
Conformance Constraint Discovery:
Measuring Trust in Data-Driven Systems

Anna Fariha
∗†

University of Massachusetts Amherst

afariha@cs.umass.edu

Ashish Tiwari
†

Arjun Radhakrishna

Sumit Gulwani

Microsoft

{astiwar,arradha,sumitg}@microsoft.com

Alexandra Meliou

University of Massachusetts Amherst

ameli@cs.umass.edu

ABSTRACT

The reliability of inferences made by data-driven systems hinges

on the data’s continued conformance to the systems’ initial settings

and assumptions.When serving data (on which wewant to apply in-

ference) deviates from the profile of the initial training data, the out-

come of inference becomes unreliable. We introduce conformance

constraints, a new data profiling primitive tailored towards quantify-

ing the degree of non-conformance, which can effectively character-

ize if inference over that tuple is untrustworthy. Conformance con-

straints are constraints over certain arithmetic expressions (called

projections) involving the numerical attributes of a dataset, which ex-

isting data profiling primitives such as functional dependencies and

denial constraints cannot model. Our key finding is that projections

that incur low variance on a dataset construct effective conformance

constraints. This principle yields the surprising result that low-

variance components of a principal component analysis, which are

usually discarded for dimensionality reduction, generate stronger

conformance constraints than the high-variance components. Based

on this result, we provide a highly scalable and efficient technique—

linear in data size and cubic in the number of attributes—for discov-

ering conformance constraints for a dataset. To measure the degree

of a tuple’s non-conformance with respect to a dataset, we propose

a quantitative semantics that captures howmuch a tuple violates the

conformance constraints of that dataset. We demonstrate the value

of conformance constraints on two applications: trusted machine

learning and data drift. We empirically show that conformance

constraints offer mechanisms to (1) reliably detect tuples on which

the inference of a machine-learned model should not be trusted,

and (2) quantify data drift more accurately than the state of the art.

ACM Reference Format:

Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, andAlexan-

dra Meliou. 2021. Conformance Constraint Discovery: Measuring Trust in

Data-Driven Systems. In Proceedings of the 2021 International Conference on

∗
Part of the research was done while the author was an intern at Microsoft.

†
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3452795

Management of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3448016.3452795

1 INTRODUCTION

The core of modern data-driven systems typically comprises of

models learned from large datasets, and they are usually optimized

to target particular data and workloads. While these data-driven

systems have seen wide adoption and success, their reliability and

proper functioning hinge on the data’s continued conformance to

the systems’ initial settings and assumptions. When the serving

data (on which the system operates) deviates from the profile of the

initial data (on which the system was trained), system performance

degrades and system behavior becomes unreliable. Therefore, a

mechanism to assess the trustworthiness of a system’s inferences

is paramount, especially for systems that perform safety-critical or

high-impact operations.

Amachine-learned (ML)model typicallyworks best if the serving

dataset follows the profile of the dataset the model was trained

on; when it doesn’t, the model’s inference can be unreliable. One

can profile a dataset in many ways, such as by modeling the data

distribution of the dataset [2], or by finding the (implicit) constraints

that the dataset satisfies [49]. Distribution-oriented approaches

learn data likelihood (e.g., joint or conditional distribution) from the

training data, and can be used to check if the serving data is unlikely.

An unlikely tuple does not necessarily imply that the model would

fail for it. The problem with the distribution-oriented approaches is

that they tend to overfit, and, thus, are overly conservative towards

unseen tuples, leading them to report many such false positives.

We argue that certain constraints offer a more effective and

robust mechanism to quantify trust of a model’s inference on a

serving tuple. The reason is that learning systems implicitly exploit

such constraints during model training, and build models that as-

sume that the constraints will continue to hold for serving data.

For example, when there exist high correlations among attributes

in the training data, learning systems will likely reduce the weights

assigned to redundant attributes that can be deduced from others,

or eliminate them altogether through dimensionality reduction. If

the serving data preserves the same correlations, such operations

are inconsequential; otherwise, we may observe model failure.

In this paper, we characterize datasets with a new data-profiling

primitive, conformance constraints, and we present a mechanism to

identify strong conformance constraints, whose violation indicates

unreliable inference. Conformance constraints specify constraints

over arithmetic relationships involvingmultiple numerical attributes

https://doi.org/10.1145/3448016.3452795
https://doi.org/10.1145/3448016.3452795

Departure Departure Time Arrival Time Duration (min)

Date [DT] [AT] [DUR]

𝑡1 May 2 14:30 18:20 230

𝑡2 July 22 09:05 12:15 195

𝑡3 June 6 10:20 12:20 115

𝑡4 May 19 11:10 13:05 117

𝑡5 April 7 22:30 06:10 458

Figure 1: Sample of the airlines dataset (details are in Section 6.1),

showing departure, arrival, and duration only. The dataset does not

report arrival date, but an arrival time earlier than departure time

(e.g., last row), indicates an overnight flight. All times are in 24 hour

format and in the same time zone. There is some noise in the values.

of a dataset. We argue that a tuple’s conformance to the confor-

mance constraints is more critical for accurate inference than its

conformance to the training data distribution. This is because any

violation of conformance constraints is likely to result in a cata-

strophic failure of a learned model that is built upon the assumption

that the conformance constraints will always hold. Thus, we can use

a tuple’s deviation from the conformance constraints as a proxy for

the trust on a learned model’s inference for that tuple. We proceed

to describe a real-world example of conformance constraints, drawn

from our case-study evaluation on trusted machine learning (TML).

