Section 5.

While the profiles in Figure 1 are defined over the entire data,
analogous to conditional functional dependency [24], an extension
to consider is conditional profiles, where only a subset of the data
is required to satisfy the profiles.

4 INTERVENTION ALGORITHMS

We now describe our intervention algorithms to explain the mis-
match between a dataset and a system malfunctioning on that
dataset. Our algorithms consider a failing and a passing dataset as
input and report a collection of PVT triplets (or simply PVTs) as the
explanation (cause and fix) of the observed mismatch. To this end,
we first identify a set of discriminative PVTs—whose profiles take
different values in the failing and passing datasets—as potential ex-
planation units, and then intervene on the failing dataset to alter the
profiles and observe change in systemmalfunction. We develop two
approaches that differ in terms of the number of PVTs considered si-
multaneously during an intervention.DataExposerGRD is a greedy
approach that considers only one PVT at a time. However, in worst
case, the number of interventions required by DataExposerGRD
is linear in number of discriminative PVTs. Therefore, we propose
a second algorithm DataExposerGT, built on the group-testing
paradigm, that considers multiple PVTs to reduce the number of in-
terventions, where the number of required interventions is logarith-
mically dependent on the number of discriminative PVTs. We start
with an example scenario to demonstrate how DataExposerGRD
works and then proceed to describe our algorithms.
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4.1 Example Scenario

Consider the task of predicting the attribute high_expenditure to
determine if a customer should get a discount (Example 1). The sys-
tem calculates bias of the trained classifier against the unprivileged
groups (measured using disparate impact [39]) as its malfunction
score. We seek the causes of mismatch between this prediction
pipeline and Peoplefail (Figure 2), for which the pipeline fails with a
malfunction score of 0.75. We assume the knowledge of Peoplepass
(Figure 3), for which the malfunction score is 0.15. The goal is to
identify a minimal set of PVTs whose transformation functions
bring down the malfunction score of Peoplefail below 0.20.

(Step 1) The first goal is to identify the profiles whose param-
eters differ between Peoplefail and Peoplepass . To do so, DataEx-
poserGRD identifies the exhaustive set of PVTs over Peoplepass
and Peoplefail and discards the identical ones (PVTs with identical
profile-parameter values). We call the PVTs of the passing dataset
whose profile-parameter values differ over the failing dataset dis-
criminative PVTs. Figure 5 lists a few profiles of the discriminative
PVTs w.r.t. Peoplepass and Peoplefail .

(Step 2) Next, DataExposerGRD ranks the set of discriminative
PVTs based on their likelihood of offering an explanation of the
malfunction. Our intuition here is that if an attribute 𝐴 is related
to the malfunction, then many PVTs containing 𝐴 in their pro-
files would differ between Peoplefail and Peoplepass . Additionally,
altering 𝐴 with respect to one PVT is likely to automatically “fix”
other PVTs associated with 𝐴.1 Based on this intuition, DataEx-
poserGRD constructs a bipartite graph, called PVT-attribute graph,
with discriminative PVTs on one side and data attributes on the
other side (Figure 4). In this graph, a PVT 𝑋 is connected to an
attribute 𝐴 if 𝑋𝑃 is defined over 𝐴. In the bipartite graph, the de-
gree of an attribute 𝐴 captures the number of discriminative PVTs
associated with 𝐴. During intervention, DataExposerGRD priori-
tizes PVTs associated with a high-degree attributes. For instance,
since high_expenditure has the highest degree in Figure 4, PVTs
associated with it are considered for intervention before others.

(Step 3)DataExposerGRD further ranks the subset of the discrim-
inative PVTs that are connected to the highest-degree attributes in
the PVT-attribute graph based on their benefit score. Benefit score
of a PVT 𝑋 encodes the likelihood of reducing system malfunction
when the failing dataset is altered using 𝑋𝑇 . The benefit score of 𝑋
is estimated from (1) the violation score that the failing dataset in-
curs w.r.t.𝑋𝑉 , and (2) the number of tuples in the failing dataset that
are altered by 𝑋𝑇 . For example, to break the dependence between
high_expenduture and race, the transformation corresponding
to Indep modifies five tuples in Peoplefail by perturbing (adding
noise to) high_expenditure. In contrast, the transformation for
Missing needs to change only one value (𝑡6 or 𝑡10). Since more
tuples are affected by the former, it has higher likelihood of re-
ducing the malfunction score. The intuition behind this is that if
a transformation alters more tuples in the failing dataset, the more
likely it is to reduce the malfunction score. This holds particularly
in applications where the system optimizes aggregated statistics
such as accuracy, recall, F-score, etc.

1Altering values of𝐴 w.r.t. a PVT may also increase violation w.r.t. some other PVTs.
However, for ease of exposition, we omit such issues in this example and provide a
detailed discussion on such issues in the appendix.

< Missing, zip-code, ... >

< Indep, race, high-expenditure, … >

age

race

gender

high-expenditure< Selectivity, gender = X ∧ high-expenditure = Y, … >

AttributesPVTs

< Domain, age, ... >

zip-code

Figure 4: PVT-attribute graph. The attribute high_expenditure is as-
sociated with two discriminative PVTs. For ease of exposition, we

only show profile within a PVT to denote the entire PVT.

Peoplepass Peoplefail

⟨Domain, age, [22, 51]⟩ ⟨Domain, age, [20, 60]⟩
⟨Missing, zip_code, 0.11⟩ ⟨Missing, zip_code, 0.2⟩
⟨Indep, race, high_expenditure, 0.04⟩ ⟨Indep, race, high_expenditure, 0.67⟩
⟨Selectivity, gender = F ⟨Selectivity, gender = F
∧high_expenditure = yes, 0.44⟩ ∧high_expenditure = yes, 0.1⟩

Figure 5: A list of PVTs that discriminate Peoplepass (Figure 3) and

Peoplefail (Figure 2) based on the scenario of Example 1 . We omit the

violation and transformation functions for ease of exposition.

(Step 4) DataExposerGRD starts intervening on Peoplefail us-
ing the transformation of the PVT corresponding to the profile
⟨Indep, race, high_expenditure, 0.04⟩ as its transformation offers
the most likely fix. Then, it evaluates the malfunction of the system
over the altered version of Peoplefail . Breaking the dependence be-
tween high_expenditure and race helps reduce bias in the trained
classifier, and, thus, we observe a malfunction score of 0.35w.r.t. the
altered dataset. This exposes the first explanation of malfunction.

