
Conformance Constraint Discovery:
Measuring Trust in Data-Driven Systems∗

Technical Report

Anna Fariha
†‡

University of Massachusetts

Amherst, MA, USA

afariha@cs.umass.edu

Ashish Tiwari
‡

Arjun Radhakrishna

Sumit Gulwani

Microsoft

{astiwar,arradha,sumitg}@microsoft.com

Alexandra Meliou

University of Massachusetts

Amherst, MA, USA

ameli@cs.umass.edu

ABSTRACT

The reliability of inferences made by data-driven systems hinges

on the data’s continued conformance to the systems’ initial set-

tings and assumptions. When serving data (on which we want to

apply inference) deviates from the profile of the initial training

data, the outcome of inference becomes unreliable. We introduce

conformance constraints, a new data profiling primitive tailored

towards quantifying the degree of non-conformance, which can ef-

fectively characterize if inference over that tuple is untrustworthy.

Conformance constraints are constraints over certain arithmetic ex-

pressions (called projections) involving the numerical attributes of a

dataset, which existing data profiling primitives such as functional

dependencies and denial constraints cannot model.

The key finding we present is that projections that incur low vari-

ance on a dataset construct effective conformance constraints. This

principle yields the surprising result that low-variance components

of a principal component analysis, which are usually discarded

for dimensionality reduction, generate stronger conformance con-

straints than the high-variance components. Based on this result,

we provide a highly scalable and efficient technique—linear in data

size and cubic in the number of attributes—for discovering con-

formance constraints for a dataset. To measure the degree of a

tuple’s non-conformance with respect to a dataset, we propose a

quantitative semantics that captures how much a tuple violates the

conformance constraints of that dataset. We demonstrate the value

of conformance constraints on two applications: trusted machine

learning and data drift. We empirically show that conformance

constraints offer mechanisms to (1) reliably detect tuples on which

the inference of a machine-learned model should not be trusted,

and (2) quantify data drift more accurately than the state of the art.

1 INTRODUCTION

Data is central to modern systems in a wide range of domains, in-

cluding healthcare, transportation, and finance. The core of modern

data-driven systems typically comprises of models learned from

large datasets, and they are usually optimized to target particular

data and workloads. While these data-driven systems have seen

wide adoption and success, their reliability and proper function

hinge on the data’s continued conformance to the systems’ initial

∗
An earlier version of this paper had a different title: “Data Invariants: On Trust in

Data-Driven Systems”.

†
Work done while the author was an intern at Microsoft.

‡
Both authors contributed equally to this research.

settings and assumptions. If the serving data (on which the system

operates) deviates from the profile of the initial data (on which

the system was trained), then system performance degrades and

system behavior becomes unreliable. A mechanism to assess the

trustworthiness of a system’s inferences is paramount, especially

for systems that perform safety-critical or high-impact operations.

Amachine-learned (ML)model typicallyworks best if the serving

dataset follows the profile of the dataset the model was trained

on; when it doesn’t, the model’s inference can be unreliable. One

can profile a dataset in many ways, such as by modeling the data

distribution of the dataset, or by finding the (implicit) constraints

that the dataset satisfies. Distribution-oriented approaches learn

data likelihood (e.g., joint or conditional distribution) from the

training data, and can be used to check if the serving data is unlikely.

An unlikely tuple does not necessarily imply that the model would

fail for it. The problem with the distribution-oriented approaches is

that they tend to overfit, and thus, are overly conservative towards

unseen tuples, leading them to report many such false positives.

We argue that certain constraints offer a more effective and

robust mechanism to quantify trust of a model’s inference on a

serving tuple. The reason is that learning systems implicitly exploit

such constraints during model training, and build models that as-

sume that the constraints will continue to hold for serving data.

For example, when there exist high correlations among attributes

in the training data, learning systems will likely reduce the weights

assigned to redundant attributes that can be deduced from others,

or eliminate them altogether through dimensionality reduction. If

the serving data preserves the same correlations, such operations

are inconsequential; otherwise, we may observe model failure.

In this paper, we characterize datasets with a new data-profiling

primitive, conformance constraints, and we present a mechanism to

identify strong conformance constraints, whose violation indicates

unreliable inference. Conformance constraints specify constraints

over arithmetic relationships involvingmultiple numerical attributes

of a dataset. We argue that a tuple’s conformance to the confor-

mance constraints is more critical for accurate inference than its

conformance to the training data distribution. This is because any

violation of conformance constraints is likely to result in a cata-

strophic failure of a learned model that is built upon the assumption

that the conformance constraints will always hold. Thus, we can use

a tuple’s deviation from the conformance constraints as a proxy for

the trust on a learned model’s inference for that tuple. We proceed

1

ar
X

iv
:2

00
3.

01
28

9v
4

 [
cs

.D
B

]
 4

 J
an

 2
02

1

Technical Report, January, 2021 Fariha and Tiwari, et al.

Departure Departure Time Arrival Time Duration (min)

Date [DT] [AT] [DUR]

𝑡1 May 2 14:30 18:20 230

𝑡2 July 22 09:05 12:15 195

𝑡3 June 6 10:20 12:20 115

𝑡4 May 19 11:10 13:05 117

𝑡5 April 7 22:30 06:10 458

Figure 1: Sample of the airlines dataset (details are in Section 6.1),

showing departure, arrival, and duration only. The dataset does not

report arrival date, but an arrival time earlier than departure time

(e.g., last row), indicates an overnight flight. All times are in 24 hour

format and in the same time zone. There is some noise in the values.

to describe a real-world example of conformance constraints, drawn

from our case-study evaluation on trusted machine learning (TML).

Example 1. We used a dataset with flight information that in-

cludes data on departure and arrival times, flight duration, etc. (Fig. 1)

to train a linear regression model to predict flight delays. The model

was trained on a subset of the data that happened to include only day-

time flights (such as the first four tuples). In an empirical evaluation of

the regression accuracy, we found that the mean absolute error of the

regression output more than quadruples for overnight flights (such as

the last tuple 𝑡5), compared to daytime flights. The reason is that tuples

representing overnight flights deviate from the profile of the training

data that only contained daytime flights. Specifically, daytime flights

satisfy the conformance constraint that “arrival time is later than

departure time and their difference is very close to the flight duration”,

which does not hold for overnight flights. Note that this constraint is

just based on the covariates (predictors) and does not involve the target

attribute 𝑑𝑒𝑙𝑎𝑦. Critically, although this conformance constraint is

unaware of the regression task, it was still a good proxy of the regres-

sor’s performance. In contrast, approaches that model data likelihood

may report long daytime flights as unlikely, since all flights in the

training data (𝑡1–𝑡4) were also short flights, resulting in false alarms,

as the model works very well for most daytime flights, regardless of

the duration (i.e., for both short and long daytime flights).

Example 1 demonstrates that when training data has coincidental

relationships (e.g., the one between 𝐴𝑇 , 𝐷𝑇 , and 𝐷𝑈𝑅 for daytime

flights), then ML models may implicitly assume them as invariants.

Conformance constraints can capture such data invariants and flag

non-conforming tuples (overnight flights) during serving.

Conformance constraints.Conformance constraints complement

the existing data profiling literature, as the existing constraint mod-

els, such as functional dependencies and denial constraints, cannot

model arithmetic relationships. For example, the conformance con-

straint of Example 1 is: −𝜖1 ≤ 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≤ 𝜖2, where 𝜖1 and
𝜖2 are small values. Conformance constraints can capture complex

linear dependencies across attributes within a noisy dataset. For

example, if the flight departure and arrival data reported the hours

and the minutes across separate attributes, the constraint would

be on a different arithmetic expression: (60 · 𝑎𝑟𝑟𝐻𝑜𝑢𝑟 + 𝑎𝑟𝑟𝑀𝑖𝑛) −
(60 · 𝑑𝑒𝑝𝐻𝑜𝑢𝑟 + 𝑑𝑒𝑝𝑀𝑖𝑛) − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛.

The core component of a conformance constraint is the arith-

metic expression, called projection, which is obtained by a linear

combination of the numerical attributes. There is an unbounded

number of projections that we can use to form arbitrary confor-

mance constraints. For example, for the projection 𝐴𝑇 , we can find

a broad range [𝜖3, 𝜖4], such that all training tuples in Example 1

satisfy the conformance constraint 𝜖3 ≤ 𝐴𝑇 ≤ 𝜖4. However, this
constraint is too inclusive and a learned model is unlikely to exploit

such a weak constraint. In contrast, the projection𝐴𝑇 −𝐷𝑇 −𝐷𝑈𝑅
leads to a stronger conformance constraint with a narrow range as

its bounds, which is selectively permissible, and thus, more effective.

Challenges and solution sketch. The principal challenge is to

discover an effective set of conformance constraints that are likely

to affect a model’s inference implicitly. We first characterize “good”

projections (that construct effective constraints) and then propose a

method to discover them. We establish through theoretical analysis

two important results: (1) A projection is good over a dataset if it is

almost constant (i.e., has low variance) for all tuples in that dataset.

(2) A set of projections, collectively, is good if the projections have

small pair-wise correlations. We show that low variance compo-

nents of a principal component analysis (PCA) on a dataset yield

such a set of projections. Note that this is different from—and in

fact completely opposite to—the traditional approaches (e.g., [63])

that perform multidimensional analysis based on the high-variance

principal components, after reducing dimensionality using PCA.

Scope. Fig. 2 summarizes prior work on related problems, but the

scope of our setting differs significantly. Specifically, we can detect

if a serving tuple is non-conforming with respect to the training

dataset only based on its predictor attributes, and require no knowl-

edge of the ground truth. This setting is essential in many practical

applications when we observe extreme verification latency [74],

where ground truths for serving tuples are not immediately avail-

able. For example, consider a self-driving car that is using a trained

controller to generate actions based on readings of velocity, relative

positions of obstacles, and their velocities. In this case, we need to

determine, only based on the sensor readings (predictors), when the

driver should be alerted to take over vehicle control, as we cannot

use ground-truths to generate an alert.

Furthermore, we do not assume access to the model, i.e., model’s

predictions on a given tuple. This setting is necessary for (1) safety-

critical applications, where the goal is to quickly alert the user,

without waiting for the availability of the prediction, (2) auditing

and privacy-preserving applications where the prediction cannot be

shared, and (3) when we are unaware of the detailed functionality

of the system due to privacy concerns or lack of jurisdiction, but

only have some meta-information such as the system trains some

linear model over the training data.

We focus on identifying tuple-level non-conformance as opposed

to dataset-level non-conformance that usually requires observing

entire data’s distribution. However, our tuple-level approach triv-

ially extends (by aggregation) to the entire dataset.

Contrast with prior art. We now discuss where conformance

constraints fit with respect to the existing literature (Fig. 2) on data

profiling and literature on modeling trust in data-driven inferences

Data profiling techniques. Conformance constraints fall under the

umbrella of data profiling, which refers to the task of extracting

technical metadata about a given dataset [5]. A key task in data

profiling is to learn relationships among attributes. Functional de-

pendencies (FD) [59] and their variants only capture if a relation-

ship exists between two sets of attributes, but do not provide a

2

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

Legend constraints violation setting technique TML

HP: Hyper Parameter

FD: Functional Dependency

DC: Denial Constraint

�: Does not require

⊥: Not applicable
★: Supports via extension

!: Partially p
a
r
a
m
e
t
r
i
c

a
r
i
t
h
m
e
t
i
c

a
p
p
r
o
x
i
m
a
t
e

c
o
n
d
i
t
i
o
n
a
l

n
o
t
i
o
n
o
f
w
e
i
g
h
t

i
n
t
e
r
p
r
e
t
a
b
l
e

c
o
n
t
i
n
u
o
u
s

t
u
p
l
e
-
w
i
s
e

n
o
i
s
y
d
a
t
a

n
u
m
e
r
i
c
a
l
a
t
t
r
.

c
a
t
e
g
o
r
i
a
l
a
t
t
r
.

�
t
h
r
e
s
h
o
l
d
s

�
d
i
s
t
a
n
c
e
m
e
t
r
i
c

�
H
P
t
u
n
i
n
g

s
c
a
l
a
b
l
e

t
a
s
k
a
g
n
o
s
t
i
c

�
a
c
c
e
s
s
t
o
m
o
d
e
l

D
a
t
a
P
r
o
fi
l
i
n
g

Conformance Constraints ✓ ✓ ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FD [59] ✓ ✓ ✓ ✓ ✓

n
o
t
a
d
d
r
e
s
s
e
d
i
n
p
r
i
o
r
w
o
r
k

Approximate FD [50] ✓ ✓ ✓ ✓ ✓ ✓
Metric FD [48] ✓ ✓ ✓ ✓ ✓ ⊥ ⊥
Conditional FD [23] ! ✓ ✓ ✓ ✓ ✓ ✓ ✓
Pattern FD [62] ! ✓ ✓ ✓ ✓ ✓ ✓
Soft FD [38] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Relaxed FD [16] ✓ ✓ ✓ ✓ ✓ ✓
FDX [93] ✓ ✓ ✓ ✓
Differential Dependency [72] ✓ ✓ ✓ ✓
DC [13, 17] ! ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Approximate DC [53, 61] ! ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Statistical Constraint [91] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L
e
a
r
n
i
n
g

Ordinary Least Square ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓
Total Least Square ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓ ✓ ✓
Auto-encoder [20] ⊥ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Schelter et al. [68]

+ ⊥ ✓ ✓ ✓ ✓ ✓ ✓
Jiang et al. [41] ⊥ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hendrycks et al. [31] ⊥ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Model’s Prediction Probability ⊥ ✓ ✓ varies

+
Requires additional information

Figure 2: Conformance constraints complement existing data profil-

ing primitives and provide an efficient mechanism to quantify trust

in prediction, with minimal assumption on the setting.

closed-form (parametric) expression of the relationship. Using the

FD {𝐴𝑇, 𝐷𝑇 } → {𝐷𝑈𝑅} to model the constraint of Example 1 suf-

fers from several limitations. First, since the data is noisy, no exact

FD can be learned. Metric FDs [48] allow small variations in the

data (similar attribute values are considered identical), but hinge

on appropriate distance metrics and thresholds. For example, if

𝑡𝑖𝑚𝑒 is split across two attributes (ℎ𝑜𝑢𝑟 and𝑚𝑖𝑛𝑢𝑡𝑒), the distance

metric is non-trivial: it needs to encode that ⟨ℎ𝑜𝑢𝑟 = 4,𝑚𝑖𝑛 = 59⟩
and ⟨ℎ𝑜𝑢𝑟 = 5,𝑚𝑖𝑛 = 1⟩ are similar, while ⟨ℎ𝑜𝑢𝑟 = 4,𝑚𝑖𝑛 = 1⟩ and
⟨ℎ𝑜𝑢𝑟 = 5,𝑚𝑖𝑛 = 59⟩ are not. In contrast, conformance constraints

can model the composite attribute (60 · ℎ𝑜𝑢𝑟 +𝑚𝑖𝑛𝑢𝑡𝑒) by automat-

ically discovering the coefficients 60 and 1 for such a composite

attribute.

Denial constraints (DC) [13, 17, 53, 61] encapsulate a number of

different data-profiling primitives such as FDs and their variants

(e.g, [23]). Exact DCs can adjust to noisy data by adding predicates

until the constraint becomes exact over the entire dataset, but this

can make the constraint extremely large and complex, which might

even fail to provide the desired generalization. For example, a finite

DC—whose language is limited to universally-quantified first-order

logic—cannot model the constraint of Example 1, which involves an

arithmetic expression (addition and multiplication with a constant).

Expressing conformance constraints requires a richer language that

includes linear arithmetic expressions. Pattern functional depen-

dencies (PFD) [62] move towards addressing this limitation of DCs,

but they focus on text attributes: they are regex-based and treat

digits as characters. However, modeling arithmetic relationships

of numerical attributes requires interpreting digits as numbers.

To adjust for noise, FDs and DCs either relax the notion of con-

straint violation or allow a user-defined fraction of tuples to violate

the (strict) constraint [16, 36, 38, 48, 50, 53, 61]. Some approaches [38,

91, 93] use statistical techniques tomodel other types of data profiles

such as correlations and conditional dependencies. However, they

require additional parameters such as noise and violation thresholds

and distance metrics. In contrast, conformance constraints do not

require any parameter from the user and work on noisy datasets.

Existing data profiling techniques are not designed to learn what

ML models exploit and they are sensitive to noise in the numerical

attributes. Moreover, data constraint discovery algorithms typically

search over an exponential set of candidates, and hence, are not

scalable: their complexity grows exponentially with the number of

attributes or quadratically with data size. In contrast, our technique

for deriving conformance constraints is highly scalable (linear in

data size) and efficient (cubic in the number of attributes). It does

not explicitly explore the candidate space, as PCA—which lies at the

core of our technique—performs the search implicitly by iteratively

refining weaker constraints to stronger ones.

Learning techniques. While ordinary least square finds the lowest-

variance projection, it minimizes observational error on only the

target attribute, and thus, does not apply to our setting. Total least

square offers a partial solution to our problem as it takes observa-

tional errors on all predictor attributes into account. However, it

finds only one projection—the lowest variance one—that fits the

data tuples best. But there may exist other projections with slightly

higher variances and we consider them all. As we show empiri-

cally in Section 6.2, constraints derived from multiple projections,

collectively, capture various aspects of the data, and result in an ef-

fective data profile targeted towards certain tasks such as data-drift

quantification. (More discussion is in the Appendix.)

Contributions.We make the following contributions:

• We ground the motivation of our work with two case studies on

trusted machine learning (TML) and data drift. (Section 2)

• We introduce and formalize conformance constraints, a new data

profiling primitive that specify constraints over arithmetic rela-

tionships among numerical attributes of a dataset. We describe a

conformance language to express conformance constraints, and

a quantitative semantics to quantify how much a tuple violates

the conformance constraints. In applications of constraint viola-

tions, some violations may be more or less critical than others.

To capture that, we consider a notion of constraint importance,

and weigh violations against constraints accordingly. (Section 3)

• We formally establish that strong conformance constraints are

constructed from projections with small variance and small mu-

tual correlation on the given dataset. Beyond simple linear con-

straints (e.g., the one in Example 1), we derive disjunctive con-

straints, which are disjunctions of linear constraints. We achieve

this by dividing the dataset into disjoint partitions, and learning

linear constraints for each partition. We provide an efficient, scal-

able, and highly parallelizable algorithm for computing a set of

linear conformance constraints and disjunctions over them. We

also analyze its runtime and memory complexity. (Section 4)

• We formalize the notion of unsafe tuples in the context of trusted

machine learning and provide a mechanism to detect unsafe

tuples using conformance constraints. (Section 5)

• We empirically analyze the effectiveness of conformance con-

straints in our two case-study applications—TML and data-drift

quantification. We show that conformance constraints can reli-

ably predict the trustworthiness of linear models and quantify

data drift precisely, outperforming the state of the art. (Section 6)

3

Technical Report, January, 2021 Fariha and Tiwari, et al.

