Engineering Applications of Artificial Intelligence 45 (2015) 103-118

Engineering Applications of Artificial Intelligence

Contents lists available at ScienceDirect

nnnnnnnnnnnnnnn

Intelligence

E1 . SEVIER journal homepage: www.elsevier.com/locate/engappai TR,

A new framework for mining frequent interaction patterns

from meeting databases

@ CrossMark

Anna Fariha?, Chowdhury Farhan Ahmed ¥, Carson K. Leung ¢, Md. Samiullah?,

Suraiya Pervin ?, Longbing Cao ¢

@ Department of Computer Science and Engineering, University of Dhaka, Bangladesh
b [Cube Laboratory, University of Strasbourg, France
€ Department of Computer Science, University of Manitoba, Canada

d Faculty of Engineering and Information Technology, University of Technology Sydney, Australia

ARTICLE INFO

ABSTRACT

Article history:

Received 18 December 2014
Received in revised form

13 June 2015

Accepted 22 June 2015
Available online 16 July 2015

Keywords:

Data mining

Frequent patterns
Directed acyclic graphs
Human interaction
Modelling meetings

Meetings play an important role in workplace dynamics in modern life since their atomic components
represent the interactions among human beings. Semantic knowledge can be acquired by discovering
interaction patterns from these meetings. A recent method represents meeting interactions using tree
data structure and mines interaction patterns from it. However, such a tree based method may not be
able to capture all kinds of triggering relations among interactions and distinguish same interaction from
different participants of different ranks. Hence, it is not suitable to find all interaction patterns such as
those about correlated interactions. In this paper, we propose a new framework for mining interaction
patterns from meetings using an alternative data structure, namely, weighted interaction flow directed
acyclic graph (WIFDAG). Specifically, a WIFDAG captures both temporal and triggering relations among
interactions in meetings. Additionally, to distinguish participants from different ranks, we assign weights
to nodes in the WIFDAGs. Moreover, we also propose an algorithm called WDAGMeet for mining
weighted frequent interaction patterns from meetings represented by the proposed framework.
Extensive experimental results are shown to signify the effectiveness of the proposed framework and
the mining algorithm built on that framework for mining frequent interaction patterns from meetings.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Data mining extracts frequent patterns and their relationships
by analysing large database aiming towards discovering implicit,
previously unknown, and potentially valuable information or
knowledge. Frequent substructures are a form of frequent pat-
terns, which can be represented using graphs. Trees and directed
acyclic graphs (DAGs) are special kinds of graphs, where tree is
undirected acyclic graph and DAG is directed acyclic graph and
both tree mining and directed acyclic graph mining play very
important role in the field of structured data mining.

Meetings and human interactions are integral parts of workplace
dynamics for communicating among the participating members.
During a meeting, several kinds of human interactions may occur.
Examples include: proposing an idea, positively or negatively reacting

* Corresponding author. Mobile: 433 629 271 568.

E-mail addresses: anna@cse.univdhaka.edu (A. Fariha), cfahmed@unistra.fr,
farhan@cse.univdhaka.edu (C.F. Ahmed), kleung@cs.umanitoba.ca (C.K. Leung),
samiullah@cse.univdhaka.edu (Md. Samiullah), suraiyacse@gmail.com (S. Pervin),
longbing.cao@uts.edu.au (L. Cao).

http://dx.doi.org/10.1016/j.engappai.2015.06.019
0952-1976/© 2015 Elsevier Ltd. All rights reserved.

to a proposal, acceptance or rejection of a proposal, etc. To gather
significant information regarding the success rate of the decision
made in a meeting, one can mine patterns from human interactions
occurred in the meeting. Meeting mining refers to the process of
finding frequent interaction flow patterns occurred in meetings
aiming towards discovering higher level semantic knowledge for
further understanding and interpretation of human interactions and
relationships among interactions. Meeting interaction mining frame-
work can also facilitate in the fields of traffic control system for
congestion detection, stock market analysis, social network group
behaviour detection, telecommunication network fraud activity
detection, etc.

Frequent pattern mining is helpful in finding frequently occur-
ring patterns such as interaction patterns from meetings. The
discovered interaction patterns help in estimating the effective-
ness of decisions made, designating whether a meeting discussion
is fruitful, comparing two meeting discussions using interaction
flow as a key feature, mining association rules among interactions
and indexing meetings for further ease of access in database. Yu
et al. (2009) proposed a multimodal approach for interaction
recognition; they (Yu et al,, 2012) also used a tree based mining

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2015.06.019
http://dx.doi.org/10.1016/j.engappai.2015.06.019
http://dx.doi.org/10.1016/j.engappai.2015.06.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2015.06.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2015.06.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2015.06.019&domain=pdf
mailto:anna@cse.univdhaka.edu
mailto:cfahmed@unistra.fr
mailto:farhan@cse.univdhaka.edu
mailto:kleung@cs.umanitoba.ca
mailto:samiullah@cse.univdhaka.edu
mailto:suraiyacse@gmail.com
mailto:longbing.cao@uts.edu.au
http://dx.doi.org/10.1016/j.engappai.2015.06.019

104 A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118

method to discover frequent patterns from human interactions
occurred in meetings. Such a method focuses mostly on capturing
direct parent-child relations. However, there are other triggering
relations in meetings as illustrated in Example 1, which reflects
the shortcomings of the existing tree based meeting mining
method (Yu et al,, 2012) in an extremely significant scenario.

Example 1. Let us consider a scenario about a meeting of four
persons (e.g. professor A, assistant professor B, and two lecturers C
& D) with different weights/ranks. At the beginning of the meet-
ing, B proposes an idea which triggers three interactions: (i) C
expresses negative opinion towards the proposed idea, (ii) C asks D
for opinion regarding the idea, and (iii) A expresses positive
opinion towards the idea. Now, the interaction of C's request for
D's opinion triggers a single interaction performed by D. Although
the response of D is triggered by C's request of opinion, such a
response is generally influenced by A's positive opinion. To
elaborate, D may initially feel negatively regarding B's proposed
idea. But, after listening to A's positive comment, B may change his
mind and lean towards a neutral or even positive opinion. Fig. 1
shows a sample meeting scenario and interaction triggering
relations.

Example 1 reveals the following facts: (i) An interaction can be
triggered or influenced by multiple interactions and (ii) the extent
of influence can be significantly dependent on the weight/rank of
the person triggering that interaction.

However, the aforementioned tree based method (Yu et al.,
2012) is limited to some extent and has the following short-
comings: (i) It does not capture all kinds of triggering relations that
can occur within a meeting. Specially the triggering relations
where an interaction partially triggers another interaction pre-
viously triggered by some other interaction. For example, in
Example 1, the triggering relation between A's positive opinion
and D's positive opinion is not captured in the tree based method
(Yu et al., 2012). (ii) It does not consider the ranks of participants.
(iii) The algorithm produces less significant frequent patterns while
missing some important frequent patterns. This lacking motivated
us to work on overcoming the problems of existing tree based
meeting mining method. Existing DAG mining algorithms do not
consider weights of the nodes in DAGs, let alone mining weighted
frequent interaction patterns. Observing that (i) DAGs and trees
are both specializations of graphs and (ii) trees may not capture all
triggering relations and person's weight/rank, we explore the
usage of DAGs (as alternatives to trees) for modelling meetings.
As interactions occur in meetings flow in only one direction with
respect to time (i.e. no cycle), DAG would be a logical choice for
modelling meetings.

The key contributions of this paper are as follows:

1. A novel DAG based mining framework for modelling and
mining interactions occurred in meetings is proposed that
captures two kinds of relations: (i) temporal relations and

Fig. 1. A motivating scenario.

(ii) triggering relations (cf. trees capture temporal relations but
not all triggering relations).

2. The feature of node weight is incorporated in the framework to
preserve the rank information of participants and thus making
the representation more realistic.

3. WDAGMeet algorithm for Weighted DAG based Meeting mining
in the new proposed framework is devised by integrating DAG
based mining (Werth and Dreweke, 2008) and interaction
pattern mining with weighted frequent pattern mining
(Ahmed et al., 2009, 2012).

4. WDAGMeet algorithm maintains the anti-monotone property
by exploiting a new strategy and prunes a large number of
candidate patterns efficiently.

5. Elaborate descriptions with application in real-life scenarios
and advantages of WDAGMeet algorithm over existing tree
based meeting mining algorithms are provided.

6. An extensive performance study is conducted with different
variations of our proposed approach in order to show its
significance, efficiency, correctness and effectiveness.

The rest of the paper is organized as follows: Section 2 describes
related works and provides necessary background knowledge.
Section 3 introduces our proposed framework to represent meet-
ings using weighted directed acyclic graphs. Section 4 presents the
WDAGMeet algorithm and simulation of the algorithm. Section 5
focuses on the performance of our proposed algorithm and
comparison with the existing algorithm. Section 6 discusses how
the proposed meeting mining framework can facilitate in many
other real life fields and how it can be applied there. Finally,
Section 7 includes ideas about future scope of improvement and
concludes the paper.

2. Related work

Transactional data such as sales, cost, inventory, etc. can be
mined to discover hidden patterns (Alavi and Hashemi, 2015;
Duong et al, 2014; Han et al, 2004). For acquiring further
interesting and realistic patterns, weighted frequent pattern
(Ahmed et al., 2012; Yun et al., 2012), weighted periodic pattern
(Yang et al., 2014), high utility pattern (Ahmed et al., 2009) and
data stream (Yun et al., 2014) mining methods were developed,
but most of them are limited to transactional databases or
streaming databases. Directed Acyclic Graphs (DAGs) are useful
data structure to represent special kind of data, like procedural
abstraction, code compaction, event sequences, etc. Chen et al.
(2004) performed one of the earliest works on mining DAG
patterns from DAG databases. Campagna and Pagh (2010) worked
on finding frequent traces among all the paths in the DAGs, by
limiting it with a maximum length. Termier et al. (2007) presented
as the first algorithm to mine closed frequent embedded sub-
DAGs. Werth and Dreweke (2008) designed and implemented a
DAG miner for mining DAGs from DAG databases and used it for
procedural abstraction. They also demonstrated the quantitative
effects of DAG mining in program size reduction. But, none of them
has developed any method based on weighted DAG mining to
mine interaction patterns from meetings. Although Geng et al.
(2009) and Lee and Yun (2012) mined weighted frequent sub-
graphs from graph databases, to the best of our knowledge, there
exists no weighted DAG mining algorithm in the existing literature
and algorithms like the one in Werth and Dreweke (2008)
prepared for specialized graph (DAG), outperform general purpose
graph mining algorithms that work for all sort of graphs.