(Step 5) DataExposerGRD then removes the processed PVT
(Indep) from the PVT-attribute graph, updates the graph accord-
ing to the altered dataset, and re-iterates steps 2–4. Now the PVT
corresponding to the profile Selectivity is considered for inter-
vention as it has the highest benefit score. To do so, DataEx-
poserGRD over-samples tuples corresponding to female customers
with high_expenditure = 𝑦𝑒𝑠 . This time, DataExposerGRD in-
tervenes on the transformed dataset obtained from the previous
step. After this transformation, bias of the learned classifier further
reduces and the malfunction score falls below the required thresh-
old. Therefore, with these two interventions, DataExposerGRD is
able to expose two issues that caused undesirable behavior of the
prediction model trained on Peoplefail .

(Step 6) DataExposerGRD identifies an initial explanation over
two PVTs: Indep and Selectivity. However, to verify whether it
is a minimal, DataExposerGRD tries to drop from it one PVT at a
time to obtain a proper subset of the initial explanation that is also
an explanation. This procedure guarantees that the explanation
only consists of PVTs that are necessary, and, thus, is minimal. In
this case, both Indep and Selectivity are necessary, and, thus, are
part of the minimal explanation. DataExposerGRD finally reports
the following as a minimal explanation of the malfunction, where
failure to satisfy the profiles is the cause and the transformations
indicate fix (violation and transformation functions are omitted).

{⟨Indep, race, high_expenditure, 0.04⟩,
⟨Selectivity, gender = F ∧ high_expenditure = yes, 0.44⟩}
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4.2 Assumptions and Observations

We now proceed to describe our intervention algorithms more
formally.We first state our assumptions and then proceed to present
our observations that lead to the development of our algorithms.

Assumptions. DataExposer makes the following assumptions:
(A1) The ground-truth explanation of malfunction is captured by

at least one of the discriminative PVTs. This assumption is prevalent
in software-debugging literature where program predicates are
assumed to be expressive enough to capture the root causes [25, 49].

(A2) If the fix corresponds to a composition of transformations,
then the malfunction score achieved after applying the composition
of transformations is less than the malfunction score achieved after
applying any of the constituents, and all these scores are less than
the malfunction score of the original dataset. For example, con-
sider two discriminative PVTs 𝑋 and 𝑌 and a failing dataset 𝐷fail .
Our assumption is that if {𝑋,𝑌 } corresponds to a minimal explana-
tion, then𝑚𝑆 ((𝑌𝑇 ◦𝑋𝑇 ) (𝐷fail)) < 𝑚𝑆 (𝑋𝑇 (𝐷fail)) < 𝑚𝑆 (𝐷fail) and
𝑚𝑆 ((𝑌𝑇 ◦ 𝑋𝑇 ) (𝐷fail)) < 𝑚𝑆 (𝑌𝑇 (𝐷fail)) < 𝑚𝑆 (𝐷fail). Intuitively,
this assumption states that 𝑋 and 𝑌 have consistent (independent)
effect on reducing the malfunction score, regardless of whether
they are intervened together or individually. If this assumption
does not hold, DataExposer can still work with additional knowl-
edge about multiple failing and passing datasets. More details are
in the appendix.

Observations. We make the following observations:
(O1) If the ground-truth explanation of malfunction corresponds

to an attribute, then multiple PVTs that involve the same attribute
are likely to differ across the passing and failing datasets. This ob-
servation motivates us to prioritize interventions based on PVTs
that are associated with high-degree attributes in the PVT-attribute
graph. Additionally, intervening on the data based on one such
PVT is likely to result in an automatic “fix” of other PVTs con-
necting via the high-degree attribute. For example, adding noise to
high_expenditure in Example 1 breaks its dependence with not
only race but also with other attributes.

(O2) The PVT for which the failing dataset incurs higher viola-
tion score is more likely to be a potential explanation of malfunction.

(O3) A transformation function that affects a large number of
data tuples is likely to result in a higher reduction in themalfunction
score, after the transformation is applied.
PVT-attribute graph. DataExposer leverages observation O1 by
constructing a bipartite graph (𝐺𝑃𝐴), called PVT-attribute graph,
with all attributes 𝐴 ∈ R(𝐷) as nodes on one side and all dis-
criminative PVTs 𝑋 ∈ X on the other side. An attribute 𝐴 is con-
nected to a PVT 𝑋 if and only if 𝑋𝑃 has 𝐴 as one of its parameters.
E.g., Figure 4 shows the PVT-attribute graph w.r.t. Peoplefail and
Peoplepass (Example 1). In this graph, the PVT corresponding to
⟨Indep, race, high_expenditure⟩ is connected to two attributes,
race and high_expenditure. Intuitively, this graph captures the
dependence relationship between PVTs and attributes, where an
intervention with respect to a PVT 𝑋 modifies an attribute 𝐴 con-
nected to it. If this intervention reduces the malfunction score then
it could possibly fix other PVTs that are connected to 𝐴.
Benefit score calculation.DataExposer uses the aforementioned
observations to compute a benefit score for each PVT to model their

Algorithm 1: DataExposerGRD (greedy)
Input: Failing dataset 𝐷fail , passing dataset 𝐷pass ,

malfunction score threshold 𝜏
Output: A minimal explanation set of PVTs X∗

1 X𝑓 ← Discover-PVT(𝐷fail)
2 X𝑝 ← Discover-PVT(𝐷pass)
3 X∩ ← X𝑓 ∩ X𝑝 /* Common PVTs */

4 X ← X𝑝 \ X∩ /* Discriminative PVTs */

5 𝐺𝑃𝐴 (𝑉𝐺 , 𝐸𝐺 ) ← Construct-PVT-Attr-Graph(X, 𝐷fail)
6 𝐵 ← Calculate-Benefit-Score(X,𝐺𝑃𝐴, 𝐷fail)
7 X∗ ← ∅ /* Initialize minimal explanation set to be empty */