2 CASE STUDIES

Like other data-profiling primitives, conformance constraints have

general applicability in understanding and describing datasets. But

their true power lies in quantifying the degree of a tuple’s non-

conformance with respect to a reference dataset. Within the scope

of this paper, we focus on two case studies in particular to motivate

our work: trusted machine learning and data drift. We provide an

extensive evaluation over these applications in Section 6.

Trusted machine learning (TML) refers to the problem of quan-

tifying trust in the inference made by a machine-learned model on

a new serving tuple [41, 64, 67, 80, 86]. This is particularly useful

in case of extreme verification latency [74], where ground-truth

outputs for new serving tuples are not immediately available to eval-

uate the performance of a learned model, when auditing models for

trustworthiness, and in privacy-preserving applications where even

the model’s predictions cannot be shared. When a model is trained

using a dataset, the conformance constraints for that dataset specify

a safety envelope [80] that characterizes the tuples for which the

model is expected to make trustworthy predictions. If a serving

tuple falls outside the safety envelope (violates the conformance

constraints), then the model is likely to produce an untrustworthy

inference. Intuitively, the higher the violation, the lower the trust.

Some classifiers produce a confidence measure along with the class

prediction, typically by applying a softmax function to the raw

numeric prediction values. However, such a confidence measure is

not well-calibrated [28, 41], and therefore, cannot be reliably used

as a measure of trust in the prediction. Additionally, a similar mech-

anism is not available for inferences made by regression models.

In the context of TML, we formalize the notion of unsafe tuples,

on which the prediction may be untrustworthy. We establish that

conformance constraints provide a sound and complete procedure

for detecting unsafe tuples, which indicates that the search for

conformance constraints should be guided by the class of models

considered by the corresponding learning system (Section 5).

Data drift [10, 27, 51, 63] specifies a significant change in a dataset

with respect to a reference dataset, which typically requires that sys-

tems be updated and models retrained. Aggregating tuple-level non-

conformances over a dataset gives us a dataset-level non-conformance,

which is an effective measurement of data drift. To quantify how

much a dataset𝐷 ′ drifted from a reference dataset𝐷 , our three-step

approach is: (1) compute conformance constraints for 𝐷 , (2) evalu-

ate the constraints on all tuples in 𝐷 ′ and compute their violations

(degrees of non-conformance), and (3) finally, aggregate the tuple-

level violations to get a dataset-level violation. If all tuples in 𝐷 ′

satisfy the constraints, then we have no evidence of drift. Otherwise,

the aggregated violation serves as the drift quantity.

While we focus on these two applications here, we mention other

applications of conformance constraints in the Appendix.

3 CONFORMANCE CONSTRAINTS

In this section, we define conformance constraints that allow us

to capture complex arithmetic dependencies involving numerical

attributes of a dataset. Then we propose a language for representing

them. Finally, we define quantitative semantics over conformance

constraints, which allows us to quantify their violation.

Basic notations. We use R(𝐴1, 𝐴2, . . . , 𝐴𝑚) to denote a relation

schema where 𝐴𝑖 denotes the 𝑖
𝑡ℎ

attribute of R. We use Dom𝑖 to de-

note the domain of attribute𝐴𝑖 . Then the set Dom𝑚 = Dom1 × · · · ×
Dom𝑚 specifies the domain of all possible tuples. We use 𝑡 ∈ Dom𝑚
to denote a tuple in the schema R. A dataset 𝐷 ⊆ Dom𝑚 is a spe-

cific instance of the schema R. For ease of notation, we assume

some order of tuples in 𝐷 and we use 𝑡𝑖 ∈ 𝐷 to refer to the 𝑖𝑡ℎ tuple

and 𝑡𝑖 .𝐴 𝑗 ∈ Dom𝑗 to denote the value of the 𝑗𝑡ℎ attribute of 𝑡𝑖 .

Conformance constraint. A conformance constraint Φ charac-

terizes a set of allowable or conforming tuples and is expressed

through a conformance language (Section 3.1). We write Φ(𝑡) and
¬Φ(𝑡) to denote that 𝑡 satisfies and violates Φ, respectively.

Definition 2 (Conformance constraint). A conformance con-

straint for a dataset 𝐷 ⊆Dom𝑚 is a formula

Φ : Dom𝑚 ↦→ {True, False} such that |{𝑡 ∈ 𝐷 | ¬Φ(𝑡)}| ≪ |𝐷 |.

The set {𝑡 ∈ 𝐷 | ¬Φ(𝑡)} denotes atypical tuples in 𝐷 that do not

satisfy the conformance constraint Φ. In our work, we do not need

to know the set of atypical tuples, nor do we need to purge the

atypical tuples from the dataset. Our techniques derive constraints

in ways that ensure there are very few atypical tuples (Section 4).

3.1 Conformance Language

Projection. A central concept in our conformance language is

projection. Intuitively, a projection is a derived attribute that spec-

ifies a “lens” through which we look at the tuples. More formally,

a projection is a function 𝐹 : Dom𝑚 ↦→ R that maps a tuple 𝑡 ∈
Dom𝑚 to a real number 𝐹 (𝑡) ∈ R. In our language for conformance

constraints, we only consider projections that correspond to linear

combinations of the numerical attributes of a dataset. Specifically, to

define a projection, we need a set of numerical coefficients for all at-

tributes of the dataset and the projection is defined as a sum over the

attributes, weighted by their corresponding coefficients. We extend

a projection 𝐹 to a dataset 𝐷 by defining 𝐹 (𝐷) to be the sequence

of reals obtained by applying 𝐹 on each tuple in 𝐷 individually.

Grammar. Our language for conformance constraints consists of

formulas Φ generated by the following grammar:

𝜙 := lb ≤ 𝐹 (®𝐴) ≤ ub | ∧(𝜙, . . . , 𝜙)
𝜓𝐴 := ∨((𝐴 = 𝑐1) ▷ 𝜙, (𝐴 = 𝑐2) ▷ 𝜙, . . .)
Ψ := 𝜓𝐴 | ∧(𝜓𝐴1

,𝜓𝐴2
, . . .)

Φ := 𝜙 | Ψ

The language consists of (1) bounded constraints lb ≤ 𝐹 (®𝐴) ≤
ub where 𝐹 is a projection on Dom𝑚 , ®𝐴 is the tuple of formal

parameters (𝐴1, 𝐴2, . . . , 𝐴𝑚), and lb, ub ∈ R are reals; (2) equality

constraints 𝐴 = 𝑐 where 𝐴 is an attribute and 𝑐 is a constant in 𝐴’s

domain; and (3) operators (▷,∧, and∨,) that connect the constraints.
Intuitively, ▷ is a switch operator that specifies which constraint 𝜙

applies based on the value of the attribute𝐴, ∧ denotes conjunction,
and∨ denotes disjunction. Formulas generated by𝜙 andΨ are called

simple constraints and compound constraints, respectively. Note that

a formula generated by 𝜓𝐴 only allows equality constraints on a

single attribute, namely 𝐴, among all the disjuncts.

Example 3. Consider the dataset 𝐷 consisting of the first four

tuples {𝑡1, 𝑡2, 𝑡3, 𝑡4} of Fig. 1. A simple constraint for 𝐷 is:

𝜙1 : −5 ≤ 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≤ 5.

4

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

Here, the projection 𝐹 (®𝐴)=𝐴𝑇−𝐷𝑇−𝐷𝑈𝑅, with attribute coefficients

⟨1,−1,−1⟩, lb = −5, and ub = 5. A compound constraint is:

𝜓2 : 𝑀 = “May” ▷ −2 ≤ 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≤ 0

∨ 𝑀 = “June” ▷ 0 ≤ 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≤ 5

∨ 𝑀 = “July” ▷ −5 ≤ 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≤ 0

For ease of exposition, we assume that all times are converted to

minutes (e.g., 06:10 = 6×60+10 = 370) and𝑀 denotes the departure

month, extracted from 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝐷𝑎𝑡𝑒 .

Note that arithmetic expressions that specify linear combination

of numerical attributes (highlighted above) are disallowed in denial

constraints [17] which only allow raw attributes and constants

(more details are in the Appendix).

3.2 Quantitative Semantics

Conformance constraints have a natural Boolean semantics: a tu-

ple either satisfies a constraint or it does not. However, Boolean

semantics is of limited use in practice, because it does not quantify

the degree of constraint violation. We interpret conformance con-

straints using a quantitative semantics, which quantifies violations,

and reacts to noise more gracefully than Boolean semantics.

The quantitative semantics [[Φ]] (𝑡) is a measure of the violation

of Φ on a tuple 𝑡—with a value of 0 indicating no violation and a

value greater than 0 indicating some violation. In Boolean semantics,

if Φ(𝑡) is True, then [[Φ]] (𝑡) will be 0; and if Φ(𝑡) is False, then
[[Φ]] (𝑡) will be 1. Formally, [[Φ]] is a mapping from Dom𝑚 to [0, 1].
Quantitative semantics of simple constraints.We build upon 𝜖-insen-

sitive loss [85] to define the quantitative semantics of simple con-

straints, where the bounds lb and ub define the 𝜖-insensitive zone:1

[[lb ≤ 𝐹 (®𝐴) ≤ ub]] (𝑡) := 𝜂 (𝛼 ·max(0, 𝐹 (𝑡) − ub, lb − 𝐹 (𝑡)))
[[∧(𝜙1, . . . , 𝜙𝐾)]] (𝑡) :=

∑𝐾
𝑘
𝛾𝑘 · [[𝜙𝑘]] (𝑡)

Below, we describe the parameters of the quantitative semantics,

and provide further details on them in the Appendix.

Scaling factor 𝛼 ∈ R+.
Projections are unconstrained functions and different projections

can map the same tuple to vastly different values. We use a scaling

factor 𝛼 to standardize the values computed by a projection 𝐹 , and

to bring the values of different projections to the same comparable

scale. The scaling factor is automatically computed as the inverse

of the standard deviation:
1

𝜎 (𝐹 (𝐷)) . We set 𝛼 to a large positive

number when 𝜎 (𝐹 (𝐷)) = 0.

Normalization function 𝜂 (.) : R ↦→ [0, 1].
The normalization function maps values in the range [0,∞) to the

range [0, 1). While any monotone mapping from R≥0 to [0, 1) can
be used, we pick 𝜂 (𝑧) = 1 − 𝑒−𝑧 .
Importance factors 𝛾𝑘 ∈ R+,

∑𝐾
𝑘
𝛾𝑘=1.

The weights𝛾𝑘 control the contribution of each bounded-projection

constraint in a conjunctive formula. This allows for prioritizing con-

straints that are more significant than others within the context of a

particular application. In our work, we derive the importance factor

of a constraint automatically, based on its projection’s standard

deviation over 𝐷 .

1
For a target value 𝑦, predicted value �̂�, and a parameter 𝜖 , the 𝜖-insensitive loss is 0

if |𝑦 − �̂� | < 𝜖 and |𝑦 − �̂� | − 𝜖 otherwise.

Quantitative semantics of compound constraints. Compound con-

straints are first simplified into simple constraints, and they get their

meaning from the simplified form. We define a function simp(𝜓, 𝑡)
that takes a compound constraint 𝜓 and a tuple 𝑡 and returns a

simple constraint. It is defined recursively as follows:

simp(∨((𝐴 = 𝑐1) ▷ 𝜙1, (𝐴 = 𝑐2) ▷ 𝜙2, . . .), 𝑡) := 𝜙𝑘 if 𝑡 .𝐴 = 𝑐𝑘

simp(∧(𝜓𝐴1
,𝜓𝐴2

, . . .), 𝑡) := ∧(simp(𝜓𝐴1
, 𝑡), simp(𝜓𝐴2

, 𝑡), . . .)

If the condition in the definition above does not hold for any

𝑐𝑘 , then simp(𝜓, 𝑡) is undefined and simp(∧(. . . ,𝜓, . . .), 𝑡) is also
undefined. If simp(𝜓, 𝑡) is undefined, then [[𝜓]] (𝑡) := 1. When

simp(𝜓, 𝑡) is defined, the quantitative semantics of𝜓 is given by:

[[𝜓]] (𝑡) := [[simp(𝜓, 𝑡)]] (𝑡)

Since compound constraints simplify to simple constraints, we

mostly focus on simple constraints. Even there, we pay special atten-

tion to bounded-projection constraints (𝜙) of the form

lb ≤ 𝐹 (®𝐴) ≤ ub, which lie at the core of simple constraints.

Example 4. Consider the constraint 𝜙1 from Example 3. For 𝑡 ∈ 𝐷 ,
[[𝜙1]] (𝑡) = 0 since 𝜙1 is satisfied by all tuples in 𝐷 . The standard

deviation of the projection 𝐹 over 𝐷 , 𝜎 (𝐹 (𝐷))=𝜎 ({0,−5, 5,−2})=3.6.
Now consider the last tuple 𝑡5 ∉ 𝐷 . 𝐹 (𝑡5) = (370 − 1350) − 458 =

−1438, which is way below the lower bound−5 of𝜙1. Now we compute

how much 𝑡5 violates 𝜙1: [[𝜙1]] (𝑡5) = [[−5 ≤ 𝐹 (®𝐴) ≤ 5]] (𝑡5) = 𝜂 (𝛼 ·
max(0,−1438 − 5,−5 + 1438)) = 1 − 𝑒−

1433

3.6 ≈ 1. Intuitively, this

implies that 𝑡5 strongly violates 𝜙1.

4 CONFORMANCE CONSTRAINT SYNTHESIS

In this section, we describe our techniques for deriving conformance

constraints. We start with the synthesis of simple constraints (the 𝜙

constraints in our language specification), followed by compound

constraints (theΨ constraints in our language specification). Finally,

we analyze the time and memory complexity of our algorithm.

4.1 Simple Conformance Constraints

Synthesizing simple conformance constraints involves (a) discover-

ing the projections, and (b) discovering the lower and upper bounds

for each projection. We start by discussing (b), followed by the prin-

ciple to identify effective projections, based on which we solve (a).

4.1.1 Synthesizing Bounds for Projections. Fix a projection 𝐹 and

consider the bounded-projection constraint 𝜙 : lb ≤ 𝐹 (®𝐴) ≤ ub.
Given a dataset 𝐷 , a trivial choice for the bounds that are valid on

all tuples in 𝐷 is: lb = min(𝐹 (𝐷)) and ub = max(𝐹 (𝐷)). However,
this choice is very sensitive to noise: adding a single atypical tuple

to 𝐷 can produce very different constraints. Instead, we use a more

robust choice as follows:

lb = 𝜇 (𝐹 (𝐷)) −𝐶 · 𝜎 (𝐹 (𝐷)), ub = 𝜇 (𝐹 (𝐷)) +𝐶 · 𝜎 (𝐹 (𝐷))

Here, 𝜇 (𝐹 (𝐷)) and 𝜎 (𝐹 (𝐷)) denote the mean and standard devi-

ation of the values in 𝐹 (𝐷), respectively, and 𝐶 is some positive

constant. With these bounds, [[𝜙]] (𝑡) = 0 implies that 𝐹 (𝑡) is within
𝐶 × 𝜎 (𝐹 (𝐷)) from the mean 𝜇 (𝐹 (𝐷)). In our experiments, we set

𝐶 = 4, which ensures that in expectation, very few tuples in 𝐷 will

violate the constraint for many distributions of the values in 𝐹 (𝐷).
Specifically, if 𝐹 (𝐷) follows a normal distribution, then 99.99% of

5

Technical Report, January, 2021 Fariha and Tiwari, et al.

the population is expected to lie within 4 standard deviations from

mean. Note that we make no assumption on the original data dis-

tribution of each attribute.

Setting the bounds lb and ub as 𝐶 · 𝜎 (𝐹 (𝐷))-away from the

mean, and the scaling factor 𝛼 as
1

𝜎 (𝐹 (𝐷)) , guarantees the following
property for our quantitative semantics:

Lemma 5. Let𝐷 be a dataset and let 𝜙𝑘 be lb𝑘 ≤ 𝐹𝑘 (®𝐴) ≤ ub𝑘 for

𝑘 = 1, 2. Then, for any tuple 𝑡 , if
|𝐹1 (𝑡)−𝜇 (𝐹1 (𝐷)) |

𝜎 (𝐹1 (𝐷)) ≥ |𝐹2 (𝑡)−𝜇 (𝐹2 (𝐷)) |
𝜎 (𝐹2 (𝐷)) ,

then [[𝜙1]] (𝑡) ≥ [[𝜙2]] (𝑡).

This means that larger deviation from the mean (proportionally

to the standard deviation) results in higher degree of violation under

our semantics. The proof follows from the fact that the normaliza-

tion function 𝜂 (.) is monotonically increasing, and hence, [[𝜙𝑘]] (𝑡)
is a monotonically non-decreasing function of

|𝐹𝑘 (𝑡)−𝜇 (𝐹𝑘 (𝐷)) |
𝜎 (𝐹𝑘 (𝐷)) .

4.1.2 Principle for Synthesizing Projections. We start by investigat-

ing what makes a constraint more effective than others. An effective

constraint (1) should not overfit the data, but rather generalize by

capturing the properties of the data, and (2) should not underfit the

data, because it would be too permissive and fail to identify devi-

ations effectively. Our flexible bounds (Section 4.1.1) serve to avoid

overfitting. In this section, we focus on identifying the principles

that help us avoid underfitting. We first describe the key technical

ideas for characterizing effective projections through example and

then proceed to formalization.

Example 6. Let 𝐷 be a dataset of three tuples {(1,1.1),(2,1.7),(3,3.2)}

with two attributes𝑋 and𝑌 . Consider two arbitrary projections:𝑋 and

𝑌 . For 𝑋 : 𝜇 (𝑋 (𝐷)) = 2 and 𝜎 (𝑋 (𝐷)) = 0.8. So, bounds for its confor-

mance constraint are: lb = 2−4×0.8 = −1.2 and ub = 2+4×0.8 = 5.2.