To acquire the semantic information from a meeting, research-
ers extracted the meeting contents and represented them in a
machine readable format. Kolar et al. (2010) used dialogue act

A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118 105

segmentation and dialogue act classification using simple lexical
and prosodic knowledge sources in automatic meeting applica-
tions. Zhang et al. (2006) expressed group actions as a two layer
process by hidden Markov model (HMM) framework. Waibel et al.
(1998) presented a meeting browser using automatic speech
transcription, dialogue summarization and the extraction of verbal
and non-verbal cues that describe the dynamics of human
interaction.

Nijholt et al. (2006) and Otsuka et al. (2007) considered turn-
taking, gaze behaviour, head gestures, and utterances for detecting
interactions. Yu et al. (2009) proposed a multimodal approach and
used support vector machine (SVM), Bayesian Network, Naive
Bayes, and decision tree for interaction recognition to infer human
semantic interactions in meeting discussions. Kipp (2001) pro-
posed a widely used video annotation tool that allows user-
defined hierarchical layers and attributes.

Several research works were proposed to discover patterns in
human behaviours. Magnusson (2000) contributed in discovering
hidden time patterns in behaviour. Later, Morita et al. (2005) proposed
a pattern mining method for interpretation of interaction by extract-
ing simultaneously occurring patterns of primitive actions such as
gaze and speech. Tomobe and Nagao (2006) worked to extract
discussion flow for knowledge discovery from human activities in
meetings. Yu et al. (2012) proposed a tree based mining method to
discover frequent patterns from human interactions occurred in
meetings where tree was used to model interaction flow in meetings.
But their approach excludes some triggering relations among inter-
actions and also discards participant ranks.

To overcome the shortcomings in the existing approaches, we
propose a new framework and an algorithm for mining frequent
interaction patterns from meeting databases. Moreover, our sub-
stantively new and different contributions beyond our preliminary
conference version (Fariha et al., 2013) include the proposal of a
new framework to define the representation model and mining
backbone more accurately, enhanced motivation, revised and
optimized mining algorithm, scope of real-life applications, rigor-
ous analysis of the mining algorithm with step by step simulation,
and extensive analysis of performance on synthetic and real-life
databases.

3. A novel framework for mining meeting databases

The first step of any mining process is to represent the raw data
in machine readable format using such data structure that pre-
serves the basic structure of the data. In this section, we propose a
novel framework that contains the process towards a complete
weighted directed acyclic graph based representation of the meet-
ings and the idea of representing triggering relation among several
interactions using directed edges.

3.1. Semantic classes of human interactions

In a meeting session, there can be thousands of sentences and
interactions. If we take all human interactions as distinct elements,
then the mining process will be worthless. As semantically similar
sentences often sound different from person to person, it is necessary
to classify all human interactions into some major classes. Some
general classes of human interactions (Yu et al,, 2012) are taken into
account for this framework as stated as follows:

1. PRO: Propose an idea.

2. ASK: Ask for opinion regarding a proposal.

3. POS: Positive opinion towards a proposal.

4. NEG: Negative opinion towards a proposal.

5. ACK: Acknowledgement of another interaction.

6. COM: Comment on another interaction.

7. REQ: Request information regarding an issue.
8. ACC: Accept the proposed idea.

9. REJ: Reject the proposed idea.

When building a model to represent the interaction flow occurred
in meetings, we assign a class label to each interaction with a
labelling function, [: VL, where V denotes the vertex set, each
vertex stands for one single interaction, and L={PRO, ASK, POS,
NEG, ACK, COM, REQ, ACC, REJ}. Table 1 illustrates the idea of
labelling each interaction, occurred in a faculty meeting of a
university, with specific labels.

3.2. Weight assignment of human interactions

In a meeting, various participants can express similar interac-
tions, but not all of them should be counted equally important. If
we only assign a semantic class label to each interaction, the
information regarding the person who initiated the interaction is
lost. As a result, the ACC of a chairman and the ACC of a junior
lecturer will be indistinguishable. To further specify the rank of the
person who initiated the interaction, we incorporate the idea of
assigning a weight to each interaction with a value ranging from
1 to n, inclusive. Standard value of n ranges from 3 to 5, because
having too many distinct weights may lead to poor number of
frequent patterns.

A response from a person having a heavier weight usually
strongly influences the decision making process than that from a
person of a lighter weight. Table 1 shows the result of assigning
weights to each interaction to signify the rank of the person
causing that interaction. Here, for our running example based on
university faculty hierarchy, we fix n=5.

3.3. Triggering relations among human interactions in a meeting

From the perspective of spontaneity, interactions can be
categorized into two types:

1. Triggering interaction: Interactions that cause some other inter-
actions to occur. A triggering interaction can be a spontaneous
interaction or another triggered interaction.

2. Triggered interaction (reactive interaction): Interactions that
occur in the reaction of some other interaction.

Fig. 2 shows the graphical representation of interaction flow
showing labelling of interactions, weight assignment of each
labelled interactions and triggering relations on the meeting
session of Table 1. The solid arrows denote direct triggering
relations, i.e. the triggering interactions that caused immediate
triggering of the triggered interactions. The dashed arrows denote

Table 1
Labelling each interaction with a semantic class label and weight assignment.

Designation Weight Interaction Label

Lecturer A 1 “I think we should start open credit system.” PRO

Professor B 4 “Yes! That's a good idea.” POS

Professor C 4 “But lot's of overheads to be considered.” NEG

Chairman D 5 “What do you think regarding this?” ASK

Assoc. Prof. 3 “Most of the schools are applying this.” CoOM
E

Assoc. Prof. 3 “Yes! We should go for it too.” POS
F

Lecturer G 1 “Like professor C said, it is very complex for our NEG

school.”
Chairman D 5 “Okay! We will start it from next semester!” ACC

106 A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118

“ What do you
Butlot's of

Yes! That's a think regarding

this?

good idea.

Most of the

schools are

Like Professor ¢
said, it is very
complex for our

school.

Fig. 2. Graphical representation of interaction flow occurred in a meeting of Table 1
showing labelling of interactions, weight assignment and triggering relations.

indirect triggering relations, i.e. triggering interactions that influ-
enced the triggered interactions in some way, but not directly.
With approach of Yu et al. (2012), only the edges of solid arrows
would be considered, missing important relations such as C's NEG
opinion triggers G's NEG opinion. Here G answers to D hence the
solid arrow between D and G, but in fact G is also influenced by C
(dashed arrow C-G) and this cannot be captured by a tree but is
worth of interest.

3.4. Weighted DAG based interaction flow model

From Example 1, it is clear that a tree cannot hold all kinds of
triggering relations, because, in a tree, one node can have at most
one parent. This constraint implies that an interaction can be
triggered by at most one interaction. However, many situations
show that one interaction can be triggered or influenced by more
than one interaction. Each triggering interaction can contribute
partially to the triggering event of the triggered interaction. As
(i) interactions only flow in one direction with respect to time, and
(ii) no future interaction can trigger any past interaction, no cycle
can ever occur in the triggering relationship among several
interactions. As a result, DAG is a logical and appropriate choice
for representing interaction flow in meetings. Moreover, to signify
the rank of the participants of a meeting, the notion of assigning
weights to each node of DAG is also integrated in the framework,
i.e. Weighted DAG.

Example 2. Each weighted and labelled node in the weighted DAG
in Fig. 3 denotes an instance of human interactions occurred in a
meeting. In the figure, the PRO—1 node (the number after the
interaction label denotes the weight of the person causing that
interaction) reflects a triggering interaction, which represents a
lecturer proposing an idea spontaneously. The remaining nodes
(POS—4, NEG—4, ASK—5, COM—3, POS—3, NEG—1, ACC-5) reflect
triggered interactions, which occur in response to the triggering
interactions. Directed edges between nodes indicate triggering
relations between the nodes, and the arrows point from the
triggering interaction to the triggered one. Consequently, we
generate a weighted DAG based interaction flow diagram for
modelling meetings.

Besides those triggering relations, our proposed weighted DAG
based representation represents the temporal relations by topo-
logical levels. Here, a collection of vertices of a DAG are said to be
at the same topological level if and only if no vertex within that
topological level is ancestor of any other vertex lying in the same

Fig. 3. Weighted DAG based representation of interaction flow of meeting database
in Table 1 showing both triggering relations and temporal relations.

topological level and all the ancestors of the vertices belong to
previous topological level. Nodes of a certain topological level
appear temporally before nodes of the next/lower level. Within
the same topological level, the node on the left appears temporally
before the node on the right.

Example 3. Fig. 3 shows a sample session of a faculty meeting, in
which a lecturer A (weight=1) proposes an idea. Triggered by A's
proposed idea, a professor B (weight=4) expresses her positive
opinion and then another professor C (weight=4) expresses his
negative opinion towards the proposal. After that, the chairman D
(weight=5) asks others' opinions. Then an associate professor E
(weight=3) comments on C's negative opinion. In response to D's
asking, an associate professor F (weight=3) expresses his positive
opinion, which was also inspired by B's positive opinion. After
that, another lecturer G (weight=1) expresses her negative
opinion in response to D's asking, which was also inspired by
the previous negative opinion of professor C. Finally, based on two
negative opinions from professor C and lecturer G as well as two
positive opinions from professor B and associate professor F,
chairman D (weight=5) accepts A's idea, biased to the interaction
performed by persons of higher rank. Note that, the weighted DAG
in Fig. 3 captures not only single triggering relations but also
interactions triggered by multiple triggering interactions.