Example 1. We used a dataset with flight information that in-

cludes data on departure and arrival times, flight duration, etc. (Fig. 1)

to train a linear regression model to predict flight delays. The model

was trained on a subset of the data that happened to include only day-

time flights (such as the first four tuples). In an empirical evaluation of

the regression accuracy, we found that the mean absolute error of the

regression output more than quadruples for overnight flights (such as

the last tuple 𝑡5), compared to daytime flights. The reason is that tuples

representing overnight flights deviate from the profile of the training

data that only contained daytime flights. Specifically, daytime flights

satisfy the conformance constraint that “arrival time is later than

departure time and their difference is very close to the flight duration”,

which does not hold for overnight flights. Note that this constraint is

just based on the covariates (predictors) and does not involve the target

attribute delay. Critically, although this conformance constraint is

unaware of the regression task, it was still a good proxy of the regres-

sor’s performance. In contrast, approaches that model data likelihood

may report long daytime flights as unlikely, since all flights in the

training data (𝑡1–𝑡4) were also short flights, resulting in false alarms,

as the model works very well for most daytime flights, regardless of

the duration (i.e., for both short and long daytime flights).

Example 1 demonstrates that when training data has coincidental

relationships (e.g., the one between AT, DT, and DUR for daytime

flights), then ML models may implicitly assume them as invariants.

Conformance constraints can capture such data invariants and flag

non-conforming tuples (overnight flights) during serving.

Conformance constraints.Conformance constraints complement

the existing data profiling literature, as the existing constraint mod-

els, such as functional dependencies and denial constraints, cannot

model arithmetic relationships. For example, the conformance con-

straint of Example 1 is: −𝜖1 ≤ AT − DT − DUR ≤ 𝜖2, where 𝜖1 and
𝜖2 are small values. Conformance constraints can capture complex

linear dependencies across attributes within a noisy dataset. For

example, if the flight departure and arrival data reported the hours

and the minutes across separate attributes, the constraint would

be on a different arithmetic expression: (60 · arrHour + arrMin) −
(60 · depHour + depMin) − duration.

The core component of a conformance constraint is the arith-

metic expression, called projection, which is obtained by a linear

combination of the numerical attributes. There is an unbounded

number of projections that we can use to form arbitrary confor-

mance constraints. For example, for the projection AT, we can find a

broad range [𝜖3, 𝜖4], such that all training tuples in Example 1 satisfy

the conformance constraint 𝜖3 ≤ AT ≤ 𝜖4. However, this constraint
is too inclusive and a learned model is unlikely to exploit such a

weak constraint. In contrast, the projection AT − DT − DUR leads

to a stronger conformance constraint with a narrow range as its

bounds, which is selectively permissible, and, thus, more effective.

Challenges and solution sketch. The principal challenge is to

discover an effective set of conformance constraints that are likely

to affect a model’s inference implicitly. We first characterize “good”

projections (that construct effective constraints) and then propose a

method to discover them. We establish through theoretical analysis

two important results: (1) A projection is good over a dataset if it is

almost constant (i.e., has low variance) over all tuples in that dataset.

(2) A set of projections, collectively, is good if the projections have

small pair-wise correlations. We show that low variance compo-

nents of a principal component analysis (PCA) on a dataset yield

such a set of projections. Note that this is different from—and, in

fact, completely opposite of—the traditional approaches (e.g., [51])

that perform multidimensional analysis based on the high-variance

principal components, after reducing dimensionality using PCA.

Scope. Fig. 2 summarizes prior work on related problems, but our

scope differs significantly. Specifically, we can detect if a serving tu-

ple is non-conformingwith respect to the training dataset only based

on its predictor attributes, and require no knowledge of the ground

truth. This setting is essential in many practical applications when

we observe extreme verification latency [62], where ground truths

for serving tuples are not immediately available. For example, con-

sider a self-driving car that is using a trained controller to generate

actions based on readings of velocity, relative positions of obstacles,

and their velocities. In this case, we need to determine, only based on

the sensor readings (predictors), when the driver should be alerted

to take over vehicle control. Furthermore, we do not assume access

to the model, i.e., model’s predictions on a given tuple. This setting

is necessary for (1) safety-critical applications, where the goal is to

quickly alert the user, without waiting for the availability of the pre-

diction, (2) auditing and privacy-preserving applications where the

prediction cannot be shared, and (3) when we are unaware of the de-

tailed functionality of the system due to privacy concerns or lack of

jurisdiction. We focus on identifying tuple-level non-conformance

as opposed to dataset-level non-conformance that usually requires

observing entire data’s distribution. However, our tuple-level ap-

proach trivially extends (by aggregation) to the entire dataset.

Contrast with prior art. We now discuss where conformance

constraints fit with respect to the existing literature (Fig. 2).