This gives us the conformance constraint: −1.2 ≤ 𝑋 ≤ 5.2. Similarly,

for 𝑌 , we get the conformance constraint: −1.6 ≤ 𝑌 ≤ 5.6. Fig. 3(a)

shows the conformance zone (clear region) defined by these two con-

formance constraints. The shaded region depicts non-conformance

zone. The conformance zone is large and too permissive: it allows

many atypical tuples with respect to 𝐷 , such as (0, 4) and (4, 0).

A natural question arises: are there other projections that can

better characterize conformance with respect to the tuples in 𝐷?

The answer is yes and next we show another pair of projections

that shrink the conformance zone significantly.

Example 7. In Fig. 3(b), the clear region is defined by the confor-

mance constraints −0.8 ≤ 𝑋 −𝑌 ≤ 0.8 and −2.8 ≤ 𝑋 +𝑌 ≤ 10.8, over

projections 𝑋 − 𝑌 and 𝑋 + 𝑌 , respectively. The region is indeed much

smaller than the one in Fig. 3(a) and allows fewer atypical tuples.

How can we derive projection 𝑋 − 𝑌 from the projections 𝑋

and 𝑌 , given 𝐷? Note that 𝑋 and 𝑌 are highly correlated in 𝐷 . In

Lemma 11, we show that two highly-correlated projections can

be linearly combined to construct another projection with lower

standard deviation that generates a stronger constraint. We proceed

to formalize stronger constraint—which defines whether a con-

straint is more effective than another in quantifying violation—and

incongruous tuples—which help us estimate the subset of the data

domain for which a constraint is stronger than the others.

(a) (b)

Figure 3: Clear and shaded regions depict conformance and non-

conformance zones, respectively. (a) Correlated projections𝑋 and𝑌

yield conformance constraints forming a large conformance zone,

(b) Uncorrelated (orthogonal) projections 𝑋 − 𝑌 and 𝑋 + 𝑌 yield

conformance constraints forming a smaller conformance zone.

Definition 8 (Stronger constraint). A conformance con-

straint 𝜙1 is stronger than another conformance constraint 𝜙2 on

a subset 𝐻 ⊆ Dom𝑚 if ∀𝑡 ∈ 𝐻, [[𝜙1]] (𝑡) ≥ [[𝜙2]] (𝑡).
Given a dataset𝐷 ⊆ Dom𝑚 and a projection 𝐹 , for any tuple 𝑡 , let

Δ𝐹 (𝑡) = 𝐹 (𝑡) − 𝜇 (𝐹 (𝐷)). For projections 𝐹1 and 𝐹2, the correlation

coefficient 𝜌𝐹1,𝐹2 (over 𝐷) is defined as

1

|𝐷 |
∑
𝑡∈𝐷 Δ𝐹1 (𝑡)Δ𝐹2 (𝑡)

𝜎 (𝐹1 (𝐷))𝜎 (𝐹2 (𝐷)) .

Definition 9 (Incongruous tuple). A tuple 𝑡 is incongruous

w.r.t. a projection pair ⟨𝐹1, 𝐹2⟩on 𝐷 if: Δ𝐹1 (𝑡) · Δ𝐹2 (𝑡) · 𝜌𝐹1,𝐹2 < 0.

Informally, an incongruous tuple for a pair of projections does

not follow the general trend of correlation between the projection

pair. For example, if 𝐹1 and 𝐹2 are positively correlated (𝜌𝐹1,𝐹2 > 0),

an incongruous tuple 𝑡 deviates in opposite ways from the mean of

each projection (Δ𝐹1 (𝑡) ·Δ𝐹2 (𝑡) < 0). Our goal is to find projections

that yield a conformance zone with very few incongruous tuples.

Example 10. In Example 6, 𝑋 and 𝑌 are positively correlated with

𝜌𝑋,𝑌 ≈ 1. The tuple 𝑡 = (0, 4) is incongruous w.r.t. ⟨𝑋,𝑌 ⟩, because
𝑋 (𝑡) = 0 < 𝜇 (𝑋 (𝐷)) = 2, whereas 𝑌 (𝑡) = 4 > 𝜇 (𝑌 (𝐷)) = 2.

Intuitively, the incongruous tuples do not behave like the tuples in 𝐷

when viewed through the projections 𝑋 and 𝑌 . Note that the narrow

conformance zone of Fig. 3(b) no longer contains the incongruous

tuple (0, 4). In fact, the conformance zone defined by the conformance

constraints derived from projections 𝑋 − 𝑌 and 𝑋 + 𝑌 are free from a

vast majority of the incongruous tuples.

We proceed to state Lemma 11, which informally says that: any

two highly-correlated projections can be linearly combined to con-

struct a new projection to obtain a stronger constraint. We write 𝜙𝐹

to denote the conformance constraint lb ≤ 𝐹 (®𝐴) ≤ ub, synthesized
from 𝐹 . (All proofs are in the Appendix.)

Lemma 11. Let 𝐷 be a dataset and 𝐹1, 𝐹2 be two projections on 𝐷

s.t. |𝜌𝐹1,𝐹2 | ≥ 1

2
. Then, ∃𝛽1, 𝛽2 ∈ R s.t. 𝛽2

1
+ 𝛽2

2
= 1 and for the new

projection 𝐹 = 𝛽1𝐹1 + 𝛽2𝐹2:
(1) 𝜎 (𝐹 (𝐷)) < 𝜎 (𝐹1 (𝐷)) and 𝜎 (𝐹 (𝐷)) < 𝜎 (𝐹2 (𝐷)), and
(2) 𝜙𝐹 is stronger than both 𝜙𝐹1 and 𝜙𝐹2 on the set of tuples that are

incongruous w.r.t. ⟨𝐹1, 𝐹2⟩.
We now extend the result to multiple projections in Theorem 12.

Theorem 12 (Low Standard Deviation Constraints). Given

a dataset 𝐷 , let F={𝐹1, . . . , 𝐹𝐾 } denote a set of projections on 𝐷

s.t. ∃𝐹𝑖 , 𝐹 𝑗∈F with |𝜌𝐹𝑖 ,𝐹 𝑗 |≥ 1

2
. Then, there exist a nonempty subset

𝐼⊆{1, . . . , 𝐾} and a projection 𝐹=∑
𝑘∈𝐼 𝛽𝑘𝐹𝑘 , where 𝛽𝑘∈R s.t.

6

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

Algorithm 1: Procedure to generate linear projections.

Inputs :A dataset 𝐷 ⊂ Dom𝑚

Output :A set {(𝐹1, 𝛾1), . . . , (𝐹𝐾 , 𝛾𝐾) } of projections and
importance factors

1 𝐷𝑁 ← 𝐷 after dropping non-numerical attributes

2 𝐷′
𝑁
← [®1;𝐷𝑁]

3 { ®𝑤1, . . . , ®𝑤𝐾 } ← eigenvectors of 𝐷′
𝑁
𝑇𝐷′

𝑁

4 foreach 1 ≤ 𝑘 ≤ 𝐾 do

5 ®𝑤′
𝑘
← ®𝑤𝑘 with first element removed

6 𝐹𝑘 ← 𝜆 ®𝐴 :

®𝐴𝑇 ®𝑤′
𝑘

| | ®𝑤′
𝑘
| |

7 𝛾𝑘 ← 1

log(2+𝜎 (𝐹𝑘 (𝐷𝑁)))
8 return {(𝐹1, 𝛾1𝑍), . . . , (𝐹𝐾 ,

𝛾𝐾
𝑍
) }, where 𝑍 =

∑
𝑘 𝛾𝑘

(1) ∀𝑘 ∈ 𝐼 , 𝜎 (𝐹 (𝐷)) < 𝜎 (𝐹𝑘 (𝐷)),
(2) ∀𝑘 ∈ 𝐼 , 𝜙𝐹 is stronger than 𝜙𝐹𝑘 on the subset 𝐻 , where

𝐻={𝑡 | ∀𝑘∈𝐼 (𝛽𝑘Δ𝐹𝑘 (𝑡)≥0) ∨ ∀𝑘∈𝐼 (𝛽𝑘Δ𝐹𝑘 (𝑡)≤0)}, and
(3) ∀𝑘 ∉ 𝐼 , |𝜌𝐹,𝐹𝑘 | < 1

2
.

The theorem establishes that to detect violations for tuples in 𝐻 :

(1) projections with low standard deviations define stronger con-

straints (and are thus preferable), and (2) a set of constraints with

highly-correlated projections is suboptimal (as they can be linearly

combined to generate stronger constraints). Note that 𝐻 is a con-

servative estimate for the set of tuples where 𝜙𝐹 is stronger than

each 𝜙𝐹𝑘 ; there exist tuples outside 𝐻 for which 𝜙𝐹 is stronger.

Boundedprojections vs. convex polytope.Bounded projections

(Example 7) relate to the computation of convex polytopes [83].

A convex polytope is the smallest possible convex set of tuples

that includes all the training tuples; then any tuple falling outside

the polytope would be considered non-conforming. The problem

with using convex polytopes is that they overfit to the training

tuples and is extremely sensitive to outliers. For example, consider

a training dataset over attributes 𝑋 and 𝑌 : {(1, 10), (2, 20), (3, 30)}.
A convex polytope in this case would be a line segment—starting at

(1, 10) and ending at (3, 30)—and the tuple (5, 50) will fall outside
it.

Unlike convex polytope—whose goal is to find the smallest possi-

ble “inclusion zone” that includes all training tuples—our goal is to

find a “conformance zone” that reflects the trend of the training tu-

ples. This is inspired from the fact that ML models aim to generalize

to tuples outside training set; thus, conformance constraints also

need to capture trends and avoid overfitting. Our definition of good

conformance constraints (low variance and low mutual correlation)

balances overfitting and overgeneralization. Therefore, beyond the

minimal bounding hyper-box (i.e., a convex polytope) over the train-

ing tuples, we take into consideration the distribution (variance and

concentration) of the interaction among attributes (trends). For the

above example, conformance constraints will model the interaction

trend: 𝑌 = 10𝑋 allowing the tuple (5, 50), which follows the same

trend as the training tuples.

4.1.3 PCA-inspired Projection Derivation. Theorem 12 sets the re-

quirements for good projections (see also [51, 56, 84] that make

similar observations in different ways). It indicates that we can

start with any arbitrary projections and then iteratively improve

them. However, we can get the desired set of best projections in one

shot using an algorithm inspired by principal component analysis

(PCA). PCA relies on computing eigenvectors. There exist different

algorithms for computing eigenvectors (from the infinite space of

possible vectors). The general mechanism involves applying nu-

merical approaches to iteratively converge to the eigenvectors (up

to a desired precision) as no analytical solution exists in general.

Our algorithm returns projections that correspond to the principal

components of a slightly modified version of the given dataset.

Algorithm 1 details our approach for discovering projections for

constructing conformance constraints:

Line 1 Drop all non-numerical attributes from𝐷 to get the numeric

dataset 𝐷𝑁 . This is necessary because PCA only applies to numer-

ical values. Instead of dropping, one can also consider embedding

techniques to convert non-numerical attributes to numerical ones.

Line 2 Add a new column to 𝐷𝑁 that consists of the constant 1,

to obtain the modified dataset 𝐷 ′
𝑁

:= [®1;𝐷𝑁], where ®1 denotes the
column vector with 1 everywhere. We do this transformation to

capture the additive constant within principal components, which

ensures that the approach works even for unnormalized data.

Line 3 Compute 𝐾 eigenvectors of the square matrix 𝐷 ′
𝑁
𝑇𝐷 ′

𝑁
,

where 𝐾 denotes the number of columns in 𝐷 ′
𝑁
. These eigenvec-

tors provide coefficients to construct projections.

Lines 5–6 Remove the first element (coefficient for the newly

added constant column) of all eigenvectors and normalize them

to generate projections. Note that we no longer need the constant

element of the eigenvectors since we can appropriately adjust the

bounds, lb and ub, for each projection by evaluating it on 𝐷𝑁 .

Line 7 Compute importance factor for each projection. Since pro-

jectionswith smaller standard deviations aremore discerning (stronger),

as discussed in Section 3.2, we assign each projection an importance

factor (𝛾) that is inversely proportional to its standard deviation

over 𝐷𝑁 .

Line 8 Return the linear projections with corresponding normal-

ized importance factors.

We now claim that the projections returned by Algorithm 1

include the projection with minimum standard deviation and the

correlation between any two projections is 0. This indicates that we

cannot further improve the projections, and thus they are optimal.

Theorem 13 (Correctness of Algorithm 1). Given a numerical

dataset 𝐷 over the schema R, let F = {𝐹1, 𝐹2, . . . , 𝐹𝐾 } be the set of
linear projections returned by Algorithm 1. Let 𝜎∗ = min

𝐾
𝑘
𝜎 (𝐹𝑘 (𝐷)).

If 𝜇 (𝐴𝑘 (𝐷)) = 0 for all attribute 𝐴𝑘 in R, then,2
(1) 𝜎∗ ≤ 𝜎 (𝐹 (𝐷)) ∀𝐹 = ®𝐴𝑇 ®𝑤 where | | ®𝑤 | | ≥ 1, and

(2) ∀𝐹 𝑗 , 𝐹𝑘 ∈ F s.t. 𝐹 𝑗 ≠ 𝐹𝑘 , 𝜌𝐹 𝑗 ,𝐹𝑘 = 0.

Using projections 𝐹1, . . . , 𝐹𝐾 , and importance factors 𝛾1, . . . , 𝛾𝐾 ,

returned by Algorithm 1, we generate the simple (conjunctive) con-

straint with 𝐾 conjuncts:

∧
𝑘 lb𝑘 ≤ 𝐹𝑘 (®𝐴) ≤ ub𝑘 . We compute the

bounds lb𝑘 and ub𝑘 following Section 4.1.1 and use the importance

factor 𝛾𝑘 for the 𝑘𝑡ℎ conjunct in the quantitative semantics.

Example 14. Algorithm 1 finds the projection of the conformance

constraint of Example 1, but in a different form. The actual airlines

dataset has an attribute𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷𝐼𝑆) that represents miles travelled

2
When the condition ∀𝐴𝑘 𝜇 (𝐴𝑘 (𝐷)) = 0 does not hold, slightly modified variants

of the claim hold. However, by normalizing 𝐷 (i.e., by subtracting attribute mean

𝜇 (𝐴𝑘 (𝐷)) from each𝐴𝑘 (𝐷)), it is always possible to satisfy the condition.

7

Technical Report, January, 2021 Fariha and Tiwari, et al.

by a flight. In our experiments, we found the following conformance

constraint
3
over the dataset of daytime flights:

0.7 ×𝐴𝑇 − 0.7 ×𝐷𝑇 − 0.14 ×𝐷𝑈𝑅 − 0.07 ×𝐷𝐼𝑆 ≈ 0 (1)

This constraint is not quite interpretable by itself, but it is in fact a

linear combination of two expected and interpretable constraints:
4

𝐴𝑇 −𝐷𝑇 −𝐷𝑈𝑅 ≈ 0 (2)

𝐷𝑈𝑅 − 0.12 ×𝐷𝐼𝑆 ≈ 0 (3)

Here, (2) is the one mentioned in Example 1 and (3) follows from the

fact that average aircraft speed is about 500 mph implying that it

requires 0.12 minutes per mile. 0.7 × (2) + 0.56 × (3) yields:

0.7 × (𝐴𝑇 −𝐷𝑇 −𝐷𝑈𝑅) + 0.56 ×𝐷𝑈𝑅 − 0.56 × 0.12 ×𝐷𝐼𝑆 ≈ 0

=⇒ 0.7 ×𝐴𝑇 − 0.7 ×𝐷𝑇 − 0.14 ×𝐷𝑈𝑅 − 0.07 ×𝐷𝐼𝑆 ≈ 0

Which is exactly the conformance constraint (1). Algorithm 1 found

the optimal projection of (1), which is a linear combination of the

projections of (2) and (3). The reason is: there is a correlation between

the projections of (2) and (3) over the dataset (Theorem 12). One

possible explanation of this correlation is: whenever there is an error

in the reported duration of a tuple, it violates both (2) and (3). Due to

this natural correlation, Algorithm 1 returned the optimal projection

of (1), that “covers” both projections of (2) or (3).

4.2 Compound Conformance Constraints

The quality of our PCA-based simple linear constraints relies on

how many low variance linear projections we are able to find on

the given dataset. For many datasets, it is possible we find very few,

or even none, such linear projections. In these cases, it is fruitful

to search for compound constraints; we first focus on disjunctive

constraints (defined by𝜓𝐴 in our language grammar).

PCA-based approach fails in cases where there exist different

piecewise linear trends within the data, as it will result into low-

quality constraints, with very high variances. In such cases, par-

titioning the dataset and then learning constraints separately on

each partition will result in significant improvement of the learned

constraints. A disjunctive constraint is a compound constraint of

the form

∨
𝑘 ((𝐴 = 𝑐𝑘) ▷ 𝜙𝑘), where each 𝜙𝑘 is a constraint for

a specific partition of 𝐷 . Finding disjunctive constraints involves

horizontally partitioning the dataset𝐷 into smaller disjoint datasets

𝐷1, 𝐷2, . . . , 𝐷𝐿 . Our strategy for partitioning 𝐷 is to use categorical

attributes with a small domain in 𝐷 ; in our implementation, we

use those attributes 𝐴 𝑗 for which |{𝑡 .𝐴 𝑗 |𝑡 ∈ 𝐷}| ≤ 50. If 𝐴 𝑗 is

such an attribute with values 𝑣1, 𝑣2, . . . , 𝑣𝐿 , we partition 𝐷 into 𝐿

disjoint datasets 𝐷1, 𝐷2, . . . , 𝐷𝐿 , where 𝐷𝑙 = {𝑡 ∈ 𝐷 |𝑡 .𝐴 𝑗 = 𝑣𝑙 }. Let
𝜙1, 𝜙2, . . . , 𝜙𝐿 be the 𝐿 simple conformance constraints we learn

for 𝐷1, 𝐷2, . . . , 𝐷𝐿 using Algorithm 1, respectively. We compute the

following disjunctive conformance constraint for 𝐷 :

((𝐴 𝑗 = 𝑣1) ▷ 𝜙1) ∨ ((𝐴 𝑗 = 𝑣2) ▷ 𝜙2) ∨ · · · ∨ ((𝐴 𝑗 = 𝑣𝐿) ▷ 𝜙𝐿)
We repeat this process and partition 𝐷 across multiple attributes

and generate a compound disjunctive constraint for each attribute.