Fig. 3 also shows the weighted DAG based representation of
interaction flow of meeting database in Table 1. It is also clear that
the indirect triggering relations in Fig. 2 are now incorporated as
directed edges between nodes in this representation. Note that
representing multiple triggering relations to a single triggered
interaction was previously impossible to represent using tree
based representation.

We define the basic key structures to represent meetings in this
work in Definitions 1-3. Definitions 4 and 12 are basic definitions
for frequency counting of WIFDAGs. Definitions 5-9 define cano-
nical encoding of a WIFDAG, that will be useful for enumeration.
Definitions 10, 11, 13-18 allow to compute frequent patterns while
taking weight into account.

Definition 1 (Session). A session is a unit of a meeting that begins
with a spontaneous interaction and concludes with an interaction
that is not followed by any reactive interaction (Yu et al., 2012).
One single meeting may consist of several sessions.

Definition 2 (Weighted Interaction Flow DAG, WIFDAG). Interac-
tion flow within interactions of a meeting session can be repre-
sented by a weighted and labelled DAG D = (V4, E4, Ly, Wy), where
V4={v1,V2,...,Vn}, a set of n vertices and E; = {eq, €5, ...,en}, a set
of m directed edges. Labelling function L;:V;—L is used to
assign each node wv; to a class label I(v;), where
I(v;) e L= {PRO, ASK, POS, NEG,ACK, COM, REQ,ACC,REJ]}. = Weight
function W, associates each node with a weight Wy(v;),

A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118 107

0 < W(v;) < MaxWeight, where MaxWeight denotes maximum
possible weight of a participant, that carries information regarding
the (absolute or relative) rank of a participant who initiates an
interaction in a meeting. Each edge is a directed connection
between two vertices, i.e. e, = {(v;,v))| 1 <i,j <n;v;,vj e Vy}. Here,
v; denotes the source/origin of the directed edge and v; denotes
the destination of that edge. An edge from v; to v; implies that v;
(directly or indirectly) triggers v;. All DAGs are connected acyclic
graphs and no two DAGs, representing sessions of the same
meeting, are connected to each other. This Weighted Interaction
Flow DAG is called WIFDAG.

Definition 3 (Topological level of a WIFDAG). Given a WIFDAG,
G(Vg,Eg,Lg,Wy), topological level i is defined by a set of
vertices, V;, where Ve;u;,Vv))eEg,vjeVi-ujeViak<i and
VVm € Vi, Ium e Vi1 A em(Um, Vi) € Eg.

Definition 4 (Meeting WIFDAG database DB). Meeting WIFDAG
database, denoted by DB, consists of several WIFDAGs.
DB = {G1,G,,Gs3, ...,Gy,}, where each G; stands for a specific WIF-
DAG, representing a meeting session. Size of DB is denoted by | DB|
and stands for the number of WIFDAGs that DB contains.

Definition 5 (Induced sub-WIFDAG and super-WIFDAG). Consider
two WIFDAGs S = (Vs,Es,Ls, Ws) and T=(V,E;, L, W). S is an
induced sub-WIFDAG or sub-WIFDAG of T, if there exists an
injective homomorphism y : S—T such as: (i) for two vertices
vseVs and vieV, such that w(vs)=v;, Ls(vs)=L(v¢) and
W(vs) = Wi(vy); (ii) for each directed edge, (us, vs) € Es, there exists
a directed edge from w(us) to w(vs). Conversely, T is a super-WIFDAG
of S.

Definition 6 (Node insertion/traversal signature in WIFDAG). Inser-
tion/traversal of each node n in a WIFDAG D = (V4,E4, Ly, W4) can
be expressed with a 7-tuple (NE, L{, W1,11,L,, W>, I,), where NE=0
for node insertion. L; =0,W; =0,I; =0 for node insertion. L, =
index of (L(n)), W, =Wy (n) and I, = index of n. Index of label
denotes the position of that label in L, the set of all possible labels,
starting from 1; index of n denotes the insertion order of n,
starting from 1. Earlier the node is inserted or traversed, less the
index will be. For example, if a node is inserted first in a WIFDAG,
it has a label NEG with label index 4 and the person who caused
this interaction is assigned a weight of 3, then the signature for
this node will be (0,0,0,0,4,3,1). Fig. 4 denotes the indices for
each class label I e L.

Definition 7 (Edge insertion/traversal signature in WIFDAG). Inser-
tion/traversal of each edge e=(v,vj)) in a WIFDAG
D=(V4,Eq, Ly, Wy) can also be expressed with a 7-tuple
(NE,L{,W1,11,Ly,W5,1I), where NE=1 for edge insertion. L; =
index of (L(v;)), W; = Wy(v;) and I; = index of v;, [, = index of

PRO
ASK
POS
NEG
ACK
CcOM
REQ
ACC
REJ

O 0 N O U B W N -

Fig. 4. Label index table.

(L(vj)), W5 = Wy(v;) and I, = index of v;. Node and edge insertion
signatures of the WIFDAG of Fig. 5 can be found, sorted according
to the time stamp they were inserted, at the bottom of the figure.
ith element of an insertion signature S is denoted by S(i).

Definition 8 (Canonical description of WIFDAG). Canonical
description of WIFDAG states the order of insertion or traversal
of nodes and edges to a WIFDAG. It is a list of ordered insertion
signatures of nodes and edges according to insertion time stamp.
Fig. 5 illustrates the idea of canonical description precisely.
Insertion signature at time stamp i of a canonical description C
can be denoted using IS(C,i).

Definition 9 (Canonical WIFDAG fragment). A WIFDAG fragment is
a canonical WIFDAG fragment if there is no insertion order of
nodes and edges with a bigger canonical description. All other
WIFDAG fragments, isomorphic to the canonical WIFDAG frag-
ment, are called duplicate WIFDAG fragments. A canonical descrip-
tion C is bigger than another canonical description C” if there exists
a time stamp i such that IS(C,i) > IS(C',i) and IS(C, k) = IS(C', k) for
all k <i. An insertion signature S is bigger than another insertion
signature S’ if there exists a number i such that S(i) > S'(i) and
S(ky=S'(k) for all k<i. For example, in Fig. 5, let us name the
WIFDAG shown as G, where the node labelled ACC (insertion time
stamp 1) was inserted before the node labelled NEG (insertion
time stamp 2). If the later node (NEG) was inserted earlier, we can
produce another isomorphic WIFDAG, G, and the canonical
description of G' is (0,0,0,0,4,4,1), (0,0,0,0,8,2,2), (1,4,4,1,8,2,2),
(0,0,0,0,2,3,3), (1,23,3,8,22), (0000154) (11544471),
(11,542,3,3). We can see that, IS(G,1)>IS(G,1), because,
IS(G,1)(5) > IS(G',1)(5), as 8 > 4. It can be shown that, among
all other possible node and edge insertion order to generate the
same WIFDAG shown in Fig. 5, the one shown in the figure holds
the biggest canonical description and hence, is the canonical
WIFDAG fragment.

Definition 10 (Canonical form of WIFDAG). For a WIFDAG frag-
ment, D, there exists another WIFDAG fragment, I such that, I is
isomorphic to D and Ip is a canonical WIFDAG fragment. The
canonical description of Ip is the canonical form of D. The
canonical form is unique for all duplicate isomorphic WIFDAGs.
If the canonical description of a WIFDAG fragment is not equal to

Canonical Description :

(0,0,0,0,8,2,1), (0,0,0,0,4,4,2), (1,4,4,2,8,2,1),
(0,0,0,0,2,3,3), (1,2,3,3,8,2,1), (0,0,0,0,1,5,4),
(1,1,5,4,4,4,2), (1,1,5,4,2,3,3)

Fig. 5. Canonical description of a sample WIFDAG.

108 A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118

its canonical form, then we discard that duplicate WIFDAG frag-
ment for further consideration.

Definition 11 (Absolute weight of a WIFDAG, Weight). For a WIF-
DAG, D= (V4,E4, Ly, W,), the absolute weight or weight of D is
defined as follows:

Zv eVy Wd(v)

Weight(D) = V]

M

Definition 12 (Normalized weight of a WIFDAG, N-Weight). As
same absolute weight can possess different significance in differ-
ent scenarios, we use normalized weight of a WIFDAG, N-Weight
to transform the absolute weight of that WIFDAG to a real value
ranging from O to 1, inclusive. For normalization, we define
MaxWeight as the maximum possible weight for an individual
node for that scenario. For a WIFDAG, D = (V4,E4, Ly, W), the N-
Weight of D is defined as follows:

Weight(D)
MaxWeight

Fig. 6 illustrates the calculation of absolute and normalized weight
of a WIFDAG.

N-Weight(D) = 2)

Definition 13 (Support Sup). Given (i) a sub-WIFDAG D’ and (ii) a
database DB, the support, Sup of D’ (usually expressed in percen-
tage) is defined by the following equation:

Super-WIFDAGs of D’

Sup(D') = DB

3

Definition 14 (Weighted support, W-Sup). Given a sub-WIFDAG D',
the weighted support, W-Sup of D’ is defined by the following
equation:

W-Sup(D) = Sup(D’) x N-Weight(D') 4)
Weighted support is also usually expressed in percentage.

Definition 15 (Minimum weighted support, Min-WSup). For
mining a WIFDAG database, a specific threshold is defined for
weighted support and is called minimum weighted support, Min-
WSup. It is worthy to note that, as highest normalized weight of a
WIFDAG can be at most 1, some WIFDAG fragments might be
frequently having low normalized weight. These WIFDAG frag-

Absolute weight = (1+2+4+5)/4 = 3.0
Normalized weight =3/5=0.6

Fig. 6. Calculation of absolute weight and normalized weight of a WIFDAG.

ments result into lower weighted support than its original sup-
port. As a result, Min-WSup must be defined a bit lower than
minimum support to get the desired result in frequent patterns.
We can calculate Min-WSup by multiplying minimum support
with average N-Weight of WIFDAGs in the database.