8 𝐷 ← 𝐷fail /* Initialize dataset to the failing dataset */

9 while𝑚𝑆 (𝐷) > 𝜏 do
10 Xhda = {𝑋∈X|(𝑋,𝐴)∈𝐸𝐺∧𝐴= argmax𝐴∈R(𝐷) 𝑑𝑒𝑔𝐺 (𝐴)}

/* PVTs adjacent to high-degree attributes in 𝐺𝑃𝐴 */

11 𝑋 = argmax𝑋 ∈Xhda 𝐵(𝑋 ) /* Highest-benefit PVT */

12 Δ←𝑚𝑆 (𝐷) −𝑚𝑆 (𝑋𝑇 (𝐷)) /* Malfunction reduction */

13 𝐺𝑃𝐴 ← 𝐺𝑃𝐴 .Remove(𝑋 ) /* Update 𝐺𝑃𝐴 */

14 if Δ > 0 then /* Reduces malfunction */

15 𝐷 ← 𝑋𝑇 (𝐷) /* Apply transformation */

16 𝐺𝑃𝐴 .Update(𝐷) /* Update the PVT-attribute graph */

17 𝐵.Update(𝐷) /* Update benefit scores */

18 X∗ ← X∗ ∪ {𝑋 } /* Add 𝑃 to explanation set */

19 X ← X \ {𝑋 } /* Remove 𝑃 from the candidates */

20 X∗ =Make-Minimal(X∗) /* Obtain minimality of X∗ */

21 return X∗ /* X∗ is a minimal explanation */

likelihood of reducing system malfunction if the corresponding
transformation is used to modify the failing dataset 𝐷fail . Intu-
itively, it assigns a high score to a PVT with a high violation score
(O2) and if the corresponding transformation function modifies a
large number of tuples in the dataset (O3). Formally, the benefit
score of a PVT𝑋 is defined as the product of violation score of 𝐷fail
w.r.t. 𝑋𝑉 and the “coverage” of 𝑋𝑇 . The coverage of 𝑋𝑇 is defined
as the fraction of tuples that it modifies. Note that the benefit calcu-
lation procedure acts as a proxy of the likelihood of a PVT to offer
an explanation, without actually applying any intervention.

4.3 Greedy Approach

Algorithm 1 presents the pseudocode of our greedy techniqueData-
ExposerGRD, which takes a passing dataset 𝐷pass and a failing
dataset 𝐷fail as input and returns the set of PVTs that corresponds
to a minimal explanation of system malfunction.
Lines 1-2 Identify two sets of PVTs X𝑓 and X𝑝 satisfied by 𝐷fail
and 𝐷pass , respectively.
Lines 3-4 Discard the PVTs X𝑓 ∩ X𝑝 from X𝑝 and consider the
remaining discriminative ones X ≡ X𝑝 \ X𝑓 as candidates for
potential explanation of system malfunction.
Line 5 Compute the PVT-attribute graph 𝐺𝑃𝐴 , where the candi-
date PVTsX correspond to nodes on one side and the data attributes
correspond to nodes on the other side.
Line 6 Calculate the benefit score of each discriminative PVT 𝑋 ∈
X w.r.t. 𝐷fail . This procedure relies on the violation score using the

8



violation function of the PVT and the coverage of the corresponding
transformation function over 𝐷fail .
Line 7-8 Initialize the solution set X∗ to ∅ and the dataset to per-
form intervention on 𝐷 to the failing dataset Dfail . In subsequent
steps, X∗ will converge to a minimal explanation set and 𝐷 will be
transformed to a dataset for which the system passes.
Line 9 Iterate over the candidate PVTsX until the dataset𝐷 (which
is being transformed iteratively) incurs an acceptable violation score
(less than the allowable threshold 𝜏).
Line 10 Identify the subset of PVTs Xhda ⊆ X such that all 𝑋 ∈
Xhda are adjacent to at least one of the highest degree attributes in
the current PVT-attribute graph (Observation O1).
Line 11 Choose the PVT 𝑋 ∈ Xhda that has the maximum benefit.
Line 12 Calculate the reduction in malfunction score if the dataset
𝐷 is transformed according to the transformation 𝑋𝑇 .
Line 13 Remove 𝑋 from 𝐺𝑃𝐴 as it has been explored.
Lines 14-19 If the malfunction score reduces over 𝑋𝑇 (𝐷), then 𝑋
is added to the solution set X∗, and 𝐷 is updated to 𝑋𝑇 (𝐷), which
is then used to update the PVT-attribute graph and benefit of each
PVT. The update procedure recalculates the benefit scores of all
PVTs that are connected to the attributes adjacent to 𝑋 in 𝐺𝑃𝐴 .
Line 20 Post-process the set X∗ to identify a minimal subset that
ensure that malfunction score remains less than the threshold 𝜏 .
This procedure iteratively removes one PVT at a time (say 𝑋 ) from
X∗ and recalculates the malfunction score over the failing dataset
𝐷fail transformed according to the transformation functions of the
PVTs in the set X′ = X∗ \ {𝑋 }. If the transformed dataset incurs a
violation score less than 𝜏 then X∗ is replaced with X′.

4.4 Group-testing-based Approach

We now present our second algorithm DataExposerGT, which
performs group interventions to identify the minimal explanation
that exposes the mismatch between a dataset and a system. The
group intervention methodology is applicable under the following
assumption along with assumptions 𝐴1 and 𝐴2 (Section 4.2).

(A3) The malfunction score incurred after applying a compo-
sition of transformations is less than the malfunction score in-
curred by the the original dataset if and only if at least one of
the constituent transformations reduces the malfunction score.
For two PVTs 𝑋 and 𝑌 , 𝑚𝑆 ((𝑋𝑇 ◦ 𝑌𝑇 ) (𝐷fail)) < 𝑚𝑆 (𝐷fail), iff
𝑚𝑆 (𝑋𝑇 (𝐷fail)) < 𝑚𝑆 (𝐷fail) or 𝑚𝑆 (𝑌𝑇 (𝐷fail)) < 𝑚𝑆 (𝐷fail). Note
that this assumption is crucial to consider group interventions and
is prevalent in the group-testing literature [21].