Data profiling techniques. Conformance constraints fall under the

umbrella of data profiling, which refers to the task of extracting tech-

nical metadata about a given dataset [1]. A key task in data profiling

Legend constraints violation setting technique TML

HP: Hyper Parameter

FD: Functional Dependency

DC: Denial Constraint

�: Does not require

⊥: Not applicable
★: Supports via extension

!: Partially p
a
r
a
m
e
t
r
i
c

a
r
i
t
h
m
e
t
i
c

a
p
p
r
o
x
i
m
a
t
e

c
o
n
d
i
t
i
o
n
a
l

n
o
t
i
o
n
o
f
w
e
i
g
h
t

i
n
t
e
r
p
r
e
t
a
b
l
e

c
o
n
t
i
n
u
o
u
s

t
u
p
l
e
-
w
i
s
e

n
o
i
s
y
d
a
t
a

n
u
m
e
r
i
c
a
l
a
t
t
r
.

c
a
t
e
g
o
r
i
a
l
a
t
t
r
.

�
t
h
r
e
s
h
o
l
d
s

�
d
i
s
t
a
n
c
e
m
e
t
r
i
c

�
H
P
t
u
n
i
n
g

s
c
a
l
a
b
l
e

t
a
s
k
a
g
n
o
s
t
i
c

�
a
c
c
e
s
s
t
o
m
o
d
e
l

D
a
t
a
P
r
o
fi
l
i
n
g

Conformance Constraints ✓ ✓ ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FD [48] ✓ ✓ ✓ ✓ ✓

n
o
t
a
d
d
r
e
s
s
e
d
i
n
p
r
i
o
r
w
o
r
k

Approximate FD [42] ✓ ✓ ✓ ✓ ✓ ✓
Metric FD [40] ✓ ✓ ✓ ✓ ✓ ⊥ ⊥
Conditional FD [19] ! ✓ ✓ ✓ ✓ ✓ ✓ ✓
Pattern FD [50] ! ✓ ✓ ✓ ✓ ✓ ✓
Soft FD [32] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Relaxed FD [10] ✓ ✓ ✓ ✓ ✓ ✓
FDX [75] ✓ ✓ ✓ ✓
Differential Dependency [60] ✓ ✓ ✓ ✓
DC [8, 12] ! ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Approximate DC [44, 49] ! ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Statistical Constraint [74] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L
e
a
r
n
i
n
g

Ordinary Least Square ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓
Total Least Square ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓ ★ ✓ ✓ ✓ ✓ ✓ ✓
Auto-encoder [15] ⊥ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Schelter et al. [56]

+ ⊥ ✓ ✓ ✓ ✓ ✓ ✓
Jiang et al. [34] ⊥ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hendrycks et al. [26] ⊥ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Model’s Prediction Probability ⊥ ✓ ✓ varies

+
Requires additional information

Figure 2: Conformance constraints complement existing data profil-

ing primitives and provide an efficient mechanism to quantify trust

in prediction, with minimal assumption on the setting.

is to learn relationships among attributes. Functional dependencies

(FD) [48] and their variants only capture if a relationship exists be-

tween two sets of attributes, but do not provide a closed-form (para-

metric) expression of the relationship. Using the FD “{AT, DT} →
{DUR}” to model the constraint of Example 1 suffers from several

limitations. First, since the data is noisy, no exact FD can be learned.

Metric FDs [40] allow small variations in the data, but hinge on

appropriate distance metrics and thresholds. For example, if time
is split across two attributes (hour and minute), the distance met-

ric is non-trivial: it needs to encode that ⟨hour = 4, min = 59⟩
and ⟨hour = 5, min = 1⟩ are similar, while ⟨hour = 4, min = 1⟩
and ⟨hour = 5, min = 59⟩ are not. In contrast, conformance con-

straints can model the composite attribute (60 · hour + minute) by
automatically discovering the coefficients 60 and 1.

Denial constraints (DC) [8, 12, 44, 49] encapsulate a number of

different data-profiling primitives such as FDs and their variants

(e.g, [19]). Exact DCs can adjust to noisy data by adding predicates

until the constraint becomes exact over the entire dataset, but this

can make the constraint extremely large and complex, which might

even fail to provide the desired generalization. For example, a finite

DC—whose language is limited to universally quantified first-order

logic—cannot model the constraint of Example 1, which involves an

arithmetic expression (addition and multiplication with a constant).

Expressing conformance constraints requires a richer language that

includes linear arithmetic expressions. Pattern functional depen-

dencies (PFD) [50] move towards addressing this limitation of DCs,

but they focus on text attributes: they are regex-based and treat

digits as characters. However, modeling arithmetic relationships

of numerical attributes requires interpreting digits as numbers.

To adjust for noise, FDs and DCs either relax the notion of con-

straint violation or allow a user-defined fraction of tuples to violate

the (strict) constraint [10, 30, 32, 40, 42, 44, 49]. Some approaches [32,

74, 75] use statistical techniques tomodel other types of data profiles

such as correlations and conditional dependencies. However, they

require additional parameters such as noise and violation thresholds

and distance metrics. In contrast, conformance constraints do not

require any parameter from the user and work on noisy datasets.

Existing data profiling techniques are not designed to learn what

ML models exploit and are sensitive to noise in the numerical

attributes. Moreover, data constraint discovery algorithms typically

search over an exponential set of candidates, and hence, are not

scalable: their complexity grows exponentially with the number of

attributes or quadratically with data size. In contrast, our technique

for deriving conformance constraints is highly scalable (linear in

data size) and efficient (cubic in the number of attributes). It does

not explicitly explore the candidate space, as PCA—which lies at the

core of our technique—performs the search implicitly by iteratively

refining weaker constraints to stronger ones.