Definition 16 (Frequent WIFDAG patterns). WIFDAGs, having
weighted support greater than or equal to the user-specific
minimum weighted support threshold Min-WSup are considered
frequent WIFDAG patterns.

Definition 17 (Semi-frequent WIFDAG patterns). Given (i) a WIF-
DAG fragment D, (ii) maximum possible number of nodes in a
frequent WIFDAG N, (iii) minimum weighted support Min-WSup,
maximum possible weighted support, MPWS(D) is defined as
follows:

N-Weight(D) x | D| +(N-|D|)

N
xSup(D) (5)

MPWS(D) =

D is called semi-frequent WIFDAG pattern if the following condi-
tions hold:

W-Sup(D) < Min-WSup. (6)

MPWS(D) > Min-WSup. (7)

Definition 18 (Infrequent WIFDAG patterns). Given (i) a WIFDAG
fragment D and (ii) minimum weighted support Min-WSup, D is
called infrequent WIFDAG pattern if the following two conditions
hold:

W-Sup(D) < Min-WSup. 3)

MPWS(D) < Min-WSup.)

Property 1. WIFDAG can represent indirect triggering relations
where tree-based method fails.

Discussion. As tree does not allow multiple parent of a node, if we
consider that tree can represent multiple triggering relations, we
have to assume indirect triggering relations are propagated
through levels, i.e. a node indirectly triggers all of its descendants
except its direct children (a node triggers its children directly).
Example 4 provides a scenario that explains the failure of tree-
based method (Yu et al.,, 2012) in distinguishing different cases of
multiple triggering relations and how using WIFDAG can
overcome this.

Example 4. Consider a small meeting snapshot in Fig. 7(a). Tree
based method will represent the meeting as in Fig. 7(b) and
WIFDAG based proposed framework will represent as in Fig. 7(c).
Now let us consider another small meeting snapshot in Fig. 8(a).
Tree based method will represent the meeting as in Fig. 8(b) and
WIFDAG based proposed framework will represent as in Fig. 7(c).

In Fig. 8(a), lecturer C opposes only the idea of “Robotics” lab, he
does not oppose the idea of a “New Lab” (interaction by professor A).
Hence, lecturer C only expresses NEG opinion in response to the POS

b c ©

=)

Desig
1 Professor A 4 Let’sstart a new Lab PRO
2 Lecturer B 1 Yes, the lab should be about POS @
robotics.
3 Lecturer C 1 Robotics is not good, | think | NEG
bioinformatics is a good field
of study now-a-days. @

=

Fig. 7. Representing a meeting snapshot using both tree and WIFDAG. (a) A sample meeting. (b) Representation of meeting in (a) using tree. (c) Representation of meeting in

(a) using WIFDAG.

A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118 109

"

C
=0

D
Professor A 4 Let’sstarta new Lab PRO
2 Lecturer B 1 Yes, the lab should be about
robotics.
3 Lecturer C 1 No, | don’t think any new lab will NEG

aboutrobotics.

be good for robotics, there
should just be a few courses

POS @ @ IE'

OR= O

Fig. 8. Representing another meeting snapshot using both tree and WIFDAG. (a) A sample meeting. (b) Representation of meeting in (a) using tree. (c) Representation of

meeting in (a) using WIFDAG.

opinion of lecturer B. Please note that, lecturer C was not influenced
by professor A in the meeting in Fig. 7(a), that is why both the tree in
Fig. 7(b) and the WIFDAG in Fig. 7(c) representations are similar for
that meeting. Also note that, the PRO—4 node does not trigger
NEG-1 node indirectly. If tree representation was interpreted in a
way such that a node indirectly triggers all of its descendants, then
the interpretation would have been wrong, because there is no
indirect triggering relationship from PRO—4 node to NEG—1 node.

On the other hand, let us have a look at Fig. 8(a). In this case,
lecturer C opposes the idea of “New Robotics Lab”. Here, lecturer C
opposes both the ideas of professor A (“New Lab”) and lecturer B
(“Robotics Lab”). Hence, lecturer C is influenced by both professor A
and lecturer B. As tree does not support multiple parents, it would
represent this meeting the same way it represented the meeting in
Fig. 7(a), which obviously illustrates the limitation of tree models to
distinguish between cases where there is an indirect relation (for
later scenario in Fig. 8(a)) and where there is no indirect triggering
relation (for former scenario in Fig. 7(a)). But if we represent the
meeting of Fig. 8(a) using WIFDAG (shown in Fig. 8(c)), both PRO—4
and POS—1 nodes have triggering relations to NEG—1 node, which
leads to the correct interpretation.

It is clear that, although the two meetings in Fig. 7(a) and Fig. 8(b) are
different, their tree based representations are same while WIFDAG based
representations differ. So it is clearly shown that the tree fails to
distinguish between certain scenarios where WIFDAG succeeds. In
summary, trees cannot distinguish between cases where a predecessor
node indirectly triggers a node and where it does not, but, a WIFDAG can
distinguish these two cases by explicitly adding triggering edges where
necessary.

Property 2. The definition of W-Sup includes more interesting semi-
frequent patterns.

Proof. The definition of W-Sup allows us to discover frequent
WIFDAG fragments containing nodes that may not occur too
frequently but are associated with heavy weights. This property
of weighted support allows us to mine more significant WIFDAG
fragments where excluding less significant WIFDAG fragments.
Example 5 explains the reason to choose weighted support of a
WIFDAG fragment rather than support for the mining process to
find frequent WIFDAG fragments. o

Example 5. Consider a sample WIFDAG database DB, consisting of
7 WIFDAGs, DB={D¢,D,,....D;} shown in Fig. 9. Here, Min-
WSup=36%. In the first three sessions, associate professor A
(weight=4) proposes ideas (PRO), and each of them are rejected
(REJ) by professor B (weight=5). In the last 4 sessions, lecturer C
(weight=1) makes comments (COM), and each of them triggers
lecturer F's (weight=1) comments (COM). Here, the frequency of
the pattern “A proposes an idea, which is rejected by B” is 3; the
frequency of another pattern “C makes a comment, which is
commented by F’ is 4. Between them, the first pattern is more
interesting than the second one because interactions between
persons of higher rank (i.e. heavier weights) are usually more
important and useful in analysing decision-making meetings even
when the frequency of these interactions is not too high. Although

PRO-4 node is not frequent, but it has MPWS > Min-WSup. As a
result, it is considered for further expansion and marked as a semi-
frequent pattern. This pattern later generates a frequent pattern.
On the other hand COM-1 node has MPWS < Min-WSup and is
marked as an infrequent pattern. We can safely discard it for
further consideration, because, it cannot result into a frequent
pattern even when it is expanded by the maximum weighted node
in any future iteration. The calculation of support, weighted
support and finding frequent WIFDAG fragments is shown in
Fig. 9.

Definition 19 (Mining frequent interaction patterns from meeting
WIFDAG database). Given (i) a meeting WIFDAG database DB,
consisting of WIFDAGs of sessions of several meetings, (ii) a
user-specific minimum weighted support threshold, Min-WSup,
the problem of mining frequent interaction patterns is to discover
from DB every frequent WIFDAG fragments, i.e. every sub-WIFDAG
D’ such that W-Sup(D’) > Min-WSup. In this paper, we have used
the terms “frequent interaction pattern” and “interaction pattern”
interchangeably.

The provided novel framework in this section serves as the
structure for developing algorithms for mining frequent interac-
tion patterns from meeting databases.

4. WDAGMeet - an algorithm for mining frequent interaction
patterns from meetings

For mining frequent interaction patterns from Weighted DAG
based Meeting databases, a new algorithm WDAGMeet is proposed
in this section.

4.1. Expansion rules

WDAGMeet algorithm discovers frequent interaction pat-
terns in the form of frequent sub-WIFDAGs from WIFDAG DB
by first generating a set of all frequent nodes in DB. It then
expands these nodes (i.e. singleton sub-WIFDAGs) using the
four expansion rules topologically. These expansion rules are
described in detail below.

New root: New root expansion rule can only be applied if the
current WIFDAG fragment has nodes inserted only in its first
topological level. This rule is applied recursively by inserting new
root nodes, with no edge attached to it, to the current (level 1)
topological level of the WIFDAG fragment. Duplicates are avoided
by defining an order according to insertion signature.

New level: A new topological level is introduced with the
insertion of a new node into that level and the insertion of an
edge from a node in the previous topological level. The insertion of
the edge is necessary to ensure that a new topological level is
introduced. Insertion signature order constraint is also applied in
new level expansion rule. Fig. 10(a) explains the new level
expansion rule by introducing a new level to a WIFDAG that was
created using new root expansion rule.

110 A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118

MaxWeight=5
Weight = (1+1)/2=1
N-Weight=1/5=0.2

Sup=4/7= 57.1%
W-Sup = 4X0.2/7=11.4% < Min_WSup

Infrequent WIFDAG Pattern

MaxWeight=5
Weight=(1)/1=1
N-Weight=1/5=0.2
N=2

Sup=4/7= 57.1%

W-Sup =4X0.2/7 = 11.4% < Min_WSup

MPWS = ((0.2X1 + (2-1))/2)X57.1%
=34.3% < Min_WSup

MaxWeight=5
Weight = (5+4)/2 = 4.5
N-Weight =4.5/5=0.9

Sup=3/7= 42.9%
W-Sup =3X0.9/7
=38.6% > Min_WSup

Frequent WIFDAG Pattern

Semi-frequent WIFDAG Pattern

N-Weight = 4/5 = 0.8

N=2

Sup=3/7= 42.9%

W-Sup =3X0.8/7 = 34.3% < Min_WSup

MPWS = ((0.8X1 + (2-1))/2)X42.9%
=38.6% > Min_WSup

/‘ MaxWeight=5
Weight = (4)/1=4

Fig. 9. Significance of the property of weighted support.