DataExposerGT follows the classical adaptive group testing (GT)
paradigm [21] for interventions. To this end, it iteratively partitions
the set of discriminative PVTs into two “almost” equal subsets
(when the number of discriminative PVTs is odd, then the size of
the two partitions will differ by one). During each iteration, all PVTs
in a partition are considered for intervention together (group inter-
vention) to evaluate the change in malfunction score. If a partition
does not help reduce the malfunction score, all PVTs within that
partition are discarded. While traditional GT techniques [21] would
use a random partitioning of the PVTs, DataExposerGT can lever-
age the dependencies among PVTs (inferred from the PVT-attribute
graph) to achieve more effective partitioning. Intuitively, it is bene-
ficial to assign all PVTs whose transformations operate on the same

Algorithm 2: DataExposerGT (group-testing-based)
Input: Failing dataset 𝐷fail , passing dataset 𝐷pass ,

malfunction score threshold 𝜏
Output: A minimal explanation set of PVTs X∗

1 X𝑓 ← Discover-PVT(𝐷fail)
2 X𝑝 ← Discover-PVT(𝐷pass)
3 X∩ ← X𝑓 ∩ X𝑝 /* Common PVTs */

4 X ← X𝑝 \ X∩ /* Discriminative PVTs */

5 𝐺𝑃𝐴 (𝑉𝐺 , 𝐸𝐺 ) ← Construct-PVT-attr-Graph(X, 𝐷fail)
6 𝐷,X∗ ← Group-Test(X, 𝐷fail,𝐺

2
𝑃𝐴
, 𝜏) /* Obtain an exp. */

7 X∗ =Make-Minimal(X∗) /* Obtain minimality of X∗ */

8 return X∗ /* X∗ is a minimal cause */

attribute to the same partition, which is likely to enable aggressive
pruning of spurious PVTs that do not reduce malfunction.

DataExposerGRD captures the dependencies among PVTs by
constructing a PVT-dependency graph 𝐺𝑃𝐷 . Two PVTs 𝑈 and 𝑉
are connected by an edge in 𝐺𝑃𝐷 if they are connected via some
attribute in 𝐺𝑃𝐴 . 𝐺𝑃𝐷 is equivalent to 𝐺2

𝑃𝐴
(transitive closure of

𝐺𝑃𝐴), restricted to PVT nodes (excluding the attribute nodes). This
ensures that PVTs that are associated via some attribute in 𝐺𝑃𝐴

are connected in𝐺𝑃𝐷 . DataExposerGRD partitions𝐺𝑃𝐷 such that
the number of connections (edges) between PVTs that fall in differ-
ent partitions are minimized. More formally, we aim to construct
two “almost” equal-sized partitions of X such that the number
of edges between PVTs from different partitions are minimized,
which maps to the problem of finding the minimum bisection of a
graph [31]. The minimum bisection problem is NP-hard [31] and
approximate algorithms exist [27, 28]. In this work, we use the local
search algorithm [27] (details are in the appendix).

We proceed to demonstrate the benefit of using DataExposerGT
as opposed to traditional GT with the following example.

Example 16. Consider a set of 8 PVTs X = {𝑋1, . . . , 𝑋8} where
the ground-truth (minimal) explanation is either {𝑋1, 𝑋6} or {𝑋4, 𝑋8}
(disjunction). An example of steps for a traditional adaptive GT ap-
proach is shown in Figure 6(c). In this case, it requires a total of 14 inter-
ventions. Note that adaptive GT is a randomized algorithm and this ex-
ample demonstrates one such execution. However, we observed similar
results for other instances. In contrast to adaptive GT, DataExposerGT
constructs a min-bisection of the graph during each iteration: it does
not partition {𝑋2, 𝑋3} and {𝑋5, 𝑋7} as none of these PVTs help reduce
the malfunction. Therefore, it requires only 10 interventions.

Algorithm 2 presents the DataExposerGT algorithm. It starts
with a set of discriminative PVTs X and the PVT-attribute graph
𝐺𝑃𝐴 . All candidate PVTs are then considered by Group-Test sub-
routine to identify the explanation X∗.
Group-Test. Algorithm 3 presents the procedure that takes the
set of discriminative PVTs X, a failing dataset 𝐷 , PVT-dependency
graph 𝐺𝑃𝐷 , and the malfunction score threshold 𝜏 as input. It re-
turns a transformed (fixed) dataset and an explanation.
Lines 1 Initialize the solution set X∗ to ∅.
Lines 2-3 Return the candidate PVT set X if its cardinality is 1.
Lines 4 Partition X into X1 and X2 using min-bisection of the
PVT-dependency graph 𝐺𝑃𝐷 .
Lines 5 Calculate the malfunction score of the input dataset.
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Algorithm 3: Group-Test
Input: Candidate PVT X, dataset 𝐷 , PVT-dependency

graph 𝐺𝑃𝐷 , malfunction score threshold 𝜏
Output: A transformed dataset 𝐷 ′ and an explanation set

of PVTs X∗
1 X∗ ← ∅ /* Initialize explanation set to be empty */

2 if |X| = 1 then /* Only a single PVT is candidate */

3 return 𝑇X (𝐷),X
4 X1,X2 ← Get-Min-Bisection(𝐺𝑃𝐷 ,X) /* Partition X */

5 M ←𝑚𝑆 (𝐷) /* Initial malfunction score */

6 Δ1 ←M −𝑚𝑆 (X1
𝑇
(𝐷)) /* Malfunction reduction by X1

𝑇
*/

7 ifM − Δ1 > 𝜏 then /* X1 alone is insufficient */

8 Δ2 ←M−𝑚𝑆 (X2
𝑇
(𝐷)) /* Malfunction reduction by X2

𝑇
*/

9 if (M − Δ1 ≤ 𝜏) OR (Δ1 > 0 ANDM − Δ2 > 𝜏) then
/* X1 is sufficient OR X1 helps AND X2 is insufficient */