Then we generate the final compound conjunctive conformance

3
For ease of exposition, we use 𝐹 (®𝐴) ≈ 0 to denote 𝜖1 ≤ 𝐹 (®𝐴) ≤ 𝜖2 , where 𝜖𝑖 ≈ 0.

4
Interpretability is not our explicit goal, but we developed a tool [24] to explain causes

of non-conformance. More discussion and case studies are in the Appendix.

constraint (Ψ) for 𝐷 , which is the conjunction of all these disjunc-

tive constraints. Intuitively, this final conformance constraint forms

a set of overlapping hyper-boxes around the data tuples.

4.3 Theoretical Analysis

4.3.1 Runtime Complexity. Computing simple constraints involves

two computational steps: (1) computing 𝑋𝑇𝑋 , where 𝑋 is an 𝑛 ×𝑚
matrix with 𝑛 tuples (rows) and 𝑚 attributes (columns), which

takes O(𝑛𝑚2) time, and (2) computing the eigenvalues and eigen-

vectors of an𝑚 ×𝑚 positive definite matrix, which has complexity

O(𝑚3) [58]. Once we obtain the linear projections using the above

two steps, we need to compute the mean and variance of these

projections on the original dataset, which takes O(𝑛𝑚2) time. In

summary, the overall procedure is cubic in the number of attributes

and linear in the number of tuples. For computing disjunctive con-

straints, we greedily pick attributes that take at most 𝐿 (typically

small) distinct values, and then run the above procedure for sim-

ple constraints at most 𝐿 times. This adds just a constant factor

overhead per attribute.

4.3.2 Memory Complexity. The procedure can be implemented in

O(𝑚2) space. The key observation is that 𝑋𝑇𝑋 can be computed as∑𝑛
𝑖=1 𝑡𝑖𝑡

𝑇
𝑖
, where 𝑡𝑖 is the 𝑖

𝑡ℎ
tuple in the dataset. Thus, 𝑋𝑇𝑋 can

be computed incrementally by loading only one tuple at a time into

memory, computing 𝑡𝑖𝑡
𝑇
𝑖
, and then adding that to a running sum,

which can be stored in O(𝑚2) space. Note that instead of such an in-
cremental computation, this can also be done in an embarrassingly

parallel way where we horizontally partition the data (row-wise)

and each partition is computed in parallel.

4.3.3 Implication, Redundancy, and Minimality. Definition 8 gives

us the notion of implication on conformance constraints: for a

dataset 𝐷 , satisfying 𝜙1 that is stronger than 𝜙2 implies that 𝐷

would satisfy 𝜙2 as well. Lemma 11 and Theorem 12 associate re-

dundancy with correlation: correlated projections can be combined

to construct a new projection that makes the correlated projections

redundant. Theorem 13 shows that our PCA-based procedure finds

a non-redundant (orthogonal and uncorrelated) set of projections.

For disjunctive constraints, it is possible to observe redundancy

across partitions. However, our quantitative semantics ensures that

redundancy does not affect the violation score. Another notion

relevant to data profiles (e.g., FDs) is minimality. In this work, we

do not focus on finding the minimal set of conformance constraints.

Towards achieving minimality for conformance constraints, a fu-

ture direction is to explore techniques for optimal data partitioning.

However, our approach computes only𝑚 conformance constraints

for each partition. Further, for a single tuple, only𝑚𝑁 ·𝑚𝐶 confor-

mance constraints are applicable, where𝑚𝑁 and𝑚𝐶 are the number

of numerical and categorical attributes in 𝐷 (i.e.,𝑚 = 𝑚𝑁 +𝑚𝐶).
The quantity𝑚𝑁 ·𝑚𝐶 is upper-bounded by

𝑚2

4
.

5 TRUSTED MACHINE LEARNING

In this section, we provide a theoretical justification of why con-

formance constraints are effective in identifying tuples for which

learned models are likely to make incorrect predictions. To that

end, we define unsafe tuples and show that an “ideal” conformance

8

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

constraint provides a sound and complete mechanism to detect un-

safe tuples. In Section 4, we showed that low-variance projections

construct strong conformance constraints, which yield a small con-

formance zone. We now make a similar argument, but in a slightly

different way: we show that projections with zero variance give us

equality constraints that are useful for trusted machine learning.

We start with an example to provide the intuition.

Example 15. Consider the airlines dataset 𝐷 and assume that all

tuples in 𝐷 satisfy the equality constraint 𝜙 := 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 = 0

(i.e., lb = ub = 0). Note that for equality constraint, the corresponding

projection has zero variance—the lowest possible variance. Now, sup-

pose that the task is to learn some function 𝑓 (𝐴𝑇, 𝐷𝑇, 𝐷𝑈𝑅). If the
above constraint holds for 𝐷 , then the ML model can instead learn the

function 𝑔(𝐴𝑇, 𝐷𝑇, 𝐷𝑈𝑅) = 𝑓 (𝐷𝑇 +𝐷𝑈𝑅, 𝐷𝑇, 𝐷𝑈𝑅). 𝑔 will perform
just as well as 𝑓 on 𝐷 : in fact, it will produce the same output as

𝑓 on 𝐷 . If a new serving tuple 𝑡 satisfies 𝜙 , then 𝑔(𝑡) = 𝑓 (𝑡), and
the prediction will be correct. However, if 𝑡 does not satisfy 𝜙 , then

𝑔(𝑡) will likely be significantly different from 𝑓 (𝑡). Hence, violation
of the conformance constraint is a strong indicator of performance

degradation of the learned prediction model. Note that 𝑓 need not be

a linear function: as long as 𝑔 is also in the class of models that the

learning procedure is searching over, the above argument holds.

Based on the intuition of Example 15, we proceed to formally

define unsafe tuples. We use [𝐷 ;𝑌] to denote the annotated dataset

obtained by appending the target attribute 𝑌 to a dataset 𝐷 , and

coDom to denote 𝑌 ’s domain.

Definition 16 (Unsafe tuple). Given a class C of functions

with signature Dom𝑚 ↦→ coDom, and an annotated dataset [𝐷 ;𝑌] ⊂
(Dom𝑚 × coDom), a tuple 𝑡 ∈ Dom𝑚 is unsafe w.r.t. C and [𝐷 ;𝑌],
if ∃𝑓 , 𝑔 ∈ C s.t. 𝑓 (𝐷) = 𝑔(𝐷) = 𝑌 but 𝑓 (𝑡) ≠ 𝑔(𝑡).

Intuitively, 𝑡 is unsafe if there exist two different predictor func-

tions 𝑓 and 𝑔 that agree on all tuples in 𝐷 , but disagree on 𝑡 . Since,

we can never be sure whether the model learned 𝑓 or 𝑔, we should

be cautious about the prediction on 𝑡 . Example 15 suggests that 𝑡

can be unsafe when all tuples in 𝐷 satisfy the equality conformance

constraint 𝑓 (®𝐴) − 𝑔(®𝐴) = 0 but 𝑡 does not. Hence, we can use the

following approach for trusted machine learning:

(1) Learn conformance constraints Φ for the dataset 𝐷 .

(2) Declare 𝑡 as unsafe if 𝑡 does not satisfy Φ.

The above approach is sound and complete for characterizing

unsafe tuples, thanks to the following proposition.

Proposition 17. There exists a conformance constraint Φ for 𝐷

s.t. the following statement is true: “¬Φ(𝑡) iff 𝑡 is unsafe w.r.t. C and

[𝐷 ;𝑌] for all 𝑡 ∈ Dom𝑚”.

The required conformance constraint Φ is: ∀𝑓 , 𝑔 ∈ C : 𝑓 (𝐷) =
𝑔(𝐷) = 𝑌 ⇒ 𝑓 (®𝐴) −𝑔(®𝐴) = 0. Intuitively, when all possible pairs of

functions that agree on 𝐷 also agree on 𝑡 , only then the prediction

on 𝑡 can be trusted. (More discussion is in the Appendix.)

5.1 Applicability

Generalization to noisy setting. While our analysis and formal-

ization for using conformance constraints for TML focused on the

noise-free setting, the intuition generalizes to noisy data. Specifi-

cally, suppose that 𝑓 and 𝑔 are two possible functions a model may

learn over 𝐷 ; then, we expect that the difference 𝑓 − 𝑔 will have
small variance over 𝐷 , and thus would be a good conformance con-

straint. In turn, the violation of this constraint would mean that 𝑓

and 𝑔 diverge on a tuple 𝑡 (making 𝑡 unsafe); since we are oblivious

of the function the model learned, prediction on 𝑡 is untrustworthy.

False positives. Conformance constraints are designed to work in

a model-agnostic setting. Although this setting is of great practical

importance, designing a perfect mechanism for quantifying trust in

ML model predictions, while remaining completely model-agnostic,

is challenging. It raises the concern of false positives: conformance

constraints may incorrectly flag tuples for which the model’s predic-

tion is in fact correct. This may happen when the model ignores the

trend that conformance constraints learn. Since we are oblivious of

the prediction task and the model, it is preferable that conformance

constraints behave rather conservatively so that the users can be

cautious about potentially unsafe tuples. Moreover, if a model ig-

nores some attributes (or their interactions) during training, it is still

necessary to learn conformance constraints over them. Particularly,

in case of concept drift [81], the ground truth may start depending

on those attributes, and by learning conformance constraints over

all attributes, we can better detect potential model failures.

False negatives. Another concern involving conformance con-

straints is of false negatives: linear conformance constraints may

miss nonlinear constraints, and thus fail to identify some unsafe

tuples. However, the linear dependencies modeled in conformance

constraints persist even after sophisticated (nonlinear) attribute

transformations. Therefore, violation of conformance constraints is

a strong indicator of potential failure of a possibly nonlinear model.

Modeling nonlinear constraints.While linear conformance con-

straints are the most common ones, we note that our framework can

be easily extended to support nonlinear conformance constraints

using kernel functions [69]—which offer an efficient, scalable, and

powerful mechanism to learn nonlinear decision boundaries for sup-

port vector machines (also known as “kernel trick”). Briefly, instead

of explicitly augmenting the dataset with transformed nonlinear

attributes—which grows exponentially with the desired degree of

polynomials—kernel functions enable implicit search for nonlinear

models. The same idea also applies for PCA called kernel-PCA [9,

41]. While we limit our evaluation to only linear kernel, polynomial

kernels—e.g., radial basis function (RBF) [45]—can be plugged into

our framework to model nonlinear conformance constraints.

In general, our conformance language is not guaranteed to model

all possible functions that an ML model can potentially learn, and

thus is not guaranteed to find the best conformance constraint.

However, our empirical evaluation on real-world datasets shows

that our language models conformance constraints effectively.

6 EXPERIMENTAL EVALUATION

We now present experimental evaluation to demonstrate the ef-

fectiveness of conformance constraints over our two case-study

applications (Section 2): trusted machine learning and data drift.

Our experiments target the following research questions:

• How effective are conformance constraints for trusted machine

learning? Is there a relationship between constraint violation

score and the ML model’s prediction accuracy? (Section 6.1)

9

Technical Report, January, 2021 Fariha and Tiwari, et al.

• Can conformance constraints be used to quantify data drift?

How do they compare to other state-of-the-art drift-detection

techniques? (Section 6.2)

Efficiency. In all our experiments, our algorithms for deriving con-

formance constraints were extremely fast, and took only a few

seconds even for datasets with 6 million rows. The number of

attributes were reasonably small (∼40), which is true for most prac-

tical applications. As our theoretical analysis showed (Section 4.3),

our approach is linear in the number of data rows and cubic in

the number of attributes. Since the runtime performance of our

techniques is straightforward, we opted to not include further dis-

cussion of efficiency here and instead focus this empirical analysis

on the techniques’ effectiveness.

Implementation: CCSynth.We created an open-source imple-

mentation of conformance constraints and our method for synthe-

sizing them, CCSynth, in Python 3. Experiments were run on a

Windows 10 machine (3.60 GHz processor and 16GB RAM).

Datasets

Airlines [8] contains data about flights and has 14 attributes —year,

month, day, day of week, departure time, arrival time, carrier, flight

number, elapsed time, origin, destination, distance, diverted, and

arrival delay. We used a subset of the data containing all flight

information for year 2008. In this dataset, most of the attributes

follow uniform distribution (e.g., month, day, arrival and departure

time, etc.); elapsed time and distance follow skewed distribution

with higher concentration towards small values (implying that

shorter flights are more common); arrival delay follows a slightly

skewed gaussian distribution implying most flights are on-time, few

arrive late and even fewer arrive early. The training and serving

datasets contain 5.4M and 0.4M rows, respectively.

HumanActivity Recognition (HAR) [78] is a real-world dataset

about activities for 15 individuals, 8 males and 7 females, with

varying fitness levels and BMIs. We use data from two sensors—

accelerometer and gyroscope—attached to 6 body locations—head,

shin, thigh, upper arm, waist, and chest. We consider 5 activities—

lying, running, sitting, standing, and walking. The dataset con-

tains 36 numerical attributes (2 sensors × 6 body-locations × 3 co-

ordinates) and 2 categorical attributes—activity-type and person-ID.

We pre-processed the dataset to aggregate the measurements over

a small time window, resulting in 10,000 tuples per person and

activity, for a total of 750,000 tuples.

Extreme Verification Latency (EVL) [74] is a widely used bench-

mark to evaluate drift-detection algorithms in non-stationary en-

vironments under extreme verification latency. It contains 16 syn-

thetic datasets with incremental and gradual concept drifts over

time. The number of attributes of these datasets vary from 2 to 6

and each of them has one categorical attribute.

6.1 Trusted Machine Learning

We now demonstrate the applicability of conformance constraints

in the TML problem. We show that, serving tuples that violate the

training data’s conformance constraints are unsafe, and therefore,

an ML model is more likely to perform poorly on those tuples.

Airlines. We design a regression task of predicting the arrival

delay and train a linear regression model for the task. Our goal

Train

Serving

Daytime Overnight Mixed

Average violation 0.02% 0.02% 27.68% 8.87%

MAE 18.95 18.89 80.54 38.60

Figure 4: Average constraint violation (in percentage) and MAE (for

linear regression) of four data splits on the airlines dataset. The con-

straints were learned on Train, excluding the target attribute, delay.

0 200 400 600 800 1000
Tuples (sampled)

0

100

200

300

Ab
so

lu
te

 e
rro

r

0.0

0.2

0.4

0.6

Vi
ol

at
io

n

Violation

Figure 5: Constraint violation strongly correlates with the absolute

error of delay prediction of a linear regression model.

is to observe whether the mean absolute error of the predictions

(positively) correlates to the constraint violation for the serving

tuples. In a process analogous to the one described in Example 1, our

training dataset (Train) comprises of a subset of daytime flights—

flights that have arrival time later than the departure time (in 24

hour format). We design three serving sets: (1) Daytime: similar to

Train, but another subset, (2) Overnight: flights that have arrival
time earlier than the departure time (the dataset does not explicitly

report the date of arrival), and (3) Mixed: a mixture of Daytime
and Overnight. A few sample tuples of this dataset are in Fig. 1.

Our experiment involves the following steps: (1) CCSynth com-

putes conformance constraints Φ over Train, while ignoring the tar-
get attribute delay. (2) We compute average constraint violation for

all four datasets—Train, Daytime, Overnight, and Mixed—against
Φ (first row of Fig. 4). (3) We train a linear regression model over

Train—including delay—that learns to predict arrival delay. (4) We

compute mean absolute error (MAE) of the prediction accuracy

of the regressor over the four datasets (second row of Fig. 4). We

find that constraint violation is a very good proxy for prediction

error, as they vary in a similar manner across the four datasets. The

reason is that the model implicitly assumes that the constraints

(e.g., 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≈ 0) derived by CCSynth will always hold,

and, thus, deteriorates when the assumption no longer holds.

To observe the rate of false positives and false negatives, we inves-

tigate the relationship between constraint violation and prediction

error at tuple-level granularity. We sample 1000 tuples from Mixed
and organize them by decreasing order of violations (Fig. 5). For all

the tuples (on the left) that incur high constraint violations, the re-

gression model incurs high error for them as well. This implies that

CCSynth reports no false positives. There are some false negatives

(right part of the graph), where violation is low, but the prediction

error is high. Nevertheless, such false negatives are very few.

HAR. On the HAR dataset, we design a supervised classification

task to identify persons from their activity data that contains 36

numerical attributes. We construct train_x with data for seden-

tary activities (lying, standing, and sitting), and train_y with the

corresponding person-IDs. We learn conformance constraints on

train_x, and train a Logistic Regression (LR) classifier using the

10

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

annotated dataset [train_x; train_y]. During serving, we mix mo-

bile activities (walking and running) with held-out data for seden-

tary activities and observe how the classification’s mean accuracy-

drop (i.e., how much the mean prediction accuracy decreases com-

pared to themean prediction accuracy over the training data) relates

to average constraint violation. To avoid any artifact due to sam-

pling bias, we repeat this experiment 10 times for different subsets

of the data by randomly sampling 5000 data points for each of

training and serving. Fig. 6(a) depicts our findings: classification

degradation has a clear positive correlation with violation (pcc =

0.99 with p-value = 0).

Noise sensitivity. Intuitively, noiseweakens conformance constraints

by increasing variance in the training data, which results in reduced

violations of the serving data. However, this is desirable: as more

noise makes machine-learned models less likely to overfit, and,

thus, more robust. In our experiment for observing noise sensitivity

of conformance constraints, we use only mobile activity data as the

serving set and start with sedentary data as the training set. Then

we gradually introduce noise in the training set by mixing mobile

activity data. As Fig. 6(b) shows, when more noise is added to the

training data, conformance constraints start getting weaker; this

leads to reduction in violations. However, the classifier also becomes

robust with more noise, which is evident from gradual decrease in

accuracy-drop (i.e., increase in accuracy). Therefore, even under the

presence of noise, the positive correlation between classification

degradation and violation persists (pcc = 0.82 with p-value = 0.002).

Key takeaway: CCSynth derives conformance constraints whose

violation is a strong proxy of model prediction accuracy. Their

correlation persists even in the presence of noise.

6.2 Data Drift

We now present results of using conformance constraints for drift-

detection; specifically, for quantifying drift in data. Given a baseline

dataset 𝐷 , and a new dataset 𝐷 ′, the drift is measured as average

violation of tuples in 𝐷 ′ on conformance constraints learned for 𝐷 .