Expansion Rule:
New Root

Expansion Rule: New Level

H Expansion Rule: New Node ﬂ

Expansion Rule: New Edge

Fig. 10. Expansion rules. (a) New root and new level expansion rule. (b) New node expansion rule. (c) New edge expansion rule.

New node: This expansion rule allows the insertion of a new
node to the current topological level. For the same topological
level, nodes must be inserted (along with a connecting edge
from previous topological level) according to insertion signa-
ture order constraint, i.e. the node that will have the highest
insertion signature, after inserting as a new node, among all
the candidate nodes, will be picked first. Fig. 10(b) explains the
new node expansion rule with the insertion of two new nodes
in the same topological level to the WIFDAG fragment of
Fig. 10(a).

New edge: This expansion rule allows inserting a new edge
from a previously inserted node to the most recently inserted
node. The destination node of this edge must be the latest inserted
node. This expansion rule is lack of the property of not generating
duplicate fragments. Fig. 10(c) explains the new edge expansion
rule with the insertion of a new edge to the latest inserted node
from Fig. 10(b).

4.2. The mining process of WDAGMeet algorithm

WDAGMeet first identifies frequent and semi-frequent
weighted nodes from the given WIFDAG database. After construct-
ing the initial frequent node set, the expansion rules are applied
recursively in depth first order to generate new frequent WIFDAG
patterns.

The pseudo code provided in Algorithm 1 illustrates the steps
of WDAGMeet mining algorithm. Note that, WDAGMeet algorithm
only inserts frequent connected WIFDAGs to the resulting frequent
pattern set. The disconnected fragments are used as input to
expansion rules for further processing. The algorithm repeatedly
generates new candidate patterns using above expansion process
until any new expansion is impossible. Also note that, the non-
canonical fragments are pruned from the candidate set and are not
checked for the possibility of them being frequent or semi-
frequent to avoid generating duplicate frequent patterns.

A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118 111

Input
Min-WSup

Modules:

(3

begin

tempPatterns <— F'

tempPatterns < tempPatterns U SF

while tempPatterns # () do

end 0

currentFP < ()

currentSemiF P < ()

foreach f € tempPatterns do

end <+ end U expandWithRoots(DB, f)

end <+ end U expandWithNewLevel (DB, f)
end <+ end U expandWithNewNode(DB, f)
end +— end U expandWithNewFEdge(DB, f)
end

foreach f € cnd do

else if IsFrequent(DB, f, Min-WSup) then
if IsConnected(f)) then

| F=FUFf
end
currentF'P < currentF'P U f
end

o

if IsConnected(f)) then

| SF=SFUf
end
currentSemiF P < currentSemiF P U f
end
end
tempPatterns < currentF P U currentSemiF P
end
end

: (1) Meeting database of WIFDAGs, DB (2) User defined minimum weighted support threshold,
Output: A set of frequent WIFDAG interaction patterns, F'

(1) CanonicalForm(f) - Returns the canonical form of fragment f
(2) CanoncialDescription(f) - Returns the canonical description of fragment f
) IsInfrequent(DB, f , Min-WSup) - Returns whether fragment f is infrequent in DB w.r.t Min-WSup
(4) IsFrequent(DB, f , Min-WSup) - Returns whether fragment f is infrequent in DB w.r.t Min-WSup
(5) IsSemiFrequent(DB, f , Min-WSup) - Returns whether fragment f is semi frequent in DB w.r.t Min-WSup
(6) IsConnected(f) - Returns whether fragment f is connected WIFDAG or not

F <+ all the frequent weighted nodes in all the WIFDAGs in DB
SF <« all the semi-frequent weighted nodes in all the WIFDAGs in DB

if CanonicalForm(f) # CanoncialDescription(f) then

| end=cnd— f

end

else if IsInfrequent(DB, f, Min-WSup) then
| end=cnd—f

end

Ise if IsSemiFrequent((DB, f, Min-WSup) then

Algorithm 1. WDAGMeet mining algorithm.

One important observation on the WDAGMeet algorithm is
that, when the patterns are expanded, it adds not only frequent
nodes but also semi-frequent nodes. The reason is that, the
expansion rules do not satisfy the anti-monotone property: A
pattern f may not be frequent because of low average-weight of
the nodes contained in it, but connecting some nodes (of heavier
weight and high support) can make f frequent. To overcome this
problem we have introduced the idea of semi-frequent WIFDAG
patterns and kept a clear distinction between the semi-frequent
and infrequent patterns. We have discarded the infrequent pat-
terns from further expansion as an infrequent pattern can never be
frequent (see Lemma 1). We have kept into consideration only the

frequent and semi-frequent patterns for further expansion to
generate new candidate patterns.

Another important observation is, while expanding a node A,
with another node B, we can check if it is possible for B to occur
after A (A triggers B) according to the WIFDAG DB. If this expansion
is not possible, we can skip expanding A with B.

Lemma 1. Any infrequent WIFDAG fragment in any step of the
WDAGMeet algorithm can never result into a frequent WIFDAG
fragment with applying expansion rules.

Proof. By the definition of infrequent WIFDAG patterns in
Definition 18, the conditions in Eqs. (8) and (9) must hold. For
an infrequent WIFDAG pattern f, by Eq. (8), f is not frequent, as

112 A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118

W-Sup(f) < Min-WSup (without applying any expansion rule).
Suppose we have added new P nodes, where P+|f] <N (N
denotes an assumption about the maximum number of nodes in
any frequent WIFDAG), to f using expansion rules and resulted into
a new WIFDAG, f'. In best case, all of the newly inserted nodes can
carry maximum weight and have normalized weight=1. More-
over, in best case, after inserting P new nodes, f* can have support
as much as f, i.e. Sup(f’) < Sup(f). This condition holds due to the
anti-monotone property, that a fragment must have support less
than or equal to any of its sub-fragment in general graph mining
(unweighted). Now, we calculate the weighted support of f* as
follows:

N-Weight(f) x |f| +P x 1

W-Sup(f’) = P+ 1] x Sup(f) (10)
From Eq. (9), we can say that
N-Weight(f) x IfI1 +(N=1fD) _ 615y < Min-WSup. a1

N
Since, P+ |f| <N, so, P<N—|f|. So from Eq. (11) we can say that
N-Weight(f) x |f] +P x 1

P if] x Sup(f) < Min-WSup. 12)
From Eqgs. (10) and (12),
W-Sup(f') < Min-WSup. (13)

So, f’ can never be frequent. O

4.3. Illustrative example

In this section, we will perform WDAGMeet mining algorithm
on a sample meeting. Let us consider some snapshots of meeting
sessions of Table 2 occurred in a faculty meeting. The weight of
each interaction is assigned according to the rank of the person
causing that interaction. In this example, the chairman is assigned
a weight of 5, professor - 4, associate professor — 3 and lecturer —
1. So, MaxWeight=5.

Seven persons participated in these meeting sessions; chair-
man, two professors, two associate professors and two lecturers.
We will denote C for chairman, P; for ith professor, AP; for ith
associate professor and L; for ith lecturer. The corresponding
WIFDAG representation of these sessions are shown in Fig. 11.
The triggering relations are taken from the intention of interac-
tions. Note that, this representation includes many indirect trig-
gering relations, those were absent in tree based representation.

This representation also reflects the weights of each participant
of the meeting. For mining frequent WIFDAG patterns from the
meeting database in Fig. 11, we have defined minimum
support=60%. As Min-WSup must be less than minimum support,
for mining significant patterns efficiently, we have multiplied the
minimum support with average normalized weight of nodes (0.6)
occurred in the meeting database to derive Min-WSup. So,

Table 2
Snapshots of three meeting sessions.

calculation of Min-WSup (in percentage) is shown in the following
equation:

Min-WSup = Min-Sup x AvgNormalizedWeight = 60%
x0.6 =36% (14)

Since number of graphs in the database=3, so Min-WSup
Count=3 x 36%=1.08. We have also assumed that maximum
number of nodes in a frequent graph can be as much as 6. We
have used label index of each label according to the order PRO,
ASK, POS, NEG, COM, ACC, RE] for generating insertion signature, i.e.
PRO has label index 7 and REJ has 1.

The first step of the mining process in WDAGMeet algorithm,
i.e. mining frequent nodes, is shown in Fig. 13. Their support,
normalized weight, minimum support and maximum possible W-
Sup are also shown. We have compared the weighted support and
maximum possible weighted support with Min-WSup and deter-
mined whether the node is frequent/semi-frequent/infrequent
using the modules IsFrequent(), IsSemiFrequent() and IsInfre-
quent(). We can see that 6 nodes are frequent and 2 nodes are
semi-frequent. As Lemma 1 shows, infrequent nodes can be safely
discarded in further expansion rules.

Next, we proceed to apply expansion rules on the found single
node WIFDAG patterns. We have taken the frequent pattern
containing the node labelled POS having weight=4. New root
expansion and new level expansion of POS—4 are shown in Figs. 14
and 15, respectively. 4 temporary frequent patterns and 1 tempor-
ary semi-frequent pattern are found in the new root expansion,
where 2 frequent patterns are found in new level expansion.

Similarly all other single nodes those are frequent or semi
frequent, will be expanded using two expansion rules - new root
and new level. Next, we have shown three expansion rules on a
fragment consisting of two nodes, one as root (POS—4), and
another node triggered by the root, residing in the second
topological level (POS—3). The new root expansion rule is not
applicable to this fragment. Other three rules, new level, new node
and new edge expansion rules are applicable to the fragment. The
result of all possible new node expansions is shown in Fig. 12. The
result of applying new level expansion that finds a frequent
pattern is shown in Fig. 16(a). The result of applying the new edge
expansion on the frequent WIFDAG found in Fig. 16(a) is shown in
Fig. 16(b) and another frequent pattern is found after this expan-
sion. The step by step generation of the frequent WIFDAG found in
Fig. 16(b) by applying various expansion rules is shown in Fig. 17.
While generating new patterns, we have checked for duplicity
using the modules CanonicalForm() and CanoncialDescription().