10 𝐷,X′ ← Group-Test(X1, 𝐷,𝐺𝑃𝐷 )
11 X∗ = X∗ ∪ X′ /* Augment explanation set */

12 ifM − Δ1 ≤ 𝜏 then /* Malfunction is acceptable */

13 return 𝐷,X∗ /* No need to check X2 */

14 if Δ2 > 0 then /* 𝑇X2 reduces malfunction */

15 𝐷,X′ ← Group-Test(X2, 𝐷,𝐺𝑃𝐷 )
16 X∗ = X∗ ∪ X′ /* Augment explanation set */

17 return 𝐷,X∗

Lines 6 Calculate the reduction in malfunction score Δ1 if 𝐷 is
intervened w.r.t. all PVTs X1.
Lines 7-8 If the malfunction exceeds 𝜏 even after intervening on
𝐷 w.r.t. all PVTs in X1 then try out X2: calculate the reduction in
malfunction score Δ2 if 𝐷 is intervened w.r.t. all PVTs in X2.
Lines 9-13 Recursively call Group-Test on the partitionX1 if one
of the following conditions hold: (1) Intervening on𝐷 w.r.t. all PVTs
in X1 reduces the malfunction to be lower than 𝜏 : the explanation
over X1 is returned as the final explanation. (2) Intervening on 𝐷
w.r.t. all PVTs inX1 reduces the malfunction, but still remains above
𝜏 , but intervening on 𝐷 w.r.t. all PVTs in X2 brings the malfunction
below 𝜏 : the explanation returned by the recursive call on X1 is
added to the set X∗ and X2 is processed next.
Lines 14-16 Recursively call Group-Test on X2 if intervening on
all PVTs in X2 reduces malfunction. The set of PVTs returned by
this recursive call of the algorithm are added to the solution set X∗.

Discussion on DataExposerGRD vs. DataExposerGT. Data-
ExposerGRD intervenes by considering a single discriminative PVT
at a time. Hence, in the worst case, it requires𝑂 ( |X|) interventions
where X denotes the set of discriminative PVTs. Note that Data-
ExposerGRD requires much fewer interventions in practice and
would require 𝑂 ( |X|) only when any of the mentioned observa-
tions (O1–O3) do not hold. In contrast, DataExposerGT performs
group intervention by recursively partitioning the set of discrimi-
native PVTs. Thus, the maximum number of interventions required
by DataExposerGT is 𝑂 (𝑡 log |X|) where 𝑡 denotes the number of
PVTs that help reduce malfunction if the corresponding profile is
altered. Note that, in expectation, DataExposerGT requires fewer
interventions than DataExposerGRD whenever 𝑡 = 𝑜 ( |X|/log |X|).
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Figure 6: Comparison betweenDataExposerGT and adaptive group

testing on a toy example.

DataExposerGT is particularly helpful whenmultiple PVTs disjunc-
tively explain the malfunction. However, DataExposerGT requires
an additional assumption assumption A3 (Section 4.4). We discuss
the empirical impact of this assumption in Section 5.1 (Cardiovascu-
lar disease prediction). Overall, we conclude that DataExposerGT
is beneficial for applications whenever 𝑡 = 𝑂 ( |X|/log |X|) and
observations O1-O3 hold (more details are in the appendix).

5 EXPERIMENTAL EVALUATION

Our experiments involving DataExposer aim to answer the follow-
ing questions: (Q1) Can DataExposer correctly identify the cause
and corresponding fix of mismatch between a system and a dataset
for which the system fails? (Q2) How efficient is DataExposer
compared to other alternative techniques? (Q3) Is DataExposer
scalable with respect to the number of discriminating PVTs?

Baselines. Since there is no prior work on modifying a dataset
according to a PVT, we adapted state-of-the-art debugging and
explanation techniques to incorporate profile transformations and
explain the cause of system failure. We consider three baselines:
(1) BugDoc [51] is a recent debugging technique that explores dif-
ferent parameter configurations of the system to understand its
behavior. We adapt BugDoc to consider each PVT as a parameter
of the system and interventions as the modified configurations of
the pipeline. (2) Anchor [62] is a local explanation technique for
classifiers that explains individual predictions based on a surrogate
model. We train Anchor with PVTs as features, and the prediction
variable is Pass/Fail where Pass (Fail) denotes the case where an
input dataset incurs malfunction below (above) 𝜏 . In this technique,
each intervention creates a new data point to train the surrogate
model. (3) GrpTest [21] is an adaptive group testing approach that
performs group interventions to expose the mismatch between the
input dataset and the system. It is similar to DataExposerGT with
a difference that the recursive partitioning of PVTs is performed
randomly without exploiting the PVT-dependency graph.
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Number of Interventions Execution Time (seconds)

Application DataExposerGRD DataExposerGT BugDoc Anchor GrpTest DataExposerGRD DataExposerGT BugDoc Anchor GrpTest

Sentiment 2 3 10 303 3 25.1 23.4 64.6 4594.9 21.2
Income 1 8 20 800 10 11.8 12.5 20.0 195.5 10.4

Cardiovascular 1 NA 100 5900 NA 7.6 NA 62.1 8602.9 NA

Figure 7: Comparison of number of interventions and running time of DataExposer with other baselines. NA denotes that the technique

could not identify the cause of malfunction because assumption A3 did not hold.

5.1 Real-world Case Studies

Wedesign three case studies focusing on three different applications,
wherewe usewell-knownMLmodels [1, 2, 57] as black-box systems.
For all of the three case studies, we use real-world datasets. Figure 7
presents a summary of our evaluation results.

Sentiment Prediction. The system in this study predicts senti-
ment of input text (reviews/tweets) and computes misclassification
rate as the malfunction score. It uses flair [2], a pre-trained classifier
to predict sentiment of the input records and assumes a target
attribute in the input data, indicating the ground truth sentiment:
A value of 1 for the attribute target indicates positive sentiment
and a value of −1 indicates negative sentiment. We test the sys-
tem over IMDb dataset [41] (50𝐾 tuples) and a twitter dataset [68]
(around 1.6M tuples). The malfunction score of the system on the
IMDb dataset is only 0.09 while on the twitter dataset it is 1.0. We
considered IMDb as the passing dataset and twitter as the failing
dataset and used both DataExposerGRD and DataExposerGT to
explain the mismatch between the twitter dataset and the system.
The ground-truth cause of the malfunction is that the target at-
tribute in the twitter dataset uses “4” to denote positive and “0”
to denote negative sentiment [68]. DataExposerGRD identifies a
total of 3 discriminative PVTs between the two datasets. One such
PVT includes the profile Domain of the target attribute that has
corresponding parameter S = {−1, 1} for IMDb and S = {0, 4} for
the twitter dataset.DataExposerGRD performs two interventions
and identifies that the malfunction score reduces to 0.36 bymapping
0 → −1 and 4 → 1 by intervening w.r.t. the PVT corresponding
Domain, which is returned as an explanation of the malfunction.