Learning techniques. While ordinary least square finds the lowest-

variance projection, it minimizes observational error on only the

target attribute, and, thus, does not apply to our setting. Total least

square offers a partial solution as it takes observational errors on all

predictor attributes into account; but, it finds only one projection—

the lowest variance one—that fits the data tuples best. But there

may exist other projections with slightly higher variances and we

consider them all. As we show empirically in Section 6.2, constraints

derived from multiple projections, collectively, capture various

aspects of the data, and result in an effective data profile targeted

towards certain tasks such as data-drift quantification [21].

Contributions.We make the following contributions:

• We ground the motivation of our work with two case studies on

trusted machine learning (TML) and data drift. (Section 2)

• We introduce and formalize conformance constraints, a new data

profiling primitive that specifies constraints over arithmetic rela-

tionships among numerical attributes of a dataset. We describe a

conformance language to express conformance constraints, and

a quantitative semantics to quantify how much a tuple violates

the conformance constraints. In applications of constraint viola-

tions, some violations may be more or less critical than others.

To capture that, we consider a notion of constraint importance,

and weigh violations against constraints accordingly. (Section 3)

• We formally establish that strong conformance constraints are

constructed from projections with small variance and small mu-

tual correlation on the given dataset. Beyond simple linear con-

straints (e.g., the one in Example 1), we derive disjunctive con-

straints, which are disjunctions of linear constraints. We achieve

this by dividing the dataset into disjoint partitions, and learning

linear constraints for each partition. We provide an efficient, scal-

able, and highly parallelizable algorithm for computing a set of

linear conformance constraints and disjunctions over them. We

also analyze its runtime and memory complexity. (Section 4)

• We formalize the notion of unsafe tuples in the context of trusted

machine learning and provide a mechanism to detect unsafe

tuples using conformance constraints. (Section 5)

• We empirically analyze the effectiveness of conformance con-

straints in two case-study applications—TML and data-drift quan-

tification. We show that conformance constraints can reliably

predict the trustworthiness of linear models and quantify data

drift precisely, outperforming the state of the art. (Section 6)

2 CASE STUDIES

Like other data-profiling primitives, conformance constraints have

general applicability in understanding and describing datasets.

However, their true power lies in quantifying the degree of a tuple’s

non-conformance with respect to a reference dataset. Within the

scope of this paper, we focus on two case studies to motivate our

work. We provide an extensive evaluation over these applications

in Section 6.

Trusted machine learning (TML) refers to the problem of quan-

tifying trust in the inference made by a machine-learned model on

a new serving tuple [34, 52, 55, 65, 71]. When a model is trained

using a dataset, the conformance constraints for that dataset specify

a safety envelope [65] that characterizes the tuples for which the

model is expected to make trustworthy predictions. If a serving

tuple falls outside the safety envelope (violates the conformance

constraints), then the model is likely to produce an untrustworthy

inference. Intuitively, the higher the violation, the lower the trust.

Some classifiers produce a confidence measure along with the class

prediction, typically by applying a softmax function to the raw

numeric prediction values. However, such confidence measures are

not well-calibrated [25, 34], and, therefore, cannot be reliably used

as a measure of trust in the prediction. Additionally, a similar mech-

anism is not available for inferences made by regression models.

In the context of TML, we formalize the notion of unsafe tuples,

on which the prediction may be untrustworthy. We establish that

conformance constraints provide a sound and complete procedure

for detecting unsafe tuples, which indicates that the search for

conformance constraints should be guided by the class of models

considered by the corresponding learning system (Section 5).

Data drift [6, 24, 43, 51] specifies a significant change in a dataset

with respect to a reference dataset, which typically requires that

systems be updated and models retrained. To quantify how much

a dataset 𝐷 ′ drifted from a reference dataset 𝐷 , our three-step

approach is: (1) compute conformance constraints for𝐷 , (2) evaluate

the constraints on all tuples in 𝐷 ′ and compute their violations

(degrees of non-conformance), and (3) finally, aggregate the tuple-

level violations to get a dataset-level violation. If all tuples in 𝐷 ′

satisfy the constraints, then we have no evidence of drift. Otherwise,

the aggregated violation serves as the drift quantity.

While we focus on these two applications here, we mention other

applications of conformance constraints in our technical report [21].

3 CONFORMANCE CONSTRAINTS

In this section, we first provide the general definition of confor-

mance constraints. Then we propose a language for representing

them. Finally, we define quantitative semantics over conformance

constraints, which allows us to quantify their violation.

Basic notation. We use R(𝐴1, 𝐴2, . . . , 𝐴𝑚) to denote a relation

schema where 𝐴𝑖 denotes the 𝑖
𝑡ℎ

attribute of R. We use Dom𝑖 to de-

note the domain of attribute𝐴𝑖 . Then the set Dom𝑚 = Dom1 × · · · ×
Dom𝑚 specifies the domain of all possible tuples. We use 𝑡 ∈ Dom𝑚
to denote a tuple in the schema R. A dataset 𝐷 ⊆ Dom𝑚 is a spe-

cific instance of the schema R. For ease of notation, we assume

some order of tuples in 𝐷 and we use 𝑡𝑖 ∈ 𝐷 to refer to the 𝑖𝑡ℎ tuple

and 𝑡𝑖 .𝐴 𝑗 ∈ Dom𝑗 to denote the value of the 𝑗𝑡ℎ attribute of 𝑡𝑖 .