Fig. 18 shows how new WIFDAG patterns are generated by
applying various expansion rules on the existing frequent/semi-
frequent WIFDAG patterns. Note that, in Fig. 18, the last pattern is a
frequent pattern, which was not mined in previously shown tree
based meeting mining. Thus, it is clear that, mining in WDAGMeet
algorithm results into some interesting frequent patterns that tree
based meeting mining used to miss.

Session 1 Session 2 Session 3

Time stamp Desig. Weight Int. label Time stamp Desig. Weight Int. label Time stamp Desig. Weight Int. label
1 Ly 1 PRO 9 Ly 1 PRO 17 AP, 3 PRO

2 Py 4 POS 10 Py 4 POS 18 AP, 3 POS

3 P, 4 NEG 1 AP, 3 POS 19 L, 1 POS

4 C 5 ASK 12 P2 4 NEG 20 Ly 1 POS

5 AP, 3 COM 13 C 5 ASK 21 C 5 NEG

6 AP, 3 POS 14 L, 1 NEG 22 C 5 ASK

7 L, 1 NEG 15 AP, 3 COM 23 Py 4 NEG

8 C 5 ACC 16 C 5 ACC 24 C 5 REJ

A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118

Fig. 11. WIFDAG based representation of meeting sessions of Table 2.

Fig. 12. New node expansion.

WIFDAG Support Normalized Weighted

Maximum
Weight Support Possible W-Sup

Frequent?

Semi-

Frequent?

Support Normalized Weighted Maximum Frequent? Semi- Infrequent
Weight Support Possible W-Sup. Frequent?
0 067 O 0 No | No | Yes
=2 Q) =2 Q)
o)
0 073 O 0 No | No | Yes
=G =0
= Q)
) =) 0 053 0 0 No | No | Yes
o)
0 067 O 0 No | No | Yes

Infrequent

?

Fig. 13. Single node frequency table along with their support, normalized weight,
weighted support, maximum possible W-Sup and whether they are frequent, semi-

frequent or infrequent.

WIFDAG Support Normalized Weighted ~ Maximum Frequent? Semi- Infrequent
Weight Support PossibleW-Sup Frequent? ?

S0 05 00 o mo ve

=O =0 2 05 10 16 No v Mo

113

Fig. 14. New root expansion on POS-4 node.

WIFDAG Support Normalized Weighted =~ Maximum Frequent? Semi- Infrequent
Weight Support PossibleW-Sup Frequent?

o)

0 0.5 0 0 No No Yes
= &)

0 0.9 0 0 No No Yes
=)
=G0

0 0.8 0 0 No No Yes

Fig. 15. New level expansion on POS-4 node.

114 A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118

5. Evaluation results

To evaluate the performance of the proposed WDAGMeet
mining algorithm, we have performed extensive experiments on
synthetic datasets, semi-real dataset and real dataset. Each dataset
contains a description of (i) the meeting sessions captured in
WIFDAGs, (ii) labelled interactions with their corresponding
weights, and (iii) triggering relations (i.e. directed edges of the
WIFDAG). We have used a weight function to map each interaction
to an integer value ranging from 1 to 5, inclusive. We have used
nine interaction labels to label interactions occurred in meeting
sessions. An ordered pair, denoting the interaction indices, was
used to describe each directed edge in WIFDAG. The former
interaction in the ordered pair is the triggering interaction and

a

WIFDAG

Support Normalized Weighted Maximum Frequent? Semi-
Weight Support Possible W-Sup

Infrequent]
Frequent? ?

the later interaction is triggered interaction. Experiments were run
using an Intel Core i5 2.50 GHz machine with 2.94 GB of RAM and
32 bit 0OS (Windows 7). The algorithm was implemented in C+ +.
Used compiler and editor was Microsoft Visual C+ + 6.0.

To demonstrate the real-life significances of our approach in
different scenarios and to present a fair comparison of the existing
tree-based meeting mining approach (Yu et al., 2012), two additional
variations, called WDAGMeet* and WDAGMeet' have been shown.
Discarding the weight feature of interactions in WDAGMeet results
into WDAGMeet™* and WDAGMeet' is another variation of WDAGMeet
that is suitable for testing on weighted tree database. Note that, in
WDAGMeet', new root expansion and new edge expansion are
excluded while patterns are expanded, because a tree can neither
contain multiple root nor more than one edge connecting a node

WIFDAG Support Normalized Weighted ~Maximum Frequent? Semi- _Infrequent]

Weight Support PossibleW-Sup Frequent? ?

Fig. 16. Results of applying (a) new level expansion and (b) new edge expansion.

Expansion by new Ievelk
|

W-Sup=1.6

Fig. 17. Step-by-step WIFDAG generation by applying various expansion rules to POS-4 node.

Expansion by

Expansion by

Expansion by

Expansion by
new node

EORECLEE

Expansion by
new level

Expansion by
new node

EOECEE

Eos) (i) o)

Expansion by
new level

Fig. 18. Step-by-step WIFDAG generation by applying various expansion rules to ASK-5 node.

A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118 115

from nodes residing in earlier topological levels. We have converted
the weighted DAG database to weighted tree database by removing
all forward and cross edges.

5.1. Performance on synthetic datasets

We have generated synthetic datasets to simulate real meeting
scenarios. Table 3 shows the number of frequent patterns mined
from a synthetic meeting dataset, WD10, consisting of 10 meeting
sessions, and elapsed time comparison between WDAGMeet and
WDAGMeet”. WD10 contains 142 vertices, 132 edges in tree based
representation and 708 edges in WIFDAG based representation.
Table 4 shows similar comparison for tree database representation
of another synthetic meeting dataset, WD37, containing 37 meet-
ing sessions, performed by WDAGMeet' and tree based meeting
mining method. WD37 contains 1117 vertices, 1080 edges in tree
based representation and 10672 edges in WIFDAG based
representation.

It is clear from Tables 3 and 4 that when node weights are
taken into account, number of mined frequent patterns becomes
lesser and those patterns are the more interesting patterns.
Elapsed time is also lower for weight based version for both
WIFDAG and tree databases. Also, observe that, as the number of
frequent patterns increases the required time to discover these
frequent patterns also increases.

5.2. Performance on a converted real-life dataset

Now we present experimental result based on converted real-
life dataset. We have downloaded Hayes Roth dataset from UCI

Table 3
Comparison between WDAGMeet and WDAGMeet* on WD10 dataset.

Min-Sup (%) Number of frequent patterns Elapsed time (s)
WDAGMeet WDAGMeet* WDAGMeet ~ WDAGMeet*
90 0 3 0.352 0.762
85 0 3 0.328 0.801
80 1 5 0.973 2.283
75 1 5 0.721 2314
70 1 6 0.729 4.628
65 2 6 1.304 4.146
60 2 12 2.790 8.414
55 2 12 3.000 8.727
50 7 24 3.524 23.616
45 7 24 7.236 23.425
40 12 63 8.074 128.388
35 12 63 8.136 128.729
30 19 579 111131 1881.267
Table 4

Comparison between WDAGMeet' and tree based method on WD37 dataset.

Min-Sup (%) Number of frequent patterns Elapsed time (s)
WDAGMeet’ Tree based WDAGMeet' Tree based

90 7 9 21.025 46.594
85 7 12 21.325 50.669
80 9 13 21.594 117.591
75 9 13 23.245 118.883
70 9 15 26.511 235.456
65 9 16 30.731 303.972
60 10 19 31.166 413.089
55 11 27 32314 744.599
50 12 36 32.824 1597.951

machine learning repository (Bache and Lichman, 2013). This
dataset was adjusted by converting the attribute values to suit
our required format and generate HayesRoth*. The dataset con-
tained education, class, hobby, age and marital status information.
We have calculated weight of interaction=1 + (education -+
class) mod 5, label of interaction=(hobby + age + marital status).
Edges (interaction triggering relations) were randomly generated.
We have segmented the dataset to produce 14 different meeting
sessions. Average number of interaction per session was 9.07. The
dataset contains 127 vertices, 113 edges in tree based representa-
tion and 294 edges in WIFDAG based representation. Table 5
shows comparison between WDAGMeet and WDAGMeet” based
on number of mined frequent patterns and Fig. 19 reflects the
required time to mine patterns for both the algorithms. It can be
easily observed that WDAGMeet mines lesser number of patterns
in much less time than WDAGMeet®,

5.3. Performance on a real-life meeting dataset

This dataset is collected from academic meeting sessions held
in the Department of Computer Science and Engineering,
University of Dhaka and is named CSEDU5 dataset.

All faculty members of the department participated in this
meeting for taking a decision regarding the MS thesis marking
strategy. We have included 5 meeting sessions and on an average,
each session contains 12 interactions. The dataset contains 60
vertices, 55 edges in tree based representation and 91 edges in
WIFDAG based representation. Figs. 20 and 21 represent perfor-
mance comparison between WDAGMeet and WDAGMeet* with
respect to number of mined patterns and elapsed time for various
minimum supports for the real dataset respectively.

Figs. 22 and 23 represent performance comparison between
WDAGMeet' and tree based method with respect to number of
mined patterns and elapsed time for various minimum supports for
the real dataset respectively. It is clear from the figures that
algorithms that consider weights of interactions outperform the
algorithms that discard interaction weights in terms of both number
of mined patterns and elapsed time for both DAG and tree databases.