DataExposerGT and GrpTest both require 3 group interven-
tions to explain the cause of systemmalfunction. BugDoc and Anchor
require 10 and 303 interventions, respectively. Anchor calculates
system malfunction on datasets transformed according to various
local perturbations of the PVTs in the failing dataset.

Income Prediction. The system in this study trains a Random
Forest classifier [57] to predict the income of individuals while
ensuring fairness towards marginalized groups. The pipeline re-
turns the normalized disparate impact [39] of the trained classifier
w.r.t. the protected attribute (sex), as the malfunction score. Our
input data includes census records [22] containing demographic
attributes of individuals along with information about income, ed-
ucation, etc. We create two datasets through a random selection
of records, and manually add noise to one of them to break the
dependence between target and sex. The system has malfunction
score of 0.195 for the passing dataset and 0.58 for the failing dataset
due to the dependence between target and sex. DataExposerGRD
identifies a total of 43 discriminative PVTs and constructs a PVT-
attribute graph. In this graph, the target attribute has degree 15
while all other attributes have degree 2. The PVTs that include
target are then intervened in non-increasing order of benefit. The
transformation w.r.t. Indep PVT on the target attribute breaks the

dependence between target and all other attributes, thereby re-
ducing the malfunction score to 0.32. Therefore, DataExposerGRD
requires one intervention to explain the cause of the malfunction.
Our group testing algorithm DataExposerGT and GrpTest require
8 and 10 interventions, respectively. Note that group testing is not
very useful because the datasets contain few discriminative PVTs.

BugDoc and Anchor do not identify discriminative PVTs explic-
itly and consider all PVTs (136 for this dataset) as candidates for
intervention. Anchor performs 800 local interventions to explain
the malfunction. BugDoc identifies the ground truth malfunction in
50% of the runs when allowed to run fewer than 10 interventions.
It identifies the mismatch with intervention budget of 20 but the
returned solution of PVTs is not minimal. For instance, BugDoc re-
turns two PVTs: {⟨Indep, target, education⟩ and ⟨Indep, target,
sex⟩} as the explanation of malfunction.

Cardiovascular Disease Prediction. This system trains an Ad-
aBoost classifier [1] on patients’ medical records [13] containing
age, height (in centimeters) and weight along with other attributes.
It predicts if the patient has a disease and does not optimize for
false positives. Therefore, the system calculates recall over the pa-
tients having cardiovascular disease, and the goal is to achieve
more than 0.70 recall. The pipeline returns the additive inverse of
recall as the malfunction score. We tested the pipeline with two
datasets generated through a random selection of records: (1) the
passing dataset satisfies the format assumptions of the pipeline;
(2) for the failing dataset we manually converted height to inches.
DataExposerGRD identifies 86 discriminative PVTs with height,
weight and age having the highest degree of 15 in the PVT-attribute
graph. Among the PVTs involving these attributes, the Domain
of height has the maximum benefit, which is the ground-truth
PVT too. DataExposerGRD alters the failing dataset by applying
a linear transformation and it reduces the malfunction from 0.71
to 0.30. This explanation matches the ground truth difference in
the passing and the failing dataset. Among baselines, BugDoc and
Anchor performed 100 and 5900 interventions, respectively. Group
testing techniques are not applicable because assumption A3 (Sec-
tion 4.4) does not hold. We observe that the malfunction score
with a composition of transformation functions is higher than the
one in the original dataset if the composition involves Indep PVT.
This behavior is observed because adding noise to intervene with
respect to Indep PVT worsens the classifier performance. If we
remove PVTs that violate this assumption, then DataExposerGT
and GrpTest require 6 and 9 interventions, respectively.

Efficiency. Figure 7 presents the execution time of considered
techniques for real-world applications presented above. DataEx-
poserGRD, DataExposerGT and GrpTest are highly efficient and
require less than 30 seconds to explain the ground-truth cause of
malfunction. In contrast, Anchor is extremely inefficient as it re-
quires more than 143 minutes for cardiovascular, while DataEx-
poserGRD and BugDoc explain the malfunction within 63 seconds.
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Key takeaways. Among all real-world case studies, the greedy
approach DataExposerGRD requires the fewest interventions to
explain the cause of malfunction. Group testing techniques, Data-
ExposerGT and GrpTest, require fewer interventions than BugDoc
and Anchor whenever assumption A3 (Section 4.4) holds. Anchor
requires the highest number of interventions as it performs many
local transformations to explain the cause of failure. BugDoc opti-
mizes interventions by leveraging combinatorial design algorithms:
it requires more interventions than DataExposer but fewer than
Anchor.

5.2 Synthetic Pipelines

We evaluate the effectiveness and scalability of DataExposerGRD
and DataExposerGT for a diverse set of synthetic scenarios.
DataExposerGRD vs. DataExposerGT. In this experiment, we
consider a pipeline where the ground-truth explanation of malfunc-
tion violates the observations discussed in Section 4.2. Specifically,
the explanation requires modifying one particular value in the
dataset and its likelihood (as estimated by DataExposerGRD) is
ranked 54 among the set of discriminative PVTs. Therefore, it re-
quires 54 interventions to explain the cause of malfunction. On
the other hand, DataExposerGT performs group interventions
and requires only 9 interventions. This experiment demonstrates
that DataExposerGT requires fewer interventions than DataEx-
poserGRD when the failing dataset and the corresponding PVTs do
not satisfy the observationsDataExposerGRD relies on. We present
additional experiments with complex conjunctive and disjunctive
explanations of malfunction in the appendix.
Scalability. To test the scalability of our techniques, we compare
their running time with increasing number of attributes and dis-
criminative PVTs. Figure 8 shows that the time required byDataEx-
poserGRD and DataExposerGT to explain the malfunction grows
sub-linearly in the number of attributes and discriminative PVTs.
We observe similar trend of the number of required interventions on
varying these parameters. This experiment demonstrates thatData-
ExposerGRD requires fewer than 𝑂 ( |X|) interventions in practice
(where X denotes the set of discriminative profiles) and validates
the logarithmic dependence of DataExposerGT on |X|.