Conformance constraint. A conformance constraint Φ charac-

terizes a set of allowable or conforming tuples and is expressed

through a conformance language (Section 3.1). We write Φ(𝑡) and
¬Φ(𝑡) to denote that 𝑡 satisfies and violates Φ, respectively.

Definition 2 (Conformance constraint). A conformance

constraint for a dataset 𝐷 ⊆Dom𝑚 is a formula Φ : Dom𝑚 ↦→
{True, False} such that |{𝑡 ∈ 𝐷 | ¬Φ(𝑡)}| ≪ |𝐷 |.

The set {𝑡 ∈ 𝐷 | ¬Φ(𝑡)} denotes atypical tuples in 𝐷 that do not

satisfy the conformance constraint Φ. In our work, we do not need

to know the set of atypical tuples, nor do we need to purge the

atypical tuples from the dataset. Our techniques derive constraints

in ways that ensure there are very few atypical tuples (Section 4).

3.1 Conformance Language

Projection. A central concept in our conformance language is

projection. Intuitively, a projection is a derived attribute that spec-

ifies a “lens” through which we look at the tuples. More formally,

a projection is a function 𝐹 : Dom𝑚 ↦→ R that maps a tuple 𝑡 ∈
Dom𝑚 to a real number 𝐹 (𝑡) ∈ R. In our language for conformance

constraints, we only consider projections that correspond to linear

combinations of the numerical attributes of a dataset. Specifically, to

define a projection, we need a set of numerical coefficients for all at-

tributes of the dataset and the projection is defined as a sum over the

attributes, weighted by their corresponding coefficients. We extend

a projection 𝐹 to a dataset 𝐷 by defining 𝐹 (𝐷) to be the sequence

of reals obtained by applying 𝐹 on each tuple in 𝐷 individually.

Grammar. Our language for conformance constraints consists of

formulas Φ generated by the following grammar:

𝜙 := lb ≤ 𝐹 (®𝐴) ≤ ub | ∧(𝜙, . . . , 𝜙)
𝜓𝐴 := ∨((𝐴 = 𝑐1) ▷ 𝜙, (𝐴 = 𝑐2) ▷ 𝜙, . . .)
Ψ := 𝜓𝐴 | ∧(𝜓𝐴1

,𝜓𝐴2
, . . .)

Φ := 𝜙 | Ψ

The language consists of (1) bounded constraints lb ≤ 𝐹 (®𝐴) ≤
ub where 𝐹 is a projection on Dom𝑚 , ®𝐴 is the tuple of formal

parameters (𝐴1, 𝐴2, . . . , 𝐴𝑚), and lb, ub ∈ R are reals; (2) equality

constraints 𝐴 = 𝑐 where 𝐴 is an attribute and 𝑐 is a constant in 𝐴’s

domain; and (3) operators (▷,∧, and∨,) that connect the constraints.
Intuitively, ▷ is a switch operator that specifies which constraint 𝜙

applies based on the value of the attribute𝐴, ∧ denotes conjunction,
and∨ denotes disjunction. Formulas generated by𝜙 andΨ are called

simple constraints and compound constraints, respectively. Note that

a formula generated by 𝜓𝐴 only allows equality constraints on a

single attribute, namely 𝐴, among all the disjuncts.

Example 3. Consider the dataset 𝐷 consisting of the first four

tuples {𝑡1, 𝑡2, 𝑡3, 𝑡4} of Fig. 1. A simple constraint for 𝐷 is:

𝜙1 : −5 ≤ AT − DT − DUR ≤ 5.

Here, the projection 𝐹 (®𝐴) = AT− DT− DUR, with attribute coefficients

⟨1,−1,−1⟩, lb = −5, and ub = 5. A compound constraint is:

𝜓2 : M = “May” ▷ −2 ≤ AT − DT − DUR ≤ 0

∨ M = “June” ▷ 0 ≤ AT − DT − DUR ≤ 5

∨ M = “July” ▷ −5 ≤ AT − DT − DUR ≤ 0

For ease of exposition, we assume that all times are converted to

minutes (e.g., 06:10 = 6×60+10 = 370) and𝑀 denotes the departure

month, extracted from 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝐷𝑎𝑡𝑒 .

Note that arithmetic expressions that specify linear combination

of numerical attributes (highlighted above) are disallowed in denial

constraints [12] which only allow raw attributes and constants

(more details are in our technical report [21]).

3.2 Quantitative Semantics

Conformance constraints have a natural Boolean semantics: a tu-

ple either satisfies a constraint or it does not. However, Boolean

semantics is of limited use in practice, because it does not quantify

the degree of constraint violation. We interpret conformance con-

straints using a quantitative semantics, which quantifies violations,

and reacts to noise more gracefully than Boolean semantics.