5.4. Comparison between WDAGMeet and the existing tree-based
meeting mining method (Yu et al., 2012)

We have already shown some comparisons between WDAGMeet
and the existing tree-based meeting mining method in the previous
subsections. In this subsection, we thoroughly analyse their perfor-
mances; discover the reasons and show a direction to select a particular
variation of our approach by explaining when it is more useful
compared to the existing approach. There are a number of advantages
of WDAGMeet over the existing tree based meeting mining.

First, the tree based method misses some important frequent
patterns because it does not capture all triggering relations. As
illustrated in Fig. 24, only one triggering relation is captured in the
tree database for each triggered interaction. For instance, the tree
captures the interaction ASK triggered by PRO but misses the one
triggered by POS. As such, the tree based method does not generate
the pattern POS-ASK-NEG as these three nodes are not directly
connected in the tree. In fact, fragments containing siblings or
ancestor's siblings of a node might not be connected without the
presence of their common ancestor in a tree. Hence, if the common
ancestor is not frequent, the tree mining method fails to mine such
fragments as a frequent pattern. In contrast, being internally con-
nected with partial triggering relations, WDAGMeet discovers this
kind of frequent interaction patterns such as POS-ASK-NEG in the
above example. This kind of frequent patterns reveals highly corre-
lated interactions. However, if all the frequent DAG patterns are

116 A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118

Table 5

Comparison between WDAGMeet and WDAGMeet” with respect to number of mined frequent patterns on HayesRoths

dataset.

Min-Sup (%)

Number of frequent patterns

WDAGMeet WDAGMeet”
90 0 2
85 0 3
80 1 3
75 1 3
70 1 6
65 1 6
60 3 7
55 3 11
50 4 16
45 5 16
40 6 32
35 9 111
E 35
F l =4=\WDAGMeet ==WDAGMeet'
7 300¢ g% ~@-Tree based
y: : -B-WDAGMeet" <
€ 250 g s \
] 3 & 2
& 200 £ b \
E F \ g 15
150 ¢ No—i—r_
Z ; \ g 1 —
e} - oo
g 100 ¢ ‘ s j\—.Lm
o E
E >0 : 0 35 4‘0 4‘5 5‘0 5‘5 6‘0 6‘5 7‘0 7‘5 éO 8‘5
0 ——— T ——a———w

w
o
Y
o
v
o

60 70 80 90
Minimum Support (Percentage)

Fig.19. Comparison between WDAGMeet and WDAGMeet” with respect to elapsed
time on HayesRoth* dataset.

—o—-WDAGMeet
- WDAGMeet®

= N
«n 5}

=
o
s

[}

#Frequent Patterns

Minimum Support (Percentage)

Fig. 20. Comparison between WDAGMeet and WDAGMeet” with respect to
number of frequent patterns on CSEDU5 dataset.

800

200 ——\WDAGMeet
3 #
3 \
- —#-WDAGMeet
g \
o
@ 500
e \
o 400
E \
= 300
3 \
@ 200
w
g \
o 100
w

0 G — ¢ * <+ i .
55 60 65 70 75 80 85 90 95

Minimum Support (Percentage)

Fig. 21. Comparison between WDAGMeet and WDAGMeet* with respect to
elapsed time on CSEDU5 dataset.

needed by some applications without regarding the weight,
WDAGMeet” can be used as the best solution.

Second, tree based mining gives equal weights to all interac-
tions and does not distinguish two same interactions performed
by persons lying in different ranks. As WDAGMeet associates

Minimum Support (Percentage)

Fig. 22. Comparison between WDAGMeet' and tree based mining with respect to
number of frequent patterns on CSEDU5 dataset.

g | ——WDAGMeet'
g % ~@-Tree based
o 35 \
2 30
OEJ 25 \\
i= 20
T 15 \
& 10
0 . . ; T . v

35 40 45 50 ss 60 65 70 75 80 8
Minimum Support (Percentage)

Fig. 23. Comparison between WDAGMeet and tree based mining with respect to
elapsed time on CSEDU5 dataset.

Frequent
Pattern

Frequent
Pattern

Tree DB

Fig. 24. DAG based vs. tree based representations of meetings.

weight to each of the interactions according to the person who
initiates that interaction, the problem of ignoring person's rank in
a meeting is solved as shown in Example 5. However, weighted
tree based version of WDAGMeet, WDAGMeet', gives the best

A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118 117

performance when database has weight information and interac-
tions are presented in tree format.

Third, tree based mining misses some frequent patterns, as
discussed earlier, but it also generate some less interesting
frequent patterns. As weights of all nodes are equal in a tree,
some interactions, frequently occurred by a least significant person
is counted as frequent pattern. But the main goal of discovering
frequent pattern is to discover interesting patterns. Although
WDAGMeet generates fewer frequent patterns, because it distin-
guishes same interaction by their different ranked initiators, it
does not miss any interesting frequent pattern.

Now we present the comparison among WDAGMeet,
WDAGMeet”, WDAGMeet’ and existing tree based meeting mining
method (Yu et al., 2012) with respect to number of frequent
patterns for various minimum supports on the CSEDU5 real-life
meeting dataset, discussed in Section 5.3, in Fig. 25. It is clear that
by integrating the feature of considering weighted nodes in trees,
WDAGMeet' generates fewer patterns than tree based method. But
as stated earlier, it misses some correlated patterns. On the other
hand, by mining the same meetings by representing them using
unweighted DAG database, WDAGMeet” generates much more
patterns than tree based method. WDAGMeet” does not miss any
correlated pattern, but it does not take into account participant
ranks. As a result, it generates some uninteresting patterns.

WDAGMeet contains both the positive factors of WDAGMeet’ and
WDAGMeet”. It is reflected in the figure that WDAGMeet generates
more patterns than WDAGMeet' but less patterns than both
WDAGMeet” and tree based method. Because WDAGMeet generates
all correlated patterns by taking different ranks of persons into
account, hence, minimizes the total number of frequent patterns by
eliminating uninteresting patterns. In contrast, the tree-based
method generates more frequent patterns by discarding the weights
of participants. Moreover, it misses some frequent correlated patterns
as it does not consider all the triggering interactions. For the sake of
comparison, we have converted the minimum support applicable for
unweighted database to Min-WSup of WDAGMeet algorithm by
performing necessary calculations.

5.5. Scalability test of WDAGMeet

In this section, we present the test results for scale up proper-
ties of WDAGMeet algorithm. To test the scalability of WDAGMeet
algorithm, we have analysed the algorithm's performance on 10
different datasets.

Size of the datasets varies from 5 KB to 427 KB. Min-WSup
varies from 60% to 80%. Number of meeting sessions of these
datasets varies from 10 to 1000. Fig. 26 shows the performance of
WDAGMeet algorithm on these datasets. Here, X-axis denotes
number of meeting sessions in a database and Y-axis denotes
elapsed time in seconds to find WIFDAG patterns using WDAG-
Meet algorithm. 3 different curves are shown to reflect elapsed
time on different sized datasets and different values of Min-WSup.
It is clear from the figure that WDAGMeet algorithm takes more

22

1 WDAGMeet

L WDAGMeet#
1 WDAGMeet'
1 Tree based

#Frequent Patterns

Minimum Support (Percentage)

Fig. 25. Comparison among WDAGMeet, WDAGMeet”, WDAGMeet and tree based
method with respect to number of frequent patterns on CSEDU5 dataset.

time on large datasets and as the Min-WSup decreases, elapsed
time also increases. However, from the experimentation, it is clear
that WDAGMeet algorithm shows scalability with increasing
database size and decreasing Min-WSup values.

6. Discussion

If we observe the interaction flow patterns of meetings and can
mine the relation among meeting contents, decisions taken and
the outcome of that decision, it is possible to predict the outcomes
of future meetings. We can also predict the correctness of the
decisions made in meetings. Some real life applications of WDAG-
Meet, i.e. meeting mining in the field of meetings are given below:

1. Mined patterns from meetings can serve as features in the
classification process of meetings. We can classify a specific
meeting as productive/non-productive, successful/unsuccessful
according to the classification algorithm trained by mined
frequent patterns.

2. Meeting mining can contribute in interpreting semantic knowl-
edge from meeting contents.

3. Mined patterns can be used in discovering the relations among
participants. For example, if there exists two groups in an
organization, who always oppose one another, it can be easily
found out by association rule/correlation mining. Mined pat-
terns can also be used to predict participant behaviours in
future meetings.

4. Effectiveness of discussion taken place in meetings and correct-
ness of decisions taken in meetings can also be verified through
patterns and rules mined from previous meetings.

5. Nowadays, there is a huge volume of data. All meeting records
can be stored, but retrieving useful information from pre-
viously occurred meetings becomes almost impossible without
any proper indexing. The mined frequent patterns can be used
as indexing features for future ease of access to the meeting
database.

Many business organizations, medical institutions and other
organizations can be greatly benefited from meeting mining in
order to verify decisions taken in meetings, calculating future
probabilities of a certain event to occur and classify meetings as
useful or useless.

Another important application of meeting mining framework can
be in the field of traffic control system in highly congested roads in
big cities. Traffic polices of each road crossing usually communicate
over wireless walkie-talkies. They also deliver information regarding
the load of traffic at that specific crossing at a specific time. If we
represent those communication instances with WIFDAG nodes as
described in the proposed framework in this paper and assign
weights to the nodes according to the load of the traffic in that

90
__ 80
&
2 70
]
o 60
@,
v 50
& ——Min_Wsup = 80%
= 40 .
- ~#-Min_Wsup = 70%
& 30 i
3 ~+~Min_Wsup = 60%
& 20
10

[¢]
0 200 400 600 800 1000 1200

Number of Meeting Sessions

Fig. 26. Scalability test of WDAGMeet algorithm on different datasets of varying
sizes and varying Min-WSup.