HAR.We perform two drift-quantification experiments on HAR:

Gradual drift. For observing how CCSynth detects gradual drift, we

introduce drift in an organic way. The initial training dataset con-

tains data of exactly one activity for each person. This is a realistic

scenario as one can think of it as taking a snapshot of what a group

of people are doing during a reasonably small time window. We

introduce gradual drift to the initial dataset by altering the activity

of one person at a time. To control the amount of drift, we use a

parameter 𝐾 . When 𝐾 = 1, the first person switches their activity,

i.e., we replace the tuples corresponding to the first person perform-

ing activity A with new tuples that correspond to the same person

performing another activity B. When 𝐾 = 2, the second person

switches their activity in a similar fashion, and so on. As we increase

𝐾 from 1 to 15, we expect a gradual increase in the drift magnitude

compared to the initial training data. When𝐾 = 15, all persons have

switched their activities from the initial setting, and we expect to

observemaximum drift. We repeat this experiment 10 times, and dis-

play the average constraint violation in Fig. 6(c): the drift magnitude

(violation) indeed increases as more people alter their activities.

10 30 50 70 90

Fraction of mobile data (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
C

v
io

la
ti

on
/

ac
c-

d
ro

p

CCSynth

Classifier (LR)

5 15 25 35 45 55

Noise (%) during training

CCSynth

Classifier (LR)

(a) (b)

1 3 5 7 9 11 13 15

#Persons

0.0

0.2

0.4

A
ve

ra
ge

v
io

la
ti

on DI

W-PCA

SynthCC

(c)

Figure 6: (a) As a higher fraction of mobile activity data is mixed

with sedentary activity data, conformance constraints are violated

more, and the classifier’smean accuracy-drop increases. (b) Asmore

noise is added during training, conformance constraints get weaker,

leading to less violation and decreased accuracy-drop. (c) CCSynth

detects the gradual local drift on the HAR dataset as more people

start changing their activities. In contrast, weighted-PCA (W-PCA)

fails to detect drift in absence of a strong global drift.

Figure 7: Inter-person constraint violation heat map. Each person

has a very low self-violation.

The baseline weighted-PCA approach (W-PCA) fails to model

local constraints (who is doing what), and learns some weaker

global constraints indicating that “a group of people are perform-

ing some activities”. Thus, it fails to detect the gradual local drift.

CCSynth can detect drift when individuals switch activities, as it

learns disjunctive constraints that encode who is doing what.

Inter-person drift. The goal of this experiment is to observe how

effectively conformance constraints can model the representation

of an entity and whether such learned representations can be used

to accurately quantify drift between two entities. We use half of

each person’s data to learn the constraints, and compute violation

on the held-out data. CCSynth learns disjunctive constraints for

each person over all activities, and then we use the violation w.r.t.

the learned constraints to measure how much the other persons

drift. While computing drift between two persons, we compute

activity-wise constraint violation scores and then average them out.

In Fig. 7, the violation score at row p1 and column p2 denotes how

much p2 drifts from p1. As one would expect, we observe a very low
self-drift across the diagonal. Interestingly, our result also shows

that some people are more different from others, which appears

to have some correlation with (the hidden ground truth) fitness

and BMI values. This asserts that the constraints we learn for each

11

Technical Report, January, 2021 Fariha and Tiwari, et al.

0.0

0.5

1.0

1CDT

CD-MKL CD-Area PCA-SPLL (25%) DISynth

2CDT 1CHT 2CHT 4CR 4CRE-V1 4CRE-V2 5CVT

0 0.5 1

Time step (norm.)

0.0

0.5

1.0

C
h

an
ge

(n
or

m
al

iz
ed

)

1CSurr

0 0.5 1

Time step (norm.)

4CE1CF

0 0.5 1

Time step (norm.)

UG-2C-2D

0 0.5 1

Time step (norm.)

MG-2C-2D

0 0.5 1

Time step (norm.)

FG-2C-2D

0 0.5 1

Time step (norm.)

UG-2C-3D

0 0.5 1

Time step (norm.)

UG-2C-5D

0 0.5 1

Time step (norm.)

GEARS-2C-2D

CC

Figure 8: In the EVL benchmark, CCSynth quantifies drift correctly for all cases, outperforming other approaches. PCA-SPLL fails to detect

drift in a few cases by discarding all principal components; CD-MKL and CD-Area are too sensitive to small drift and detect spurious drifts.

person are an accurate abstraction of that person’s activities, as

people do not deviate too much from their usual activity patterns.

EVL. We now compare CCSynth against other state-of-the-art

drift detection approaches on the EVL benchmark.

Baselines. We use two drift-detection baselines as described below:

(1) PCA-SPLL [51]
5
, similar to us, also argues that principal

components with lower variance are more sensitive to a general

drift, and uses those for dimensionality reduction. It then models

multivariate distribution over the reduced dimensions and applies

semi-parametric log-likelihood (SPLL) to detect drift between two

multivariate distributions. However, PCA-SPLL discards all high-

variance principal components and does not model disjunctive

constraints.

(2) CD (Change Detection) [63]
6
is another PCA-based approach

for drift detection in data streams. But unlike PCA-SPLL, it ignores

low-variance principal components. CD projects the data onto top

𝑘 high-variance principal components, which results into multiple

univariate distributions. We compare against two variants of CD:

CD-Area, which uses the intersection area under the curves of

two density functions as a divergence metric, and CD-MKL, which

uses Maximum KL-divergence as a symmetric divergence metric,

to compute divergence between the univariate distributions.

Fig. 8 depicts how CCSynth compares against CD-MKL, CD-

Area, and PCA-SPLL, on 16 datasets in the EVL benchmark. For

PCA-SPLL, we retain principal components that contribute to a

cumulative explained variance below 25%. Beyond drift detection,

which just detects if drift is above some threshold, we focus on drift

quantification. A tuple (𝑥,𝑦) in the plots denotes that drift magni-

tude for dataset at 𝑥𝑡ℎ time window, w.r.t. the dataset at the first

time window, is 𝑦. Since different approaches report drift magni-

tudes in different scales, we normalize the drift values within [0, 1].
Additionally, since different datasets have different number of time

windows, for the ease of exposition, we normalize the time window

indices. Below we state our key findings from this experiment:

CCSynth’s drift quantification matches the ground truth. In all of

the datasets in the EVL benchmark, CCSynth is able to correctly

quantify the drift, which matches the ground truth [2] exceptionally

well. In contrast, as CD focuses on detecting the drift point, it is

ill-equipped to precisely quantify the drift, which is demonstrated

5
SPLL source code: github.com/LucyKuncheva/Change-detection

6
CD source code: mine.kaust.edu.sa/Pages/Software.aspx

in several cases (e.g., 2CHT), where CD fails to distinguish the devia-

tion in drift magnitudes. In contrast, both PCA-SPLL and CCSynth

correctly quantify the drift. Since CD only retains high-variance

principal components, it is more susceptible to noise and considers

noise in the dataset as significant drift, which leads to incorrect

drift quantification. In contrast, PCA-SPLL and CCSynth ignore

the noise and only capture the general notion of drift. In all of the

EVL datasets, we found CD-Area to work better than CD-MKL,

which also agrees with the authors’ experiments.

CCSynth models local drift.When the dataset contains instances

frommultiple classes, the drift may be just local, and not global (e.g.,

4CR dataset as shown in the Appendix). In such cases, PCA-SPLL

fails to detect drift (4CR, 4CRE-V2, and FG-2C-2D). In contrast,

CCSynth learns disjunctive constraints and quantifies local drifts

accurately.

Key takeaways: CCSynth can effectively detect data drift, both

global and local, is robust across drift patterns, and significantly

outperforms the state-of-the-art methods.

7 RELATEDWORK

There is extensive literature on data-profiling [5] primitives that

model relationships among data attributes, such as functional de-

pendencies (FD) [59, 93] and their variants (metric [48], condi-

tional [23], soft [38], approximate [36, 50], relaxed [16], pattern [62],

etc.), differential dependencies [72], denial constraints [13, 17, 53,

61], statistical constraints [91], etc. However, none of them focus on

learning approximate arithmetic relationships that involve multiple

numerical attributes in a noisy setting, which is the focus of our

work. Some variants of FDs [16, 36, 38, 48, 50] consider noisy set-

ting, but they require noise parameters to be explicitly specified by

the user. In contrast, we do not require any explicit noise parameter.

The issue of trust, resilience, and interpretability of artificial

intelligence (AI) systems has been a theme of increasing interest

recently [39, 42, 67, 86], particularly for safety-critical data-driven

AI systems [80, 87]. A standard way to decide whether to trust a

classifier or not, is to use the classifier-produced confidence score.

However, as a prior work [41] argues, this is not always effec-

tive since the classifier’s confidence scores are not well-calibrated.

While some recent techniques [20, 31, 41, 68] aim at validating

the inferences made by machine-learned models on unseen tuples,

they usually require knowledge of the inference task, access to

the model, and/or expected cases of data shift, which we do not.

Furthermore, they usually require costly hyper-parameter tuning

12

github.com/LucyKuncheva/Change-detection
mine.kaust.edu.sa/Pages/Software.aspx

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

and do not generate closed-form data profiles like conformance

constraints (Fig. 2). Prior work on data drift, change detection, and

covariate shift [7, 11, 14, 18, 19, 21, 22, 25, 26, 33, 34, 37, 44, 46, 66,

70, 71, 73, 82, 88] relies on modeling data distribution. However,

data distribution does not capture constraints, which is the primary

focus of our work.

Few works [20, 31, 54] use autoencoder’s [32, 65] input recon-

struction error to determine if a new data point is out-of-distribution.

Our approach is similar to outlier-detection [49] and one-class-

classification [79]. However, conformance constraints differ from

these approaches as they perform under the additional requirement

to generalize the data in a way that is exploited by a given class

of ML models. In general, there is a clear gap between represen-

tation learning (that models data likelihood) [6, 32, 43, 65] and

the (constraint-oriented) data-profiling techniques to address the

problem of trusted AI and our aim is to bridge this gap.

8 SUMMARY AND FUTURE DIRECTIONS

We introduced conformance constraints, and the notion of unsafe

tuples for trusted machine learning. We presented an efficient and

highly-scalable approach for synthesizing conformance constraints;

and demonstrated their effectiveness to tag unsafe tuples and quan-

tify data drift. The experiments validate our theory and our principle

of using low-variance projections to generate effective conformance

constraints. We have studied only two use-cases from a large pool

of potential applications using linear conformance constraints. In

future, we want to explore more powerful nonlinear conformance

constraints using autoencoders. Moreover, we plan to explore ap-

proaches to learn conformance constraints in a decision-tree-like

structure where categorical attributes will guide the splitting con-

ditions and leaves will contain simple conformance constraints.

Further, we envision a mechanism—built on top of conformance

constraints—to explore differences between datasets.

REFERENCES

[1] Cardiovascular disease: https://www.kaggle.com/sulianova/cardiovascular-

disease-dataset, Feb 2020.

[2] Extreme verification latency benchmark video (nonstationary environments -

archive): sites.google.com/site/nonstationaryarchive/home, Feb 2020.

[3] House prices: Advanced regression techniques: Advanced regression techniques.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data,

Feb 2020.

[4] Mobile prices: https://www.kaggle.com/iabhishekofficial/mobile-price-

classification, Feb 2020.

[5] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: a survey. VLDB

J., 24(4):557–581, 2015.

[6] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Learning representations

and generative models for 3d point clouds. arXiv preprint arXiv:1707.02392, 2017.

[7] C. C. Aggarwal. A framework for diagnosing changes in evolving data streams.

In SIGMOD, pages 575–586, 2003.

[8] Airlines dataset., 2019. http://kt.ijs.si/elena_ikonomovska/data.html.

[9] C. Alzate and J. A. Suykens. Kernel component analysis using an epsilon-

insensitive robust loss function. IEEE Transactions on Neural Networks, 19(9):1583–

1598, 2008.

[10] J. P. Barddal, H. M. Gomes, F. Enembreck, and B. Pfahringer. A survey on feature

drift adaptation: Definition, benchmark, challenges and future directions. Journal

of Systems and Software, 127:278–294, 2017.

[11] A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive win-

dowing. In SDM, pages 443–448, 2007.

[12] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: massive online analysis.

J. Mach. Learn. Res., 11:1601–1604, 2010.

[13] T. Bleifuß, S. Kruse, and F. Naumann. Efficient denial constraint discovery with

hydra. PVLDB, 11(3):311–323, 2017.

[14] L. Bu, C. Alippi, and D. Zhao. A pdf-free change detection test based on density

difference estimation. IEEE Trans. Neural Netw. Learning Syst., 29(2):324–334,

2018.

[15] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using parse tree validation to

prevent SQL injection attacks. In International Workshop on Software Engineering

and Middleware, SEM, pages 106–113, 2005.

[16] L. Caruccio, V. Deufemia, and G. Polese. On the discovery of relaxed functional

dependencies. In Proceedings of the 20th International Database Engineering &

Applications Symposium, pages 53–61, 2016.

[17] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. PVLDB,

6(13):1498–1509, 2013.

[18] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. An information-theoretic

approach to detecting changes in multi-dimensional data streams. In Symp. on

the Interface of Statistics, Computing Science, and Applications, 2006.

[19] R. F. de Mello, Y. Vaz, C. H. G. Ferreira, and A. Bifet. On learning guarantees

to unsupervised concept drift detection on data streams. Expert Syst. Appl.,

117:90–102, 2019.

[20] T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan, and S. Vernekar.

Improving reconstruction autoencoder out-of-distribution detection with maha-

lanobis distance. CoRR, abs/1812.02765, 2018.

[21] D. M. dos Reis, P. A. Flach, S. Matwin, and G. E. A. P. A. Batista. Fast unsupervised

online drift detection using incremental kolmogorov-smirnov test. In SIGKDD,

pages 1545–1554, 2016.

[22] W. J. Faithfull, J. J. R. Diez, and L. I. Kuncheva. Combining univariate approaches

for ensemble change detection in multivariate data. Information Fusion, 45:202–

214, 2019.

[23] W. Fan, F. Geerts, L. V. S. Lakshmanan, and M. Xiong. Discovering conditional

functional dependencies. In ICDE, pages 1231–1234, 2009.

[24] A. Fariha, A. Tiwari, A. Radhakrishna, and S. Gulwani. ExTuNe: Explaining tuple

non-conformance. In SIGMOD, pages 2741–2744, 2020.

[25] M. M. Gaber and P. S. Yu. Classification of changes in evolving data streams

using online clustering result deviation. In Proc. Of International Workshop on

Knowledge Discovery in Data Streams, 2006.

[26] J. Gama, P. Medas, G. Castillo, and P. P. Rodrigues. Learning with drift detection.

In Advances in Artificial Intelligence - SBIA, pages 286–295, 2004.

[27] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on

concept drift adaptation. ACM Comput. Surv., 46(4):44:1–44:37, 2014.

[28] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern

neural networks. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 1321–1330, 2017.

[29] J. H. Hayes and A. J. Offutt. Increased software reliability through input vali-

dation analysis and testing. In International Symposium on Software Reliability

Engineering, ISSRE, pages 199–209, 1999.

[30] A. Heise, J. Quiané-Ruiz, Z. Abedjan, A. Jentzsch, and F. Naumann. Scalable

discovery of unique column combinations. PVLDB, 7(4):301–312, 2013.

[31] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-

distribution examples in neural networks. In ICLR, 2017.

[32] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. science, 313(5786):504–507, 2006.

[33] S. Ho. A martingale framework for concept change detection in time-varying

data streams. In ICML, pages 321–327, 2005.

[34] B. Hooi and C. Faloutsos. Branch and border: Partition-based change detection

in multivariate time series. In SDM, pages 504–512, 2019.

[35] R. A. Horn and C. R. Johnson. Matrix Analysis. New York, NY, USA, 2nd edition,

2012.

[36] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. Tane: An efficient algo-

rithm for discovering functional and approximate dependencies. The computer

journal, 42(2):100–111, 1999.

[37] D. Ienco, A. Bifet, B. Pfahringer, and P. Poncelet. Change detection in categorical

evolving data streams. In SAC, pages 792–797, 2014.

[38] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and A. Aboulnaga. CORDS: automatic

discovery of correlations and soft functional dependencies. In SIGMOD, pages

647–658, 2004.

[39] S. Jha. Trust, resilience and interpretability of AI models. In Numerical Software

Verification - 12th International Workshop, NSV@CAV, pages 3–25, 2019.

[40] H. Jiang, S. G. Elbaum, and C. Detweiler. Inferring and monitoring invariants in

robotic systems. Auton. Robots, 41(4):1027–1046, 2017.

[41] H. Jiang, B. Kim, M. Y. Guan, and M. R. Gupta. To trust or not to trust A classifier.

In NeurIPS, pages 5546–5557, 2018.

[42] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia. Model assertions for monitoring

and improving ML models. In MLSys, 2020.

[43] T. Karaletsos, S. Belongie, and G. Rätsch. Bayesian representation learning with

oracle constraints. arXiv preprint arXiv:1506.05011, 2015.

[44] Y. Kawahara and M. Sugiyama. Change-point detection in time-series data by

direct density-ratio estimation. In SDM, pages 389–400, 2009.

[45] S. S. Keerthi and C.-J. Lin. Asymptotic behaviors of support vector machines

with gaussian kernel. Neural computation, 15(7):1667–1689, 2003.

13

https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
sites.google.com/site/nonstationaryarchive/home
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/iabhishekofficial/mobile-price-classification
https://www.kaggle.com/iabhishekofficial/mobile-price-classification
http://kt.ijs.si/elena_ikonomovska/data.html

Technical Report, January, 2021 Fariha and Tiwari, et al.

[46] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In

PVLDB, pages 180–191, 2004.

[47] R. Koch. Sql database performance tuning for developers. https://moa.cms.

waikato.ac.nz/datasets/, Sep 2013.

[48] N. Koudas, A. Saha, D. Srivastava, and S. Venkatasubramanian. Metric functional

dependencies. In ICDE, pages 1275–1278, 2009.

[49] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Outlier detection in arbitrarily

oriented subspaces. In 2012 IEEE 12th international conference on data mining,

pages 379–388, 2012.

[50] S. Kruse and F. Naumann. Efficient discovery of approximate dependencies.

PVLDB, 11(7):759–772, 2018.

[51] L. I. Kuncheva and W. J. Faithfull. PCA feature extraction for change detection

in multidimensional unlabeled data. IEEE Trans. Neural Netw. Learning Syst.,

25(1):69–80, 2014.