The quantitative semantics [[Φ]] (𝑡) is a measure of the violation

of Φ on a tuple 𝑡—with a value of 0 indicating no violation and a

value greater than 0 indicating some violation. In Boolean semantics,

if Φ(𝑡) is True, then [[Φ]] (𝑡) will be 0; and if Φ(𝑡) is False, then
[[Φ]] (𝑡) will be 1. Formally, [[Φ]] is a mapping from Dom𝑚 to [0, 1].
Quantitative semantics of simple constraints.We build upon 𝜖-insen-

sitive loss [70] to define the quantitative semantics of simple con-

straints, where the bounds lb and ub define the 𝜖-insensitive zone:1

[[lb ≤ 𝐹 (®𝐴) ≤ ub]] (𝑡) := 𝜂 (𝛼 ·max(0, 𝐹 (𝑡) − ub, lb − 𝐹 (𝑡)))
[[∧(𝜙1, . . . , 𝜙𝐾)]] (𝑡) :=

∑𝐾
𝑘
𝛾𝑘 · [[𝜙𝑘]] (𝑡)

Below, we describe the parameters of the quantitative semantics,

and provide further details on them in our technical report [21].

Scaling factor 𝛼 ∈ R+.
Projections are unconstrained functions and different projections

can map the same tuple to vastly different values. We use a scaling

factor 𝛼 to standardize the values computed by a projection 𝐹 , and

to bring the values of different projections to the same comparable

scale. The scaling factor is automatically computed as the inverse

of the standard deviation, 𝛼 = 1

𝜎 (𝐹 (𝐷)) . We set 𝛼 to a large positive

number when 𝜎 (𝐹 (𝐷)) = 0.

Normalization function 𝜂 (.) : R ↦→ [0, 1].
The normalization function maps values in the range [0,∞) to the

range [0, 1). While any monotone mapping from R≥0 to [0, 1) can
be used, we pick 𝜂 (𝑧) = 1 − 𝑒−𝑧 .
Importance factors 𝛾𝑘 ∈ R+,

∑𝐾
𝑘
𝛾𝑘=1.

The weights𝛾𝑘 control the contribution of each bounded-projection

constraint in a conjunctive formula. This allows for prioritizing

constraints that are more significant than others. In our work, we

derive the importance factor of a constraint automatically, based

on its projection’s standard deviation over 𝐷 .

Quantitative semantics of compound constraints. Compound con-

straints are first simplified into simple constraints, and they get their

meaning from the simplified form. We define a function simp(𝜓, 𝑡)
that takes a compound constraint 𝜓 and a tuple 𝑡 and returns a

1
For a target value 𝑦, predicted value �̂�, and a parameter 𝜖 , the 𝜖-insensitive loss is 0

if |𝑦 − �̂� | < 𝜖 and |𝑦 − �̂� | − 𝜖 otherwise.

simple constraint. It is defined recursively as follows:

simp(∨((𝐴 = 𝑐1) ▷ 𝜙1, (𝐴 = 𝑐2) ▷ 𝜙2, . . .), 𝑡) := 𝜙𝑘 if 𝑡 .𝐴 = 𝑐𝑘

simp(∧(𝜓𝐴1
,𝜓𝐴2

, . . .), 𝑡) := ∧(simp(𝜓𝐴1
, 𝑡), simp(𝜓𝐴2

, 𝑡), . . .)

If the condition in the definition above does not hold for any

𝑐𝑘 , then simp(𝜓, 𝑡) is undefined and simp(∧(. . . ,𝜓, . . .), 𝑡) is also
undefined. If simp(𝜓, 𝑡) is undefined, then [[𝜓]] (𝑡) := 1. When

simp(𝜓, 𝑡) is defined, the quantitative semantics of𝜓 is given by:

[[𝜓]] (𝑡) := [[simp(𝜓, 𝑡)]] (𝑡)

Since compound constraints simplify to simple constraints, we

mostly focus on simple constraints. Even there, we pay special atten-

tion to bounded-projection constraints (𝜙) of the form

lb ≤ 𝐹 (®𝐴) ≤ ub, which lie at the core of simple constraints.

Example 4. Consider the constraint 𝜙1 from Example 3. For 𝑡 ∈ 𝐷 ,
[[𝜙1]] (𝑡) = 0 since 𝜙1 is satisfied by all tuples in 𝐷 . The standard

deviation of the projection 𝐹 over 𝐷 , 𝜎 (𝐹 (𝐷))=𝜎 ({0,−5, 5,−2})=3.6.
Now consider the last tuple 𝑡5 ∉ 𝐷 . 𝐹 (𝑡5) = (370 − 1350) − 458 =

−1438, which is way below the lower bound−5 of𝜙1. Now we compute

how much 𝑡5 violates 𝜙1: [[𝜙1]] (𝑡5) = [[−5 ≤ 𝐹 (®𝐴) ≤ 5]] (𝑡5) = 𝜂 (𝛼 ·
max(0,−1438 − 5,−5 + 1438)) = 1 − 𝑒−

1433

3.6 ≈ 1. Intuitively, this

implies that 𝑡5 strongly violates 𝜙1.

4 CONFORMANCE CONSTRAINT SYNTHESIS

In this section, we describe our techniques for deriving conformance

constraints. We start with the synthesis of simple constraints (the 𝜙

constraints in our language specification), followed by compound

constraints (theΨ constraints in our language specification). Finally,

we analyze the time and memory complexity of our algorithm.

4.1 Simple Conformance Constraints

Synthesizing simple conformance constraints involves (a) discover-

ing the projections, and (b) discovering the lower and upper bounds

for each projection. We start by discussing (b), followed by the prin-

ciple to identify effective projections, based on which we solve (a).