6 RELATEDWORK

Interventional debugging. AID [25] uses an interventional ap-
proach to blame runtime conditions of a program for causing failure;
but it is limited to software bugs and does not intervene on datasets.
BugDoc [51] finds parameter settings in a black-box pipeline as
root causes of pipeline failure; but it only reports whether a dataset
is a root cause and does not explain why a dataset causes the failure.
CADET [42] uses causal inference to derive root causes of non-
functional faults for hardware platforms focused on performance
issues. Capuchin [65] casts fairness in machine learning as a data-
base repair problem and adds or removes rows in the training data to
simulate a fair world; but it does not aim to find cause of unfairness.
Data explanation. Explanations for query results have been abun-
dantly studied [5, 17, 23, 71]. Some works find causes of errors in
data generation processes [71], while others discover relationships
among attributes [5, 23], and across datasets [17]. ExceLint [6] ex-
ploits the spatial structure of spreadsheets to look for erroneous
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Figure 8: Execution time of DataExposerGRD vs. DataExposerGT

with varying number of data attributes (left) and discriminative

PVTs (right) over synthetic pipelines.

formulas. Unlikely interventional efforts, these approaches operate
on observational data, and do not generate additional test cases.
Model explanation. Machine learning interpreters [61, 62] per-
turb testing data to learn a surrogate for models. Their goal is not
to find mismatch between data and models. Debugging methods for
ML pipelines are similar to data explanation [11, 12], where training
data may cause model’s underperformance. [70] and [46] discuss
principled ways to find reasons of malfunctions. Wu et al. [72]
allow users to complain about outputs of SQL queries, and presents
data points whose removal resolves the complaints. [67] validates
when models fail on certain datasets and assumes knowledge of the
mechanism that corrupts the data. We aim to find discriminative
profiles among datasets without such knowledge.
Causal inference debugging. Data-driven approaches have been
taken for causal-inference-based fault localization [3, 4, 16, 34], soft-
ware testing [29, 32, 38, 44, 74], and statistical debugging [49, 75].
However, they use a white-box strategy or are application-specific.
Causal relational learning [64] infers causal relationships in
relational data, but it does not seek mismatches between the data
and the systems. Our work shares similarity with BugEx [63],
which generates test cases to isolate root causes. However, it
assumes complete knowledge of the program, and data-flow paths.
Data debugging. Porting concepts of debugging from software to
data has gained attention in data management community [10, 53].
Dagger [59, 60] provides data debugging primitives for white-box
interactions with data-driven pipelines. CheckCell [7] ranks data
cells that unusually affect output of a given target. However, it is not
meant for large datasets where single cells are unlikely to causes
malfunction. Moreover, CheckCell cannot expose combination of
root causes. DataExposer is general-purpose, application-agnostic,
and interventional, providing causally verified issues mismatch
between the data and the systems.

7 SUMMARY AND FUTURE DIRECTIONS

We introduced the problem of identifying causes and fixes of mis-
match between data and systems that operate on data. To this end,
we presented DataExposer, a framework that reports violation
of data profiles as causally verified root causes of system malfunc-
tion and reports fixes in the form of transformation functions. We
demonstrated the effectiveness and efficacy of DataExposer in ex-
plaining the reason of mismatch in several real-world and synthetic
data-driven pipelines, significantly outperforming the state of the
art. In future, we want to extend DataExposer to support more
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complex classes of data profiles. Additionally, we plan to investi-
gate ways that can facilitate automatic repair of both data and the
system guided by the identified data issues.
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A MINIMUM BISECTION

Algorithm 4 presents the local search algorithm [27] that DataEx-
poserGT uses to partition the set of discriminative PVTs. It is an
anytime algorithm [76] and is known to be very efficient in most
practical settings [27].
Line 1 Initialize the solution X1,X2 to a randomized partition of
X where |X1 | − |X2 | ≤ 1.
Lines 2-14 Iteratively try to improve the solution by performing
local search.
Line 3 Count the number of cut edges, i.e., edges that connect two
nodes from different partitions.
Line 4 Initialize the number of cut edges in an improved partition-
ing to be equal to the current number of cut edges.
Lines 5-8 Swap a pair of PVTs between the partitions to create
two temporary partitions.
Lines 9 Count the number of cut edges between the temporary
partitions.
Lines 10-13 If swapping the PVT pairs reduces the number of
cut edges, then update the partitions and terminate the current
iteration.
Line 14 Stop searching for an improved partitioning reduction in
the number of cut edges is no longer possible.
Line 15 Return the updated partitions X1,X2 as the solution.

B MODELING INTERACTION AMONG PVT

INTERVENTIONS

We now extend our techniques for the setting when intervening on
one PVT may affect the impact of intervention on another PVT. For
example, when altering the failing dataset with respect to PVT 𝑃1
does not help reduce malfunction when considered in isolation, but,
malfunction reduces when the failing dataset is intervened with
respect to PVT 𝑃1 along with another PVT 𝑃2. In such a setting,
assumption A2 does not hold and DataExposermay fail to identify
the ground-truth cause of malfunction.

To address this issue, we propose to leverage multiple passing
and failing datasets. Using this additional knowledge, we generate a
decision tree to guideDataExposer. The key idea is to fit a decision
tree based on the PVTs and the relative decrease of the malfunction
score (𝑚𝑆𝐷) with respect to the maximum allowable malfunction
score threshold (𝜏). Each training data point for learning the deci-
sion tree consists of the set of PVTs X𝑖 , extracted from dataset 𝐷𝑖 ,
and the outcome is the Boolean assessment of whether𝑚𝑆 (𝐷𝑖 ) ≤ 𝜏 .
Each path of the tree can be seen as a conjunction of PVTs. If a
conjunction leads to a consistent outcome (a “pure” leaf), then that
combination becomes an explanation “candidate”. The candidates
are then verified by Algorithm 5, where we perform interventions
on an arbitrary failing dataset.
Line 1 Traverse the decision tree at least once.
Line 2-11 Follow the decision-tree paths until we find a conjunc-
tion of PVTs X that reduces the malfunction score of 𝐷fail so that
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Algorithm 4: Get-Min-Bisection
Input: Dependency Graph 𝐺𝑃𝐷 , discriminative PVTs X
Output: Partitions X1, X2

1 X1,X2 ← Random-Bisection(X) /* Initialization */

2 do

3 𝐶 ← ∑
𝑋1∈X1,𝑋2∈X2

1𝐺𝑃𝐷
(𝑋1, 𝑋2) /* #Cut edges */

4 𝐶 ′ ← 𝐶 /* Initialize */

5 foreach 𝑋1 ∈ X1 do
6 foreach 𝑋2 ∈ X2 do
7 X′1 ← X1 ∪ {𝑋2} \ {𝑋1} /* Swap PVTs */