[52] P. Langer and F. Naumann. Efficient order dependency detection. VLDB J.,

25(2):223–241, 2016.

[53] E. Livshits, A. Heidari, I. F. Ilyas, and B. Kimelfeld. Approximate denial constraints.

CoRR, abs/2005.08540, 2020.

[54] H. Lu, H. Xu, N. Liu, Y. Zhou, and X. Wang. Data sanity check for deep learning

systems via learnt assertions. CoRR, abs/1909.03835, 2019.

[55] F. D. Marchi, S. Lopes, and J. Petit. Unary and n-ary inclusion dependency

discovery in relational databases. J. Intell. Inf. Syst., 32(1):53–73, 2009.

[56] T. Martin and I. K. Glad. Online detection of sparse changes in high-dimensional

data streams using tailored projections. arXiv preprint arXiv:1908.02029, 2019.

[57] Z. Ouyang, Y. Gao, Z. Zhao, and T. Wang. Study on the classification of data

streams with concept drift. In International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD), volume 3, pages 1673–1677, 2011.

[58] V. Y. Pan and Z. Q. Chen. The complexity of the matrix eigenproblem. In ACM

Symposium on Theory of Computing, pages 507–516, 1999.

[59] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P. Rudolph, M. Schönberg,

J. Zwiener, and F. Naumann. Functional dependency discovery: An experimental

evaluation of seven algorithms. PVLDB, 8(10):1082–1093, 2015.

[60] T. Papenbrock, S. Kruse, J.-A. Quiané-Ruiz, and F. Naumann. Divide & conquer-

based inclusion dependency discovery. PVLDB, 8(7):774–785, 2015.

[61] E. H. Pena, E. C. de Almeida, and F. Naumann. Discovery of approximate (and

exact) denial constraints. PVLDB, 13(3):266–278, 2019.

[62] A. Qahtan, N. Tang, M. Ouzzani, Y. Cao, and M. Stonebraker. Pattern functional

dependencies for data cleaning. PVLDB, 13(5):684–697, 2020.

[63] A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang. A pca-based change detection

framework for multidimensional data streams: Change detection in multidimen-

sional data streams. In SIGKDD, pages 935–944, 2015.

[64] M. T. Ribeiro, S. Singh, and C. Guestrin. “why should I trust you?”: Explaining

the predictions of any classifier. In SIGKDD, pages 1135–1144, 2016.

[65] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-

tions by error propagation. Technical report, California Univ San Diego La Jolla

Inst for Cognitive Science, 1985.

[66] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda. A new method for data

stream mining based on the misclassification error. IEEE Trans. Neural Netw.

Learning Syst., 26(5):1048–1059, 2015.

[67] S. Saria and A. Subbaswamy. Tutorial: Safe and reliable machine learning. CoRR,

abs/1904.07204, 2019.

[68] S. Schelter, T. Rukat, and F. Bießmann. Learning to validate the predictions of

black box classifiers on unseen data. In SIGMOD, pages 1289–1299, 2020.

[69] B. Schölkopf, A. J. Smola, F. Bach, et al. Learning with kernels: support vector

machines, regularization, optimization, and beyond. 2002.

[70] T. S. Sethi and M. M. Kantardzic. On the reliable detection of concept drift from

streaming unlabeled data. Expert Syst. Appl., 82:77–99, 2017.

[71] T. S. Sethi, M. M. Kantardzic, and E. Arabmakki. Monitoring classification

blindspots to detect drifts from unlabeled data. In IEEE International Conference

on Information Reuse and Integration, IRI, pages 142–151, 2016.

[72] S. Song and L. Chen. Differential dependencies: Reasoning and discovery. ACM

Transactions on Database Systems (TODS), 36(3):1–41, 2011.

[73] X. Song, M. Wu, C. M. Jermaine, and S. Ranka. Statistical change detection for

multi-dimensional data. In SIGKDD, pages 667–676, 2007.

[74] V. M. A. Souza, D. F. Silva, J. Gama, and G. E. A. P. A. Batista. Data stream

classification guided by clustering on nonstationary environments and extreme

verification latency. In SDM, pages 873–881, 2015.

[75] A. Subbaswamy, P. Schulam, and S. Saria. Preventing failures due to dataset

shift: Learning predictive models that transport. In International Conference on

Artificial Intelligence and Statistics, AISTATS, pages 3118–3127, 2019.

[76] C. A. Sutton, T. Hobson, J. Geddes, and R. Caruana. Data diff: Interpretable,

executable summaries of changes in distributions for data wrangling. In SIGKDD,

pages 2279–2288, 2018.

[77] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and D. Srivastava. Effective and

complete discovery of order dependencies via set-based axiomatization. PVLDB,

10(7):721–732, 2017.

[78] T. Sztyler and H. Stuckenschmidt. On-body localization of wearable devices: An

investigation of position-aware activity recognition. In PerCom, pages 1–9, 2016.

[79] D. M. J. Tax and K. Müller. Feature extraction for one-class classification. In

ICANN/ICONIP, pages 342–349, 2003.

[80] A. Tiwari, B. Dutertre, D. Jovanovic, T. de Candia, P. Lincoln, J. M. Rushby,

D. Sadigh, and S. A. Seshia. Safety envelope for security. In HiCoNS, pages 85–94,

2014.

[81] A. Tsymbal. The problem of concept drift: definitions and related work. Computer

Science Department, Trinity College Dublin, 106(2):58, 2004.

[82] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen. Handling local con-

cept drift with dynamic integration of classifiers: Domain of antibiotic resistance

in nosocomial infections. In IEEE International Symposium on Computer-Based

Medical Systems (CBMS), pages 679–684, 2006.

[83] F. Turchini, L. Seidenari, and A. Del Bimbo. Convex polytope ensembles for spatio-

temporal anomaly detection. In International Conference on Image Analysis and

Processing, pages 174–184, 2017.

[84] M. Tveten. Which principal components are most sensitive to distributional

changes? arXiv preprint arXiv:1905.06318, 2019.

[85] V. Vapnik, S. E. Golowich, and A. J. Smola. Support vector method for function

approximation, regression estimation and signal processing. In NeurIPS, pages

281–287, 1997.

[86] K. R. Varshney. Trustworthy machine learning and artificial intelligence. ACM

Crossroads, 25(3):26–29, 2019.

[87] K. R. Varshney and H. Alemzadeh. On the safety of machine learning: Cyber-

physical systems, decision sciences, and data products. Big Data, 5(3):246–255,

2017.

[88] H. Wang and Z. Abraham. Concept drift detection for imbalanced stream data.

CoRR, abs/1504.01044, 2015.

[89] G. Wassermann and Z. Su. Sound and precise analysis of web applications for

injection vulnerabilities. In PLDI, pages 32–41, 2007.

[90] L. White and E. I. Cohen. A domain strategy for computer program testing. IEEE

Trans. Software Engineering, SE-6(3):247–257, 1980.

[91] J. N. Yan, O. Schulte, M. Zhang, J. Wang, and R. Cheng. SCODED: statistical

constraint oriented data error detection. In SIGMOD, pages 845–860, 2020.

[92] S. Yu, Z. Abraham, H. Wang, M. Shah, Y. Wei, and J. C. Príncipe. Concept drift

detection and adaptation with hierarchical hypothesis testing. J. Franklin Institute,

356(5):3187–3215, 2019.

[93] Y. Zhang, Z. Guo, and T. Rekatsinas. A statistical perspective on discovering

functional dependencies in noisy data. In SIGMOD, pages 861–876, 2020.

A SYSTEM PARAMETERS

Our technique for deriving (unnormalized) importance factor𝛾𝑘 , for

bounded-projection constraint on projection 𝐹𝑘 , uses the mapping

1

log(2+𝜎 (𝐹𝑘 (𝐷))) . This mapping correctly translates our principles

for quantifying violation by putting high weight on conformance

constraints constructed from low-variance projections, and low

weight on conformance constraints constructed from high-variance

projections.While this mappingworks extremely well across a large

set of applications (including the ones shown in our experimental

results), our quantitative semantics are not limited to any specific

mapping. In fact, the function to compute importance factors for

bounded-projections can be user-defined (but we do not require it

from the user). Specifically, a user can plug in any custom function

to derive the (unnormalized) importance factors. Furthermore, our

technique to compute the bounds lb and ub can also be customized

(but we do not require it from the user either). Depending on the

application requirements, one can apply techniques used in ma-

chine learning literature (e.g., cross-validation) to tighten or loosen

the conformance constraints by tuning these parameters. However,

we found our technique—even without any cross-validation—for

deriving these parameters to be very effective in most practical

applications.

B PROOF OF LEMMA 11

Proof. Pick 𝛽1, 𝛽2 s.t. 𝛽
2

1
+ 𝛽2

2
= 1 and the following equation

holds:

sign(𝜌𝐹1,𝐹2)𝛽1𝜎 (𝐹1 (𝐷)) + 𝛽2𝜎 (𝐹2 (𝐷)) = 0 (4)

14

https://moa.cms.waikato.ac.nz/datasets/
https://moa.cms.waikato.ac.nz/datasets/

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

Let 𝑡 be any tuple that is incongruous w.r.t. ⟨𝐹1, 𝐹2⟩. Now, we com-

pute how far 𝑡 is from the mean of the projection 𝐹 on 𝐷 :

|Δ𝐹 (𝑡) | = |𝐹 (𝑡) − 𝜇 (𝐹 (𝐷)) |
= |𝛽1𝐹1 (𝑡) + 𝛽2𝐹2 (𝑡) − 𝜇 (𝛽1𝐹1 (𝐷) + 𝛽2𝐹2 (𝐷)) |
= |𝛽1Δ𝐹1 (𝑡) + 𝛽2Δ𝐹2 (𝑡) |
= |𝛽1Δ𝐹1 (𝑡) | + |𝛽2Δ𝐹2 (𝑡) |

The last step is correct only when 𝛽1Δ𝐹1 (𝑡) and 𝛽2Δ𝐹2 (𝑡) are of
same sign. We prove this by cases:

(Case 1). 𝜌𝐹1,𝐹2 ≥ 1

2
. In this case, 𝛽1 and 𝛽2 are of different signs due

to Equation 4.Moreover, since 𝑡 is incongruousw.r.t. ⟨𝐹1, 𝐹2⟩,Δ𝐹1 (𝑡)
and Δ𝐹2 (𝑡) are of different signs. Hence, 𝛽1Δ𝐹1 (𝑡) and 𝛽2Δ𝐹2 (𝑡)
are of same sign.

(Case 2). 𝜌𝐹1,𝐹2 ≤ − 1

2
. In this case, 𝛽1 and 𝛽2 have the same sign

due to Equation 4. Moreover, since 𝑡 is incongruous w.r.t. ⟨𝐹1, 𝐹2⟩,
Δ𝐹1 (𝑡) and Δ𝐹2 (𝑡) are of same sign. Hence, 𝛽1Δ𝐹1 (𝑡) and 𝛽2Δ𝐹2 (𝑡)
are of same sign.

Next, we compute the variance of 𝐹 on 𝐷 :

𝜎 (𝐹 (𝐷))2= 1

|𝐷 |
∑︁
𝑡 ∈𝐷
(𝛽1Δ𝐹1 (𝑡)+𝛽2Δ𝐹2 (𝑡))2

=𝛽2
1
𝜎 (𝐹1 (𝐷))2+𝛽22𝜎 (𝐹2 (𝐷))

2

+2𝛽1𝛽2𝜌𝐹1,𝐹2𝜎 (𝐹1 (𝐷))𝜎 (𝐹2 (𝐷))
=𝛽2

1
𝜎 (𝐹1 (𝐷))2+𝛽21𝜎 (𝐹1 (𝐷))

2−2𝛽2
1
|𝜌𝐹1,𝐹2 |𝜎 (𝐹1 (𝐷))

2

=2𝛽2
1
𝜎 (𝐹1 (𝐷))2 (1 − |𝜌𝐹1,𝐹2 |)

Hence, 𝜎 (𝐹 (𝐷)) =
√︁
2(1 − |𝜌𝐹1,𝐹2 |) |𝛽1 |𝜎 (𝐹1 (𝐷)), which is also

equal to

√︁
2(1 − |𝜌𝐹1,𝐹2 |) |𝛽2 |𝜎 (𝐹2 (𝐷)). Since

√︁
2(1 − |𝜌𝐹1,𝐹2 |) | ≤ 1,

and since |𝛽𝑘 | < 1, we conclude that 𝜎 (𝐹 (𝐷)) < 𝜎 (𝐹𝑘 (𝐷)).
Now, we compute

|Δ𝐹 (𝑡) |
𝜎 (𝐹 (𝐷)) next using the above derived facts

about |Δ𝐹 (𝑡) | and 𝜎 (𝐹 (𝐷)).

|Δ𝐹 (𝑡) |
𝜎 (𝐹 (𝐷)) >

|𝛽1Δ𝐹1 (𝑡) |√︁
2(1 − |𝜌𝐹1,𝐹2 |) |𝛽1 |𝜎 (𝐹1 (𝐷))

=
|Δ𝐹1 (𝑡) |√︁

2(1 − |𝜌𝐹1,𝐹2 |)𝜎 (𝐹1 (𝐷))
≥ |Δ𝐹1 (𝑡) |
𝜎 (𝐹1 (𝐷))

The last step uses the fact that |𝜌𝐹1,𝐹2 | ≥ 1

2
. Similarly, we also get

|Δ𝐹 (𝑡) |
𝜎 (𝐹 (𝐷)) >

|Δ𝐹2 (𝑡) |
𝜎 (𝐹2 (𝐷)) . Hence, 𝜙𝐹 is stronger than both 𝜙𝐹1 and 𝜙𝐹2 on

𝑑 , using Lemma 5. This completes the proof. □

C PROOF OF THEOREM 12

Proof. First, we use Lemma 11 on 𝐹𝑖 , 𝐹 𝑗 to construct 𝐹 . We

initialize 𝐼 := {𝑖, 𝑗}. Next, we repeatedly do the following: We

iterate over all 𝐹𝑘 , where 𝑘 ∉ 𝐼 , and check if |𝜌𝐹,𝐹𝑘 | ≥ 1

2
for some

𝑘 . If yes, we use Lemma 11 (on 𝐹 and 𝐹𝑘) to update 𝐹 to be the new

projection returned by the lemma. We update 𝐼 := 𝐼 ∪ {𝑘}, and
continue the iterations. If |𝜌𝐹,𝐹𝑘 | < 1

2
for all 𝑘 ∉ 𝐼 , then we stop.

The final 𝐹 and index set 𝐼 can easily be seen to satisfy the claims

of the theorem. □

D PROOF OF THEOREM 13

We first provide some additional details regarding the statement

of the theorem. Since standard deviation is not scale invariant, if

there is no constraint on the norm of the linear projections, then

it is possible to scale down the linear projections to make their

standard deviations arbitrarily small. Therefore, claim (1) can not

be proved for any linear projection, but only linear projections

whose 2-norm is not too “small”. Hence, we restate the theorem

with some additional technical conditions.

Given a numerical dataset 𝐷 , let F = {𝐹1, 𝐹2, . . . , 𝐹𝐾 } be

the set of linear projections returned by Algorithm 1. Let 𝜎∗ =

min
𝐾
𝑘
𝜎 (𝐹𝑘 (𝐷)). WLOG, assume 𝜎∗ = 𝜎 (𝐹1 (𝐷)) where 𝐹1 = ®𝐴𝑇 ®𝑤∗.

Assume that the attribute mean is zero for all attributes in 𝐷 (call

this Condition 1). Then,

(1) 𝜎∗ ≤ 𝜎 (𝐹 (𝐷)) for every possible linear projection 𝐹 whose 2-

norm is sufficiently large, i.e., we require | | ®𝑤 | | ≥ 1 for 𝐹 = ®𝐴𝑇 ®𝑤 .

If we do not assume Condition 1, then the requirement changes

to | | ®𝑤 | | ≥ | | ®𝑤∗𝑒 | |−𝜇 (𝐷𝑇 ®𝑤) | |. Here ®𝑤∗𝑒 is the vector constructed
by augmenting a dimension to ®𝑤∗ to turn it to an eigenvector

of 𝐷𝑒𝑇𝐷𝑒 where 𝐷𝑒 = [®1;𝐷].
(2) ∀𝐹 𝑗 , 𝐹𝑘 ∈ F s.t. 𝐹 𝑗 ≠ 𝐹𝑘 , 𝜌𝐹 𝑗 ,𝐹𝑘 = 0. If we do not assume

Condition 1, then the correlation coefficient is close to 0 for

those 𝐹 𝑗 , 𝐹𝑘 whose corresponding eigenvalues are much smaller

than |𝐷 |.

Proof. The proof uses the following facts:

(Fact 1) If we add a constant 𝑐 to each element of a set 𝑆 of real

values to get a new set 𝑆 ′, then 𝜎 (𝑆) = 𝜎 (𝑆 ′).
(Fact 2) The Courant-Fischer min-max theorem [35] states that the

vector ®𝑤 that minimizes | |𝑀 ®𝑤 | |/| | ®𝑤 | | is the eigenvector of 𝑀𝑇𝑀
corresponding to the lowest eigenvalue (for any matrix𝑀).

(Fact 3) Since 𝐷 ′
𝑁

:= [®1;𝐷𝑁], by definition: 𝜎 (𝐷𝑁 ®𝑤) =
| |𝐷′

𝑁
®𝑤′ | |√
|𝐷 |

,

where ®𝑤 ′ =
[
−𝜇 (𝐷𝑁 ®𝑤)
®𝑤

]
(Fact 4) By the definition of variance, 𝜎 (𝑆)2 = | |𝑆 | |2 − 𝜇 (𝑆)2.

Let 𝐹 = ®𝐴𝑇 ®𝑤 be an arbitrary linear projection. Since 𝐷 is nu-

merical, 𝐷 = 𝐷𝑁 . Let 𝐷
𝑒
denote 𝐷 ′

𝑁
. (We use the superscript 𝑒 to

denote the augmented vector/matrix).