4.1.1 Synthesizing Bounds for Projections. Fix a projection 𝐹 and

consider the bounded-projection constraint 𝜙 : lb ≤ 𝐹 (®𝐴) ≤ ub.
Given a dataset𝐷 , a trivial choice for the bounds is: lb = min(𝐹 (𝐷))
and ub = max(𝐹 (𝐷)). However, this choice is very sensitive to

noise: adding a single atypical tuple to 𝐷 can produce very different

constraints. Instead, we use a more robust choice as follows:

lb = 𝜇 (𝐹 (𝐷)) −𝐶 · 𝜎 (𝐹 (𝐷)), ub = 𝜇 (𝐹 (𝐷)) +𝐶 · 𝜎 (𝐹 (𝐷))

Here, 𝜇 (𝐹 (𝐷)) and 𝜎 (𝐹 (𝐷)) denote the mean and standard devi-

ation of the values in 𝐹 (𝐷), respectively, and 𝐶 is some positive

constant. With these bounds, [[𝜙]] (𝑡) = 0 implies that 𝐹 (𝑡) is within
𝐶 × 𝜎 (𝐹 (𝐷)) from the mean 𝜇 (𝐹 (𝐷)). In our experiments, we set

𝐶 = 4, which ensures that in expectation, very few tuples in 𝐷 will

violate the constraint for many distributions of the values in 𝐹 (𝐷).
Specifically, if 𝐹 (𝐷) follows a normal distribution, then 99.99% of

the population is expected to lie within 4 standard deviations from

mean. Note that we make no assumption on the original data dis-

tribution of each attribute.

(a) (b)

Figure 3: Clear and shaded regions depict conformance and non-

conformance zones, respectively. (a) Correlated projections𝑋 and𝑌

yield conformance constraints forming a large conformance zone,

(b) Uncorrelated (orthogonal) projections 𝑋 − 𝑌 and 𝑋 + 𝑌 yield

conformance constraints forming a smaller conformance zone.

Setting the bounds lb and ub as 𝐶 · 𝜎 (𝐹 (𝐷))-away from the

mean, and the scaling factor 𝛼 as
1

𝜎 (𝐹 (𝐷)) , guarantees the following
property for our quantitative semantics:

Lemma 5. Let𝐷 be a dataset and let 𝜙𝑘 be lb𝑘 ≤ 𝐹𝑘 (®𝐴) ≤ ub𝑘 for

𝑘 = 1, 2. Then, for any tuple 𝑡 , if
|𝐹1 (𝑡)−𝜇 (𝐹1 (𝐷)) |

𝜎 (𝐹1 (𝐷)) ≥ |𝐹2 (𝑡)−𝜇 (𝐹2 (𝐷)) |
𝜎 (𝐹2 (𝐷)) ,

then [[𝜙1]] (𝑡) ≥ [[𝜙2]] (𝑡).

This means that larger deviation from the mean (proportionally

to the standard deviation) results in higher degree of violation under

our semantics. The proof follows from the fact that the normaliza-

tion function 𝜂 (.) is monotonically increasing, and hence, [[𝜙𝑘]] (𝑡)
is a monotonically non-decreasing function of

|𝐹𝑘 (𝑡)−𝜇 (𝐹𝑘 (𝐷)) |
𝜎 (𝐹𝑘 (𝐷)) .

4.1.2 Principle for Synthesizing Projections. We start by investigat-

ing what makes a constraint more effective than others. An effective

constraint (1) should not overfit the data, but rather generalize by

capturing the properties of the data, and (2) should not underfit the

data, because it would be too permissive and fail to identify devi-

ations effectively. Our flexible bounds (Section 4.1.1) serve to avoid

overfitting. In this section, we focus on identifying the principles

that help us avoid underfitting. We first describe the key technical

ideas for characterizing effective projections through example and

then proceed to formalization.

Example 6. Let 𝐷 be a dataset of three tuples {(1,1.1),(2,1.7),(3,3.2)}

with two attributes𝑋 and𝑌 . Consider two arbitrary projections:𝑋 and

𝑌 . For 𝑋 : 𝜇 (𝑋 (𝐷)) = 2 and 𝜎 (𝑋 (𝐷)) = 0.8. So, bounds for its confor-

mance constraint are: lb = 2−4×0.8 = −1.2 and ub = 2+4×0.8 = 5.2.

This gives us the conformance constraint: −1.2 ≤ 𝑋 ≤ 5.2. Similarly,

for 𝑌 , we get the conformance constraint: −1.6 ≤ 𝑌 ≤ 5.6. Fig. 3(a)

shows the conformance zone (clear region) defined by these two con-

formance constraints. The shaded region depicts non-conformance

zone. The conformance zone is large and too permissive: it allows

many atypical tuples with respect to 𝐷 , such as (0, 4) and (4, 0).

A natural question arises: are there other projections that can

better characterize conformance with respect to the tuples in 𝐷?

The answer is yes and next we show another pair of projections

that shrink the conformance zone significantly.

Example 7. In Fig. 3(b), the clear region is defined by the confor-

mance constraints −0.8 ≤ 𝑋 −𝑌 ≤ 0.8 and −2.8 ≤ 𝑋 +𝑌 ≤ 10.8, over

projections 𝑋 − 𝑌 and 𝑋 + 𝑌 , respectively. The region is indeed much

smaller than the one in Fig. 3(a) and allows fewer atypical tuples.