8 X′2 ← X2 ∪ {𝑋1} \ {𝑋2} /* Swap PVTs */

9 𝐶 ′ ← ∑
𝑋1∈X′1,𝑋2∈X′2

1𝐺𝑃𝐷
(𝑋1, 𝑋2) /* #Cut edges */

10 if 𝐶 ′ < 𝐶 then /* Cut size is reduced */

11 X1 ← X′1 /* Update partition */

12 X2 ← X′2 /* Update partition */

13 break

14 while 𝐶 ′ < 𝐶 ; /* As long as cut size reduces */

15 return X1,X2 /* X1, X2 are returned as the solution */

𝑚𝑆 (𝐷fail) ≤ 𝜏 . If no candidate conjunction of PVTs can convert
𝐷fail to a passing dataset, then rebuild the decision tree.
Line 3 Find the paths Π of the decision tree that lead to pure leaves
(malfunction score is less than 𝜏 whenever all PVTs in the paths,
in conjunction, are observed) and sort them by their PVTs’ benefit
scores, as defined in Algorithm 1.
Line 4 Record that some candidate PVTs were computed.
Lines 5-11 Iteratively test each conjunction of PVTs X.
Line 6 Transform the failing dataset 𝐷fail w.r.t X to obtain 𝐷𝑡 .
Lines 7-11 If the transformed dataset 𝐷𝑡 reduces the malfunction
score, then returnX as a cause of malfunction. Otherwise, add a new
instance (data point) to re-train the decision tree and recompute Π.

In future work, we plan to extend this approach to leverage
combinatorial-design-based techniques to efficiently intervene PVTs
to initialize the decision tree algorithm [19].

C DISCUSSION ON DATAEXPOSERGRD VS.

DATAEXPOSERGT

As discussed in Section 4.4, DataExposerGRD always identifies the
ground-truth cause of malfunction, but, the number of interven-
tions required may increase if observations O1-O3 do not hold. If
O1 does not hold, then the initial ordering of attributes, which is
computed based on their degree in PVT-Attribute graph 𝐺𝑃𝐴 , may
not be accurate. In this case, DataExposerGRD may require 𝑂 (X)
interventions to explain the cause of system malfunction. Similarly,
whenever O2 or O3 fail, the benefit-based ordering of the PVTs is
likely to be incorrect. In applications where O1 holds but O2 and
O3 do not hold, 𝐺𝑃𝐴 is expected to be accurate and the number of
required interventions is𝑂 (𝑟 ), where 𝑟 is the degree of the attribute
that has the highest degree in 𝐺𝑃𝐴 . In contrast, DataExposerGT
requires 𝑂 (𝑡 log |X|) interventions even when these observations
are violated. Therefore, DataExposerGRD is beneficial whenever
all of these observations hold, or 𝑡 = Ω( |X|/log |X|).

Algorithm 5: Greedy + Decision Tree Approach
Input: Failing dataset 𝐷fail , decision tree 𝐷𝑇 , malfunction

score threshold 𝜏
1 Update-Paths← true /* Indicates whether to explore

decision tree paths */

2 while Update-Paths do
3 Let Π be the set of paths in 𝐷𝑇 that are observed for

instances where system malfunction score is less than
𝜏 . All PVTs along a path are considered in conjunction
and sorted by decreasing order of their benefit score.

4 Update-Paths← false /* Π is up-to-date */

5 for X ∈ Π do

6 𝐷𝑡 ← X𝑇 (𝐷fail) /* Transform 𝐷fail wrt X */

7 if 𝑚𝑆 (𝐷𝑡 ) ≤ 𝜏 then /* Cause has been identified */

8 return X
9 else

10 𝐷𝑇 .Update(𝐷𝑡 , Fail) /* Add instance to tree */

11 Update-Paths← true /* Recompute Π */

12 return ∅

D EFFECT OF VARIOUS PARAMETERS

In this experiment, we test the effect of the number of dataset
attributes and the number of discriminative PVTs on the efficacy of
DataExposer algorithms, and contrast those with other state-of-
the-art baselines. We also investigate the influence of the number
of PVTs involved in the root causes and their interactions on the
number of interventions each method requires.

D.1 Effect of Number of Attributes and PVTs

Figure 9(a) presents the effect of changing the number of attributes
in the datasets on the number of required interventions. Data-
ExposerGRD requires fewer than 5 interventions on average. In
contrast, BugDoc and Anchor require orders of magnitude more
interventions. The number of interventions required by BugDoc
grows linearly with the number of attributes. At the same time,
Anchor perturbs all PVTs to solve a multi-armed bandit problem:
the more PVTs affect the pipeline errors, the more interventions are
needed. Group-testing-based approaches also require more inter-
vention than that of DataExposerGRD, and grow logarithmically
with the number of data attributes.

Figure 9(b) depicts the effect of the number of discriminative
PVTs on the number of required interventions. DataExposerGRD
shows superior performance as it requires fewer than 10 interven-
tions even when the number of discriminative PVTs go beyond 100.
Here, we observe trends similar the one in Figure 9(a) for other base-
lines as the number of PVTs are strongly and positively correlated
to the number attributes.

D.2 Effect of Number of Root Causes and their

Interactions

The pipelines presented in Figures 9(a) and 9(b) have a single PVT as
the root cause of the malfunction. In Figure 9(c), we fix the number
of attributes to 15 and the number of discriminative PVTs between
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Figure 9: Average number of interventions required by two versions of DataExposer and three other techniques for varying number of

attributes, discriminative PVTs, size of single conjunctive root causes, and size of disjunctive root causes.

the passing and the failing datasets to 136. We also define the root
cause to be a conjunction over a set of PVTs of varying cardinalities.
We find that the cardinality of the root-cause set (length of the
conjunctive cause) does not impact the number of interventions as
much as the number of attributes and the number of discriminative
PVTs do. However, havingmore than one cause for malfunction (i.e.,

a disjunctive cause) requires more interventions for Anchor and the
Group-Test techniques, as shown in Figure 9(d). DataExposerGRD
still needs orders of magnitude fewer interventions than these other
approaches, although the probability of failing to find any feasible
transformation, which decreases malfunctions scores, increases
with the number of possible root causes within the disjunction.
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