𝜎 (𝐷𝑇 ®𝑤)2

= 𝜎 (𝐷𝑇 ®𝑤 − ®1𝜇)2 (Fact 1), 𝜇 = 𝜇 (𝐷𝑇 ®𝑤)

= 𝜎 (𝐷𝑒𝑇 ®𝑤𝑒)2 where ®𝑤𝑒 =
[
−𝜇
®𝑤

]
=
| |𝐷𝑒𝑇 ®𝑤𝑒 | |2
|𝐷 | (Fact 3)

≥ | |𝐷
𝑒𝑇 ®𝑤∗𝑒 | |2 · | | ®𝑤𝑒 | |2
|𝐷 | · | | ®𝑤∗𝑒 | |2 (Fact 2)

= (𝜎 (𝐷𝑒𝑇 ®𝑤∗𝑒)2 + 𝑏2) · | | ®𝑤
𝑒 | |2

| | ®𝑤∗𝑒 | |2 (Fact 4), 𝑏 = 𝜇 (𝐷𝑒𝑇 ®𝑤∗𝑒)

= (𝜎 (𝐷𝑇 ®𝑤∗ + 𝑐)2 + 𝑏2) · | | ®𝑤
𝑒 | |2

| | ®𝑤∗𝑒 | |2 Expand 𝐷𝑒𝑇 ®𝑤∗𝑒

= (𝜎 (𝐷𝑇 ®𝑤∗)2 + 𝑏2) · | | ®𝑤
𝑒 | |2

| | ®𝑤∗𝑒 | |2 (Fact 1)

= (𝜎∗2 + 𝑏2) · | | ®𝑤
𝑒 | |2

| | ®𝑤∗𝑒 | |2 definition of 𝜎∗

≥ 𝜎∗2 by assumption
| | ®𝑤𝑒 | |2
| | ®𝑤∗𝑒 | |2 ≥ 1

15

Technical Report, January, 2021 Fariha and Tiwari, et al.

For the last step, we use the technical condition that the norm of

the extension of ®𝑤 (extended by augmenting the mean over 𝐷 ®𝑤) is

at least as large as the norm of extension of ®𝑤∗ (extended to make

it an eigenvector of 𝐷𝑒𝑇𝐷𝑒). When Condition 1 holds, | | ®𝑤𝑒 | |2 =

| | ®𝑤 | |2 (because 𝜇 (𝐹 (𝐷)) will be 0 and therefore, ®𝑤𝑒 =
[

0

®𝑤

]
), and

| | ®𝑤∗𝑒 | |2 = 1 (for the same reason), and hence
| | ®𝑤𝑒 | |2
| | ®𝑤∗𝑒 | |2 ≥ 1.

For part (2) of the claim, let 𝐹𝑖 = ®𝐴𝑇 ®𝑤𝑖 for all 𝑖 , where ®𝑤𝑖 are the
coefficients of the linear projection 𝐹𝑖 . Let 𝑐𝑖 = 𝜇 (𝐹𝑖 (𝐷)).
(Fact 5) If Condition 1 holds, ∀𝑖 𝑐𝑖 = 0.

By construction of 𝐹𝑖 ’s, we know that𝑤𝑖 can be extended to be

an eigenvector

[
𝑑𝑖
®𝑤𝑖

]
of 𝐷𝑒𝑇𝐷𝑒 (with corresponding eigenvalue

𝜆𝑖). In general,

(Fact 6) It is easy to work out that 𝑑𝑖 =
−𝑐𝑖

1− 𝜆𝑖|𝐷 |
.

Thus, we have:

𝜌𝐹 𝑗 ,𝐹𝑘

=

∑
𝑡∈𝐷 Δ𝐹 𝑗 (𝑡)Δ𝐹𝑘 (𝑡)

|𝐷 |𝜎 (𝐹 𝑗 (𝐷))𝜎 (𝐹𝑘 (𝐷)) (definition of 𝜌)

=
(𝐷 ®𝑤𝑗−𝑐 𝑗 ®1)𝑇 (𝐷 ®𝑤𝑘−𝑐𝑘 ®1)
|𝐷 |𝜎 (𝐹 𝑗 (𝐷))𝜎 (𝐹𝑘 (𝐷))

=
(𝐷𝑒 ®𝑤𝑒

𝑗
)𝑇𝐷𝑒 ®𝑤𝑒

𝑘

|𝐷 |𝜎 (𝐹 𝑗 (𝐷))𝜎 (𝐹𝑘 (𝐷)) 𝑤𝑒
𝑖
=

[
−𝑐𝑖
®𝑤𝑖

]
=

®𝑤𝑒𝑇
𝑗
𝐷𝑒𝑇𝐷𝑒 ®𝑤𝑒

𝑘

|𝐷 |𝜎 (𝐹 𝑗 (𝐷))𝜎 (𝐹𝑘 (𝐷))

=
®𝑤𝑒𝑇
𝑗
𝜆𝑘 ®𝑤𝑒𝑘

|𝐷 |𝜎 (𝐹 𝑗 (𝐷))𝜎 (𝐹𝑘 (𝐷)) (Fact 5,6), 𝐷𝑒𝑇𝐷𝑒 ®𝑤𝑒
𝑘
= 𝜆𝑘 ®𝑤𝑒𝑘

= 0 (eigenvectors are orthogonal)

When Condition 1 does not hold, Fact 5 would not hold, but Fact 6

continues to hold, and hence by continuity, if | 𝜆𝑖|𝐷 | | is close to 0,

then 𝑑𝑖 will be close to −𝑐𝑖 , and 𝜌𝐹 𝑗 ,𝐹𝑘 will be close to 0.

□

E PROOF OF PROPOSITION 17

Proof. We show that the conformance constraint Φ :=

∀𝑓 , 𝑔 ∈ C : 𝑓 (𝐷) = 𝑔(𝐷) ⇒ 𝑓 (𝑡) − 𝑔(𝑡) = 0, is the required

conformance constraint over𝐷 to detect tuples that are unsafe with

respect to C and [𝐷 ;𝑌].
First, we claim that Φ is a conformance constraint for 𝐷 . For

this, we need to prove that every tuple in 𝐷 satisfies Φ. Consider
any 𝑡 ′ ∈ 𝐷 . We need to prove that 𝑓 (𝑡 ′) = 𝑔(𝑡 ′) for all 𝑓 , 𝑔 ∈ C s.t.

𝑓 (𝐷) = 𝑔(𝐷) = 𝑌 . Since 𝑡 ′ ∈ 𝐷 , and since 𝑓 (𝐷) = 𝑔(𝐷), it follows
that 𝑓 (𝑡 ′) = 𝑔(𝑡 ′). This shows that Φ is a conformance constraint

for every tuple in 𝐷 .

Next, we claim that Φ is not satisfied by exactly tuples that are

unsafe w.r.t. C and [𝐷 ;𝑌]. Consider any 𝑡 ′ such that ¬Φ(𝑡 ′). By
definition of Φ, it follows that there exist 𝑓 , 𝑔 ∈ C s.t. 𝑓 (𝐷) =

𝑔(𝐷) = 𝑌 , but 𝑓 (𝑡 ′) ≠ 𝑔(𝑡 ′). This is equivalent to saying that 𝑡 ′ is
unsafe, by definition. □

F MOTIVATION FOR DISJUNCTIVE

CONFORMANCE CONSTRAINTS

We now provide an example motivating the need for disjunctive

conformance constraints.

Example 18. PCA-based approach fails in cases where there exist

different piecewise linear trends within the data. If we apply PCA

to learn conformance constraints on the entire dataset of Fig. 9(a), it

will learn two low-quality constraints, with very high variance. In

contrast, partitioning the dataset into three partitions (Fig. 9(b)), and

then learning constraints separately on each partition, will result in

significant improvement of the learned constraints.

G IMPLICATION FOR UNSAFE TUPLES

Here, we provide justification for our definition of unsafe tuples.

Proposition 19. If 𝑡 ∈ Dom𝑚 is a unsafe tuple w.r.t. C and

[𝐷 ;𝑌], then for any 𝑓 ∈ C s.t. 𝑓 (𝐷) = 𝑌 , there exists a 𝑔 ∈ C s.t.

𝑔(𝐷) = 𝑌 but 𝑓 (𝑡) ≠ 𝑔(𝑡).

Proof. By the definition of unsafe tuple, there exist 𝑔,𝑔′ ∈ C s.t.

𝑔(𝐷) = 𝑔′(𝐷) = 𝑌 , but 𝑔(𝑡) ≠ 𝑔′(𝑡). Now, given a function 𝑓 ∈ C
s.t. 𝑓 (𝐷) = 𝑌 , the value 𝑓 (𝑡) can be either equal to 𝑔(𝑡) or 𝑔′(𝑡), but
not both. WLOG, say 𝑓 (𝑡) ≠ 𝑔(𝑡). Then, we have found a function

𝑔 s.t. 𝑔(𝐷) = 𝑌 but 𝑓 (𝑡) ≠ 𝑔(𝑡), which completes the proof. □

Note that even when we mark 𝑡 as unsafe, it is possible that the

learned model makes the correct prediction on that tuple. However,

there is a good chance that it makes a different prediction. Hence,

it is useful to be aware of unsafe tuples.

Conformance Constraints as Preconditions for

Trusted Machine Learning

Let C denote a class of functions. Given a dataset 𝐷 , suppose that a

tuple 𝑡 is unsafe. This means that there exist 𝑓 , 𝑔 ∈ C s.t. 𝑓 (𝑡) ≠ 𝑔(𝑡),
but 𝑓 (𝐷) = 𝑔(𝐷). Now, consider the logical claim that 𝑓 (𝐷) = 𝑔(𝐷).
Clearly, 𝑓 is not identical to 𝑔 since 𝑓 (𝑡) ≠ 𝑔(𝑡). Therefore, there is
a nontrivial “proof” (in some logic) of the fact that “for all tuples

𝑡 ∈ 𝐷 : 𝑓 (𝑡) = 𝑔(𝑡)”. This “proof” will use some properties of𝐷 , and

let 𝜙 be the formula denoting these facts. If 𝜙𝐷 is the characteristic

function for 𝐷 , then the above argument can be written as,

𝜙𝐷 (®𝐴) ⇒ 𝜙 (®𝐴), and 𝜙 (®𝐴) ⇒ 𝑓 (®𝐴) = 𝑔(®𝐴)

where⇒ denotes logical implication.

In words, 𝜙 is a conformance constraint for 𝐷 and it serves as

a precondition in the “correctness proof” that shows (a potentially

machine-learned model) 𝑓 is equal to (potentially a ground truth)

𝑔. If a tuple 𝑡 fails to satisfy the precondition 𝜙 , then it is possible

that the prediction of 𝑓 on 𝑡 will not match the ground truth 𝑔(𝑡).

Example 20. Let 𝐷 = {(0, 1), (0, 2), (0, 3)} be a dataset with two

attributes 𝐴1, 𝐴2, and let the output 𝑌 be 1, 2, and 3, respectively. Let

C ⊆ ((R×R) ↦→ R) be the class of linear functions over two variables
𝐴1 and𝐴2. Consider a new tuple (1, 4). It is unsafe since there exist two
different functions, namely 𝑓 (𝐴1, 𝐴2) = 𝐴2 and 𝑔(𝐴1, 𝐴2) = 𝐴1 +𝐴2,

that agree with each other on 𝐷 , but disagree on (1, 4). In contrast,

(0, 4) is not unsafe because there is no function in C that maps 𝐷

to 𝑌 , but produces an output different from 4. We apply Proposi-

tion 17 on the sets 𝐷 , 𝑌 , and C. Here, C is the set of all linear func-

tions given by {𝛼𝐴1 + 𝐴2 | 𝛼 ∈ R}. The conformance constraint Φ,
whose negation characterizes the unsafe tuples w.r.t. C and [𝐷 ;𝑌],
is ∀𝛼1, 𝛼2 : 𝛼1𝐴1 +𝐴2 = 𝛼2𝐴1 +𝐴2, which is equivalent to 𝐴1 = 0.

16

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

X

Y

(a) PCA

X

Y

(b) Disjoint PCA

Figure 9: Learning PCA-based constraints globally results in low

quality constraints when data satisfies strong local constraints.

Sufficient Check for Unsafe Tuples

In practice, finding conformance constraints that are necessary and

sufficient for detecting if a tuple is unsafe is difficult. Hence, we

focus on weaker constraints whose violation is sufficient, but not

necessary, to classify a tuple as unsafe. We can use such constraints

to get a procedure that has false negatives (fails to detect some

unsafe tuples), but no false positives (never identifies a tuple as

unsafe when it is not).

Model Transformation using Equality Constraints. For certain con-

formance constraints, we can prove that a constraint violation by

𝑡 implies that 𝑡 is unsafe by showing that those constraints can

transform a model 𝑓 that works on𝐷 to a different model𝑔 that also

works on 𝐷 , but 𝑓 (𝑡) ≠ 𝑔(𝑡). We claim that equality constraints

(of the form 𝐹 (®𝐴) = 0) are useful in this regard. First, we make the

point using the scenario from Example 20.

Example 21. Consider the set C of functions, and the annotated

dataset [𝐷 ;𝑌] from Example 15. The two functions 𝑓 and 𝑔, where

𝑓 (𝐴1, 𝐴2) = 𝐴2 and 𝑔(𝐴1, 𝐴2) = 𝐴1 +𝐴2, are equal when restricted

to 𝐷 ; that is, 𝑓 (𝐷) = 𝑔(𝐷). What property of 𝐷 suffices to prove

𝑓 (𝐴1, 𝐴2) = 𝑔(𝐴1, 𝐴2), i.e.,𝐴2 = 𝐴1+𝐴2? It is𝐴1 = 0. Going the other

way, if we have 𝐴1 = 0, then 𝑓 (𝐴1, 𝐴2) = 𝐴2 = 𝐴1 +𝐴2 = 𝑔(𝐴1, 𝐴2).
Therefore, we can use the equality constraint 𝐴1 = 0 to transform the

model 𝑓 into the model 𝑔 in such a way that the 𝑔 continues to match

the behavior of 𝑓 on 𝐷 . Thus, an equality constraint can be exploited

to produce multiple different models starting from one given model.

Moreover, if 𝑡 violates the equality constraint, then it means that the

models, 𝑓 and 𝑔, would not agree on their prediction on 𝑡 ; for example,

this happens for 𝑡 = (1, 4).
Let 𝐹 (®𝐴) = 0 be an equality constraint for the dataset 𝐷 . If a

learned model 𝑓 returns a real number, then it can be transformed

into another model 𝑓 + 𝐹 , which will agree with 𝑓 only on tuples

𝑡 where 𝐹 (𝑡) = 0. Thus, in the presence of equality constraints, a

learner can return 𝑓 or its transformed version 𝑓 +𝐹 (if both models

are in the class C). This condition is a “relevancy” condition that

says that 𝐹 is “relevant” for class C. If the model does not return a

real, then we can still use equality constraints to modify the model

under some assumptions that include “relevancy” of the constraint.

A Theorem for Sufficient Check for Unsafe Tuples. We first formalize

the notions of nontrivial datasets—which are annotated datasets

such that at least two output labels differ—and relevant constraints—

which are constraints that can be used to transform models in a

class to other models in the same class.

Nontrivial. An annotated dataset [𝐷 ;𝑌] is nontrivial if there exist
𝑖, 𝑗 s.t. 𝑦𝑖 ≠ 𝑦 𝑗 .

Relevant. A constraint 𝐹 (®𝐴) = 0 is relevant to a class C of models

if whenever 𝑓 ∈ C, then 𝜆𝑡 : 𝑓 (ite(𝛼𝐹 (𝑡), 𝑡𝑐 , 𝑡)) ∈ C for a constant

tuple 𝑡𝑐 and real number 𝛼 . The if-then-else function ite(𝑟, 𝑡𝑐 , 𝑡)
returns 𝑡𝑐 when 𝑟 = 1, returns 𝑡 when 𝑟 = 0, and is free to re-

turn anything otherwise. If tuples admit addition, subtraction, and

scaling, then one such if-then-else function is 𝑡 + 𝑟 ∗ (𝑡𝑐 − 𝑡).
We now state a sufficient condition for identifying unsafe tuples.

Theorem 22 (SufficientCheck forUnsafe Tuples). Let [𝐷 ;𝑌] ⊂
Dom𝑚 × coDom be an annotated dataset, C be a class of functions,

and 𝐹 be a projection on Dom𝑚 s.t.

A1. 𝐹 (®𝐴) = 0 is a strict constraint for 𝐷 ,

A2. 𝐹 (®𝐴) = 0 is relevant to C,
A3. [𝐷 ;𝑌] is nontrivial, and
A4. there exists 𝑓 ∈ C s.t. 𝑓 (𝐷) = 𝑌 .

For 𝑡 ∈ Dom𝑚 , if 𝐹 (𝑡) ≠ 0, then 𝑡 is unsafe.

Proof. WLOG, let 𝑡1, 𝑡2 be the two tuples in 𝐷 s.t. 𝑦1 ≠ 𝑦2 (A3).

Since 𝑓 (𝐷) = 𝑌 (A4), it follows that 𝑓 (𝑡1) = 𝑦1 ≠ 𝑦2 = 𝑓 (𝑡2).
Let 𝑡 be a new tuple s.t. 𝐹 (𝑡) ≠ 0. Clearly, 𝑓 (𝑡) can not be equal

to both 𝑦1 and 𝑦2. WLOG, suppose 𝑓 (𝑡) ≠ 𝑦1. Now, consider the
function 𝑔 defined by 𝜆𝜏 : 𝑓 (ite(𝐹 (𝜏), 𝑡1, 𝜏)). By (A2), we know

that 𝑔 ∈ C. Note that 𝑔(𝐷) = 𝑌 since for any tuple 𝑡𝑖 ∈ 𝐷 , 𝐹 (𝑡𝑖) = 0

(A1), and hence 𝑔(𝑡𝑖) = 𝑓 (ite(0, 𝑡1, 𝑡𝑖)) = 𝑓 (𝑡𝑖) = 𝑦𝑖 . Thus, we

have two models, 𝑓 and 𝑔, s.t. 𝑓 (𝐷) = 𝑔(𝐷) = 𝑌 . To prove that

𝑡 is a unsafe tuple, we have to show that 𝑓 (𝑡) ≠ 𝑔(𝑡). Note that
𝑔(𝑡) = 𝑓 (ite(𝐹 (𝑡), 𝑡1, 𝑡)) = 𝑓 (𝑡1) = 𝑦1 (by definition of 𝑔). Since

we already had 𝑓 (𝑡) ≠ 𝑦1, it follows that we have 𝑓 (𝑡) ≠ 𝑔(𝑡). This
completes the proof. □

We caution that our definition of unsafe is liberal: existence of

even one pair of functions 𝑓 , 𝑔—that differ on 𝑡 , but agree on the

training set 𝐷—is sufficient to classify 𝑡 as unsafe. It ignores issues

related to the probabilities of finding these models by a learning

procedure. Our intended use of Theorem 22 is to guide the choice

for the class of constraints, given the class C of models, so that we

can use violation of a constraint in that class as an indication for

caution. For most classes of models, linear arithmetic constraints

are relevant. Our formal development has completely ignored that

data (in machine learning applications) is noisy, and exact equality

constraints are unlikely to exist. However, the development above

can be extended to the noisy case by replacing exact equality is

replaced by approximate equality. For example, when learning from

dataset 𝐷 and ground-truth 𝑓 ′, we may not always learn a 𝑓 that

exactly matches 𝑓 ′ on 𝐷 , but is only close (in some metric) to

𝑓 ′. Similarly, equality constraints need not require 𝐹 (𝑡) = 0 for all

𝑡 ∈ 𝐷 , but only 𝐹 (𝑡) ≈ 0 for some suitable definition of approximate

equality. For ease of presentation, we have restricted ourselves to

the simpler setting, which nevertheless brings out the salient points.