118 A. Fariha et al. / Engineering Applications of Artificial Intelligence 45 (2015) 103-118

crossing, we can generate similar weighted DAG based database as
meeting WIFDAG databases. By mining frequent traffic patterns from
the generated database, we can predict traffic load at certain crossing
at certain time and also adjust the traffic control system according to
the prediction. In Yun (2007), weighted frequent/interesting patterns
have been used to facilitate the traffic control system using transac-
tional databases. But as discussed above, traffic control system
communication can be better represented using WIFDAGs than
WEFPs/WIPs. Therefore, the proposed framework is better than the
existing framework (Yun, 2007) to mine more significant knowledge
from traffic patterns.

Nowadays social network chats like group chats in Facebook,
Google hangout and e-mail conversations are often group con-
versations. Moreover, twitter provides an option of re-twitting the
status of a person. This sort of triggering and triggered interactions
produce WIFDAGs. From these group conversations, we can gen-
erate WIFDAG patterns in a quite similar fashion to the live
meetings. Supervised learning, by considering the mined frequent
interaction patterns from those social group conversations as
features, can reveal useful information regarding the relation
among the participants as well as predicting the importance or
usefulness of that group conversation. Moreover, we can also
apply unsupervised learning on those group conversations to
cluster same type of group conversations in one cluster. This type
of clustering often helps to identify cyber criminal groups.

Like social networking, telecommunication patterns and com-
munication frequency between parties can also be represented
using the proposed framework. We can assign weights to the
WIFDAG nodes according to the communication frequency and
duration of communication. Classifying those telecommunication
history through frequent interaction pattern mining can help in
group behaviour, interesting person and fraud detection.

Bidding in stock market can be considered as interaction. From
the bidding information (amount of shares bidden for or value of
each share), we can assign weights to each bidding interaction
(node in WIFDAG). We can produce WIFDAG database from
bidding information generated by various parties and also incor-
porate triggering and triggered relations among biddings. The
proposed framework can represent the problem of stock market.
Cao (2010), together with his collaborators (Cao et al., 2012),
analysed couple behaviour in stock market using behaviour
sequences, but the proposed framework can also represent trig-
gering/triggered relation among the sellers and/or buyers and thus
preserve more information in stock market scenario. Mining
frequent bidding patterns in stock market can result into many
useful business predictions like increment or decrement of value
of a certain share or detecting fraud activities.

7. Conclusions

In this paper, we have proposed a new framework to model
human interactions in meetings using weighted interaction flow
directed acyclic graph, WIFDAG, that can preserve temporal and
triggering relations among interactions and participant rank in
meetings. Moreover, we have also proposed WIFDAG based
frequent interaction pattern mining algorithm, WDAGMeet, that
makes use of expansion rules to enumerate all frequent interaction
flow patterns in a bottom up manner. Evaluation results show that
different variations of our WDAGMeet algorithm can be used more
successfully in different real-life scenarios and as a consequence,
our approach is significantly better than the existing approach for
mining meeting databases. For future extension of WDAGMeet
algorithm and the proposed framework, the mined frequent sub-
WIFDAGs can be served as foundations to further association rule
and correlation mining to predict future effects of meetings.

Moreover, integration of other types of human interactions can
be done so that resulting mining algorithm will be able to handle
other classes of meetings such as medical interviews and business
discussions. Integration of dynamic weight assignment by design-
ing a customizable shell based on this framework will make it
even more robust and worthwhile.

References

Ahmed, CF, Tanbeer, S.K, Jeong, B.S., Lee, Y.K., 2009. Efficient tree structures for
high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data
Eng. 21 (12), 1708-1721.

Ahmed, CF, Tanbeer, SK., Jeong, BS. Lee, YK, Choi, HJ, 2012. Single-pass
incremental and interactive mining for weighted frequent patterns. Expert
Syst. Appl. 39 (9), 7976-7994.

Alavi, F, Hashemi, S., 2015. DFP-SEPSF: a dynamic frequent pattern tree to mine
strong emerging patterns in streamwise features. Eng. Appl. Artif. Intell. 37,
54-70.

Bache, K., Lichman, M., 2013. UCI Machine Learning Repository. ¢http://archive.ics.
uci.edu/ml/).

Campagna, A., Pagh, R,, 2010. On finding frequent patterns in event sequences. In:
ICDM, pp. 755-760.

Cao, L., 2010. In-depth behavior understanding and use: the behavior informatics
approach. Inf. Sci. 180 (17), 3067-3085.

Cao, L., Ou, Y, Yu, PS., 2012. Coupled behavior analysis with applications. IEEE
Trans. Knowl. Data Eng. 24 (8), 1378-1392.

Chen, Y.-L., Kao, H.-P,, Ko, M.-T., 2004. Mining DAG patterns from DAG databases. In:
WAIM, pp. 579-588.

Duong, H.V., Truong, T.C., Vo, B., 2014. An efficient method for mining frequent
itemsets with double constraints. Eng. Appl. Artif. Intell. 27, 148-154.

Fariha, A.,, Ahmed, C.F, Leung, C.K.-S., Abdullah, S.M., Cao, L., 2013. Mining frequent
patterns from human interactions in meetings using directed acyclic graphs. In
PAKDD, pp. 38-49.

Geng, R., Xu, W,, Dong, X., 2009. Efficient mining of interesting weighted patterns
from directed graph traversals. Integr. Comput.-Aided Eng. 16 (1), 21-49.

Han, J., Pei, J., Yin, Y., Mao, R., 2004. Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8 (1),
53-87.

Kipp, M., 2001. Anvil—a generic annotation tool for multimodal dialogue. In:
Eurospeech, pp. 1367-1370.

Kolar, J., Liu, Y., Shriberg, E., 2010. Speaker adaptation of language and prosodic
models for automatic dialog act segmentation of speech. Speech Commun. 52
(3), 236-245.

Lee, G., Yun, U, 2012. Mining weighted frequent sub-graphs with weight and
support affinities. In: MIWAI, pp. 224-235.

Magnusson, M.S., 2000. Discovering hidden time patterns in behavior: T-patterns
and their detection. Beh. Res. Meth. Instr. Comp. 32 (1), 93-110.

Morita, T., Hirano, Y., Sumi, Y., Kajita, S., Mase, K., 2005. A pattern mining method
for interpretation of interaction. In: ICMI, pp. 267-273.

Nijholt, A., Rienks, R., Zwiers,]., Reidsma, D., 2006. Online and off-line visualization
of meeting information and meeting support. Vis. Comput. 22 (12), 965-976.

Otsuka, K. Sawada, H. Yamato, J.,, 2007. Automatic inference of cross-modal
nonverbal interactions in multiparty conversations: “who responds to whom,
when, and how?” from gaze, head gestures, and utterances. In: ICMI, pp. 255-
262.

Termier, A., Tamada, Y., Numata, K., Imoto, S., Washio, T., Higuchi, T., 2007. Digdag, a
first algorithm to mine closed frequent embedded sub-dags. In: MLG.

Tomobe, H., Nagao, K., 2006. Discussion ontology: knowledge discovery from
human activities in meetings. In: JSAI, pp. 33-41.

Waibel, A., Bett, M., Finke, M., Stiefelhagen, R., 1998. Meeting browser: tracking and
summarizing meetings. In: DARPA Broadcast News Transcription and Under-
standing Workshop.

Werth, T., Dreweke, A., Worlein, M., Fischer, L., Philippsen, M., 2008. Dagma: Mining
directed acyclic graphs. In: IADIS ECDM, pp. 11-18.

Yang, K., Hong, T., Lan, G., Chen, Y. 2014. A two-phase approach for mining
weighted partial periodic patterns. Eng. Appl. Artif. Intell. 30, 225-234.

Yu, Z., Yu, Z., Ko, Y., Zhou, X., Nakamura, Y., 2009. Inferring human interactions in
meetings: a multimodal approach. In: UIC, pp. 14-24.

Yu, Z., Yu, Z., Zhou, X., Becker, C., Nakamura, Y., 2012. Tree-based mining for
discovering patterns of human interaction in meetings. IEEE Trans. Knowl. Data
Eng. 24 (4), 759-768.

Yun, U, 2007. Efficient mining of weighted interesting patterns with a strong
weight and/or support affinity. Inf. Sci. 177 (17), 3477-3499.

Yun, U, Shin, H., Ryu, K.H., Yoon, E., 2012. An efficient mining algorithm for
maximal weighted frequent patterns in transactional databases. Knowl.-Based
Syst. 33, 53-64.

Yun, U,, Lee, G., Ryu, K.H., 2014. Mining maximal frequent patterns by considering
weight conditions over data streams. Knowl.-Based Syst. 55, 49-65.

Zhang, D., Gatica-Perez, D., Bengio, S., McCowan, I., 2006. Modeling individual and
group actions in meetings with layered hmms. IEEE Trans. Multimed. 8 (3),
509-520.

http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref1
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref1
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref1
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref2
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref2
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref2
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref3
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref3
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref3
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref6
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref6
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref7
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref7
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref9
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref9
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref11
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref11
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref12
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref12
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref12
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref14
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref14
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref14
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref18
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref18
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref24
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref24
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref26
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref26
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref26
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref27
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref27
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref28
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref28
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref28
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref29
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref29
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref30
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref30
http://refhub.elsevier.com/S0952-1976(15)00141-4/sbref30

	A new framework for mining frequent interaction patterns from meeting databases
	Introduction
	Related work
	A novel framework for mining meeting databases
	Semantic classes of human interactions
	Weight assignment of human interactions
	Triggering relations among human interactions in a meeting
	Weighted DAG based interaction flow model

	WDAGMeet – an algorithm for mining frequent interaction patterns from meetings
	Expansion rules
	The mining process of WDAGMeet algorithm
	Illustrative example

	Evaluation results
	Performance on synthetic datasets
	Performance on a converted real-life dataset
	Performance on a real-life meeting dataset
	Comparison between WDAGMeet and the existing tree-based meeting mining method (Yu et al., 2012)
	Scalability test of WDAGMeet

	Discussion
	Conclusions
	References