Example 23. Consider the annotated dataset [𝐷 ;𝑌] and the class
C, from Example 21. Consider the equality constraint 𝐹 (𝐴1, 𝐴2) = 0,

where the projection 𝐹 is defined as 𝐹 (𝐴1, 𝐴2) = 𝐴1. Clearly, 𝐹 (𝐷) =
{0 0 0}, and hence, 𝐹 (𝐴1, 𝐴2) = 0 is a constraint for𝐷 . The constraint

is also relevant to the class of linear models C. Clearly, [𝐷 ;𝑌] is
nontrivial, since 𝑦1 = 1 ≠ 2 = 𝑦2. Also, there exists 𝑓 ∈ C (e.g.,

𝑓 (𝐴1, 𝐴2) = 𝐴2) s.t. 𝑓 (𝐷) = 𝑌 . Now, consider the tuple 𝑡 = (1, 4).
Since 𝐹 (𝑡) = 1 ≠ 0, Theorem 22 implies that 𝑡 is unsafe.

17

Technical Report, January, 2021 Fariha and Tiwari, et al.

SQL Check Constraints

Due to the simplicity of the conformance language to express con-

formance constraints, they can be easily enforced as SQL check

constraints to prevent insertion of unsafe tuples to a database.

H APPLICATIONS OF CONFORMANCE

CONSTRAINTS

In database systems, conformance constraints can be used to detect

change in data and query workloads, which can help in database

tuning [47]. They have application in data cleaning (error detec-

tion and missing value imputation): the violation score serves as

a measure of error, and missing values can be imputed by exploit-

ing relationships among attributes that conformance constraints

capture. Conformance constraints can detect outliers by expos-

ing tuples that significantly violate them. Another interesting data

management application is data-diff [76] for exploring differences

between two datasets: our disjunctive constraints can explain how

different partitions of two datasets vary.

In machine learning, conformance constraints can be used to

suggest when to retrain a machine-learned model. Further, given

a pool of machine-learned models and the corresponding training

datasets, we can use conformance constraints to synthesize a new

model for a new dataset. A simple way to achieve this is to pick

the model such that constraints learned from its training data are

minimally violated by the new dataset. Finally, identifying non-

conforming tuples is analogous to input validation that performs

sanity checks on an input before it is processed by an application.

I VISUALIZATION OF LOCAL DRIFT

When the dataset contains instances from multiple classes, the drift

may be just local, and not global. Fig. 10 demonstrates a scenario

for the 4CR dataset over the EVL benchmark. If we ignore the

color/shape of the tuples, we will not observe any significant drift

across different time steps.

J MORE DATA-DRIFT EXPERIMENTS

Inter-activity drift. Similar to inter-person constraint violation, we

also compute inter-activity constraint violation over theHAR dataset

(Fig. 11). Note the asymmetry of violation scores between activi-

ties, e.g., running is violating the constraints of standing much

more than the other way around. A close observation reveals that,

all mobile activities violate all sedentary activities more than the

other way around. This is because, the mobile activities behave as a

“safety envelope” for the sedentary activities. For example, while a

person walks, they also stand (for a brief moment); but the opposite

does not happen.

K EXPLAINING NON-CONFORMANCE

When a serving dataset is determined to be sufficiently deviated

or drifted from the training set, the next step often is to charac-

terize the difference. A common way of characterizing these dif-

ferences is to perform a causality or responsibility analysis to de-

termine which attributes are most responsible for the observed

drift (non-conformance). We use the violation values produced by

x

y

Time step 1

x

Time step 2

x

Time step 3

x

Time step 4

x

Time step 5

Figure 10: Snapshots over time for 4CR dataset with local drift. It

reaches maximum drift from the initial distribution at time step 3

and goes back to the initial distribution at time step 5.

Figure 11: Inter-activity constraint violation heatmap.Mobile activ-

ities violate the constraints of the sedentary activities more.

conformance constraints, along with well-established principles of

causality, to quantify responsibility for non-conformance.

ExTuNe.We built a tool ExTuNe [24], on top of CCSynth, to com-

pute the responsibility values as described next. Given a training

dataset 𝐷 and a non-conforming tuple 𝑡 ∈ Dom𝑚 , we measure the

responsibility of the 𝑖𝑡ℎ attribute 𝐴𝑖 towards the non-conformance

as follows: (1) We intervene on 𝑡 .𝐴𝑖 by altering its value to the mean

of 𝐴𝑖 over 𝐷 to obtain the tuple 𝑡 (𝑖) . (2) In 𝑡 (𝑖) , we compute how

many additional attributes need to be altered to obtain a tuple with

no violation. If 𝐾 additional attributes need to be altered, 𝐴𝑖 has

responsibility
1

𝐾+1 . (3) This responsibility value for each tuple 𝑡 can

be averaged over the entire serving dataset to obtain an aggregate

responsibility value for𝐴𝑖 . Intuitively, for each tuple, we are “fixing”

the value of𝐴𝑖 with a “more typical” value, and checking how close

(in terms of additional fixes required) this takes us to a conforming

tuple. The larger the number of additional fixes required, the lower

the responsibility of 𝐴𝑖 .

Datasets.We use four datasets for this evaluation: (1) Cardiovas-

cular Disease [1] is a real-world dataset that contains information

about cardiovascular patients with attributes such as height, weight,

cholesterol level, glucose level, systolic and diastolic blood pres-

sures, etc. (2) Mobile Prices [4] is a real-world dataset that contains

information about mobile phones with attributes such as ram, bat-

tery power, talk time, etc. (3) House Prices [3] is a real-world dataset

that contains information about houses for sale with attributes such

as basement area, number of bathrooms, year built, etc. (4) LED

(Light Emitting Diode) [12] is a synthetic benchmark. The dataset

has a digit attribute, ranging from 0 to 9, 7 binary attributes—each

representing one of the 7 LEDs relevant to the digit attribute—and 17

irrelevant binary attributes. This dataset includes gradual concept

drift every 25,000 rows.

18

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

0.0 0.2 0.4
Responsibility

active

age

gender

height

gluc

alco

smoke

cholesterol

weight

ap_lo

ap_hi

(a)

0.0 0.2 0.4
Responsibility

blue
int_memory
clock_speed

sc_h
wifi

touch_screen
mobile_wt

n_cores
talk_time

m_dep
dual_sim
px_width

px_height
battery_power

ram

(b)

0.0 0.2 0.4
Responsibility

YearRemodAdd
GarageArea

TotRmsAbvGrd
BsmtFullBath

LotArea
ScreenPorch

Fireplaces
2ndFlrSF
YearBuilt

BsmtFinSF1
MasVnrArea

FullBath
1stFlrSF

OverallQual
GrLivArea

(c)

0

1

Vi
ol

at
io

n

0

1

Re
sp

.

0

1

Re
sp

.

0

1

Re
sp

.

0

1

Re
sp

.

0

1

Re
sp

.

0

1

Re
sp

.

5 10 15 20
Data window

0

1

Re
sp

.

LE
D

1
LE

D
2

LE
D

3
LE

D
4

LE
D

5
LE

D
6

LE
D

7

(d)

Figure 12: Responsibility assignment on attributes for drift on (a) Cardiovascular disease: trained on patients with no disease and served on

patients with disease, (b) Mobile Prices: trained on cheap mobiles and served on expensive mobiles and (c) House Prices: trained on house

with price <= 100K and served on house with price >= 300K. (d) Detection of drift on LED dataset. The dataset drifts every 5 windows (25,000

tuples). At each drift, a certain set of LEDs malfunction and take responsibility of the drift.

Case studies. ExTuNe produces bar-charts of responsibility values

as depicted in Fig. 12. Figures 12(a), 12(b), and 12(c) show the expla-

nation results for Cardiovascular Disease, Mobile Price, and House

Price datasets, respectively. For the cardiovascular disease dataset,

the training and serving sets consist of data for patients without

and with cardiovascular disease, respectively. For the House Price

and Mobile Price datasets, the training and serving sets consist of

houses and mobiles with prices below and above a certain threshold,

respectively. As one can guess, we get many useful insights from

the non-conformance responsibility bar-charts such as: “abnormal

(high or low) blood pressure is a key cause for non-conformance of

patients with cardiovascular disease w.r.t. normal people”, “RAM is

a distinguishing factor between expensive and cheap mobiles”, “the

reason for houses being expensive depends holistically on several

attributes”.

Fig. 12(d) shows a similar result on the LED dataset. Instead of

one serving set, we had 20 serving sets (the first set is also used

as a training set to learn conformance constraints). We call each

serving set a window where each window contains 5,000 tuples.

This dataset introduces gradual concept drift every 25,000 rows (5

windows) by making a subset of LEDs malfunctioning. As one can

clearly see, during the initial 5 windows, no drift is observed. In

the next 5 windows, LED 4 and LED 5 starts malfunctioning; in the

next 5 windows, LED 1 and LED 3 starts malfunctioning, and so on.

L CONTRAST WITH PRIOR ART

Simple conformance constraints vs. least square techniques.

Note that the lowest variance principal component of [®1;𝐷𝑁] is re-
lated to the ordinary least square (OLS)—commonly known as linear

regression—estimate for predicting ®1 from 𝐷𝑁 ; but OLS minimizes

error for the target attribute only. Our PCA-inspired approach is

more similar to total least squares (TLS)—also known as orthogonal

regression—that minimizes observational errors on all predictor

attributes. However, TLS returns only the lowest-variance projec-

tion (Fig. 13(d)). In contrast, PCA offers multiple projections at once

(Figs. 13(b), 13(c), and 13(d)) for a set of tuples (Fig. 13(a)), which

range from low to high variance and have low mutual correlation

(since they are orthogonal to each other). Intuitively, conformance

constraints constructed from all projections returned by PCA cap-

ture various aspects of the data, as it forms a bounding hyper-box

around the data tuples. However, to capture the relative importance

of conformance constraints, we inversely weigh them according to

the variances of their projections in the quantitative semantics.

Compound constraints vs. denial constraints. If we try to ex-

press the compound constraint𝜓2 of Example 3 using the notation

from traditional denial constraints [17] (under closed-world seman-

tics), where𝑀 always takes values from {“May”, “June”, “July”}, we
get the following:

Δ : ¬ ((𝑀 = “May”) ∧ ¬ (−2 ≤ 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≤ 0))

∧ ¬ ((𝑀 = “June”) ∧ ¬ (0 ≤ 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≤ 5))

∧ ¬ ((𝑀 = “July”) ∧ ¬ (−5 ≤ 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≤ 0))

Note however that arithmetic expressions that specify linear com-

bination of numerical attributes (highlighted fragment signifying

a projection) are disallowed in denial constraints, which only allow

raw attributes and constants within the constraints. Furthermore,

existing techniques that compute denial constraints offer no mech-

anism to discover constraints involving such a composite attribute

19

Technical Report, January, 2021 Fariha and Tiwari, et al.

First PC Second PC

Th
ird

 P
C

(a)

 1st

 2nd
 3

rd

(b)

 2nd

 3rd

 1
st

(c)

 3rd
 1st

 2
nd

(d)

Figure 13: (a) 3D view of a set of tuples projected onto the space of principal components (PC). (b) The first PC gives the projection with

highest standard deviation and thus constructs the weakest conformance constraint with a very broad range for its bounds. (c) The second PC

gives a projection with moderate standard deviation and constructs a relatively stronger conformance constraint. (d) The third PC gives the

projection with lowest standard deviation and constructs the strongest conformance constraint.

(projection). Under an open-world assumption, conformance con-

straints are more conservative—and therefore, more suitable for

certain tasks such as TML—than denial constraints. For example,

a new tuple with𝑀 = “August” will satisfy the above constraint Δ
but not the compound conformance constraint𝜓2 of Example 3.

Data profiling.Conformance constraints, just like other constraint

models, fall under the umbrella of data profiling using metadata [5].

There is extensive literature on data-profiling primitives that model

relationships among data attributes, such as unique column combi-

nations [30], functional dependencies (FD) [59, 93] and their vari-

ants (metric [48], conditional [23], soft [38], approximate [36, 50],

relaxed [16], etc.), differential dependencies [72], order dependen-

cies [52, 77], inclusion dependencies [55, 60], denial constraints [13,

17, 53, 61], and statistical constraints [91]. However, none of them

focus on learning approximate arithmetic relationships that involve

multiple numerical attributes in a noisy setting, which is the focus

of our work.

Soft FDs [38] model correlation and generalize traditional FDs

by allowing uncertainty, but are limited in modeling relationships

between only a pair of attributes. Metric FDs [48] allow small varia-

tions in the data, but the existing work focuses on verification only

and not discovery ofmetric FDs. Some variants of FDs [16, 36, 48, 50]

consider noisy setting, but they require the allowable noise param-

eters to be explicitly specified by the user. However, determining

the right settings for these parameters is non-trivial. Most exist-

ing approaches treat constraint violation as Boolean, and do not

measure the degree of violation. In contrast, we do not require any

explicit noise parameter and provide a way to quantify the degree

of violation of conformance constraints.

Conditional FDs [23] require the FDs to be satisfied condition-

ally (e.g., a FD may hold for US residents and a different FD for

Europeans). Denial constraints (DC) are a universally-quantified

first-order-logic formalism [17] and can adjust to noisy data, by

adding predicates until the constraint becomes exact over the entire

dataset. However, this can make DCs large, complex, and uninter-

pretable. While approximate denial constraints [61] exist, similar to

approximate FD techniques, they also rely on the users to provide

the error threshold.

Input validation. Our work here contributes to, while also build-

ing upon, work from machine learning, programming languages,

and software engineering. In software engineering, input validation

has been used to improve reliability [90]. For example, it is espe-

cially used in web applications where static and dynamic analysis

of the code, that processes the input, is used to detect vulnerabili-

ties [89]. For monitoring deployed systems, few prior works exploit

constraints [40, 80]. To prevent unwanted outcomes, input valida-

tion techniques [15, 29] are used in software systems. However,

such mechanisms are usually implemented by deterministic rules

or constraints, which domain experts provide. In contrast, we learn

conformance constraints in an unsupervised manner.

Trusted AI. The issue of trust, resilience, and interpretability of

artificial intelligence (AI) systems has been a theme of increasing

interest recently [39, 67, 86], particularly for high-stake and safety-

critical data-driven AI systems [80, 87]. A standard way to decide

whether to trust a classifier or not, is to use the classifier-produced

confidence score. However, unlike classifiers, regressors lack a nat-

ural way to produce such confidence scores. To evaluate model

performance, regression diagnostics check if the assumptions made

by the model during training are still valid for the serving data.

However, they require knowledge of the ground-truths for the

serving data, which is often unavailable.

Data drift. Prior work on data drift, change detection, and covari-

ate shift [7, 14, 18, 19, 21, 22, 33, 34, 37, 44, 46, 70, 73] relies on

modeling data distribution, where change is detected when the

data distribution changes. However, data distribution does not cap-

ture constraints, which is the primary focus of our work. Instead

of detecting drift globally, only a handful of works model local

concept-drift [82] or drift for imbalanced data [88]. Few data-drift

detection mechanisms rely on availability of classification accu-

racy [11, 25, 26, 66] or classification “blindspots” [71]. Some of

these works focus on adapting change in data, i.e., learning in an

environment where change in data is expected [11, 27, 57, 75, 92].

Such adaptive techniques are useful to obtain better performance

for specific tasks; however, their goal is orthogonal to ours.

Representation learning, outlier detection, and one-class

classification. Few works [20, 31] , related to our conformance

constraint-based approach, use autoencoder’s [32, 65] input recon-

struction error to determine if a new data point is out of distribution.

Another mechanism [54] learns data assertions via autoencoders

towards effective detection of invalid serving inputs. However, such

an approach is task-specific and needs a specific system (e.g., a deep

20

Conformance Constraint Discovery: Measuring Trust in Data-Driven Systems Technical Report, January, 2021

neural network) to begin with. Our approach is similar to outlier-

detection approaches [49] that define outliers as the ones that

deviate from a generating mechanism such as local correlations. We

also share similarity with one-class-classification [79], where the

training data contains tuples from only one class. In general, there

is a clear gap between representation learning approaches (that

models data likelihood) [6, 32, 43, 65] and the (constraint-oriented)

data-profiling techniques to address the problem of trusted AI. Our

aim is to bridge this gap by introducing conformance constraints

that are more abstract, yet informative, descriptions of data,

tailored towards characterizing trust in ML predictions.

21

	Abstract
	1 Introduction
	2 Case Studies
	3 Conformance Constraints
	3.1 Conformance Language
	3.2 Quantitative Semantics

	4 Conformance Constraint Synthesis
	4.1 Simple Conformance Constraints
	4.2 Compound Conformance Constraints
	4.3 Theoretical Analysis

	5 Trusted Machine Learning
	5.1 Applicability

	6 Experimental Evaluation
	6.1 Trusted Machine Learning
	6.2 Data Drift

	7 Related Work
	8 Summary and Future Directions
	References
	A System Parameters
	B Proof of Lemma 11
	C Proof of Theorem 12
	D Proof of Theorem 13
	E Proof of Proposition 17
	F Motivation for disjunctive conformance constraints
	G Implication for Unsafe Tuples
	H Applications of conformance constraints
	I Visualization of Local Drift
	J More Data-Drift Experiments
	K Explaining Non-conformance
	L Contrast with Prior Art