How can we derive projection 𝑋 − 𝑌 from the projections 𝑋

and 𝑌 , given 𝐷? Note that 𝑋 and 𝑌 are highly correlated in 𝐷 . In

Lemma 11, we show that two highly correlated projections can be

linearly combined to construct another projection with lower stan-

dard deviation that generates a stronger constraint. We proceed to

formalize stronger constraint—which defines whether a constraint is

more effective than another in quantifying violation—and incongru-

ous tuples—which help us estimate the subset of the data domain

for which a constraint is stronger than the others.

Definition 8 (Stronger constraint). A conformance con-

straint 𝜙1 is stronger than another conformance constraint 𝜙2 on

a subset 𝐻 ⊆ Dom𝑚 if ∀𝑡 ∈ 𝐻, [[𝜙1]] (𝑡) ≥ [[𝜙2]] (𝑡).

Given a dataset𝐷 ⊆ Dom𝑚 and a projection 𝐹 , for any tuple 𝑡 , let

Δ𝐹 (𝑡) = 𝐹 (𝑡) − 𝜇 (𝐹 (𝐷)). For projections 𝐹1 and 𝐹2, the correlation

coefficient 𝜌𝐹1,𝐹2 (over 𝐷) is defined as

1

|𝐷 |
∑
𝑡∈𝐷 Δ𝐹1 (𝑡)Δ𝐹2 (𝑡)

𝜎 (𝐹1 (𝐷))𝜎 (𝐹2 (𝐷)) .

Definition 9 (Incongruous tuple). A tuple 𝑡 is incongruous

w.r.t. a projection pair ⟨𝐹1, 𝐹2⟩on 𝐷 if: Δ𝐹1 (𝑡) · Δ𝐹2 (𝑡) · 𝜌𝐹1,𝐹2 < 0.

Informally, an incongruous tuple for a pair of projections does

not follow the general trend of correlation between the projection

pair. For example, if 𝐹1 and 𝐹2 are positively correlated (𝜌𝐹1,𝐹2 > 0),

an incongruous tuple 𝑡 deviates in opposite ways from the mean of

each projection (Δ𝐹1 (𝑡) ·Δ𝐹2 (𝑡) < 0). Our goal is to find projections

that yield a conformance zone with very few incongruous tuples.

Example 10. In Example 6, 𝑋 and 𝑌 are positively correlated with

𝜌𝑋,𝑌 ≈ 1. The tuple 𝑡 = (0, 4) is incongruous w.r.t. ⟨𝑋,𝑌 ⟩, because
𝑋 (𝑡) = 0 < 𝜇 (𝑋 (𝐷)) = 2, whereas 𝑌 (𝑡) = 4 > 𝜇 (𝑌 (𝐷)) = 2.

Intuitively, the incongruous tuples do not behave like the tuples in 𝐷

when viewed through the projections 𝑋 and 𝑌 . Note that the narrow

conformance zone of Fig. 3(b) no longer contains the incongruous

tuple (0, 4). In fact, the conformance zone defined by the conformance

constraints derived from projections 𝑋 − 𝑌 and 𝑋 + 𝑌 are free from a

vast majority of the incongruous tuples.

We proceed to state Lemma 11, which informally says that any

two highly correlated projections can be linearly combined to con-

struct a new projection to obtain a stronger constraint. We write 𝜙𝐹

to denote the conformance constraint lb ≤ 𝐹 (®𝐴) ≤ ub, synthesized
from 𝐹 . (All proofs are in our technical report [21].)

Lemma 11. Let 𝐷 be a dataset and 𝐹1, 𝐹2 be two projections on 𝐷

s.t. |𝜌𝐹1,𝐹2 | ≥ 1

2
. Then, ∃𝛽1, 𝛽2 ∈ R s.t. 𝛽2

1
+ 𝛽2

2
= 1 and for the new

projection 𝐹 = 𝛽1𝐹1 + 𝛽2𝐹2:
(1) 𝜎 (𝐹 (𝐷)) < 𝜎 (𝐹1 (𝐷)) and 𝜎 (𝐹 (𝐷)) < 𝜎 (𝐹2 (𝐷)), and
(2) 𝜙𝐹 is stronger than both 𝜙𝐹1 and 𝜙𝐹2 on the set of tuples that are

incongruous w.r.t. ⟨𝐹1, 𝐹2⟩.

We now extend the result to multiple projections in Theorem 12.

Theorem 12 (Low Standard Deviation Constraints). Given

a dataset 𝐷 , let F={𝐹1, . . . , 𝐹𝐾 } denote a set of projections on 𝐷

s.t. ∃𝐹𝑖 , 𝐹 𝑗∈F with |𝜌𝐹𝑖 ,𝐹 𝑗 |≥ 1

2
. Then, there exist a nonempty subset

𝐼⊆{1, . . . , 𝐾} and a projection 𝐹=∑
𝑘∈𝐼 𝛽𝑘𝐹𝑘 , where 𝛽𝑘∈R s.t.

(1) ∀𝑘 ∈ 𝐼 , 𝜎 (𝐹 (𝐷)) < 𝜎 (𝐹𝑘 (𝐷)),
(2) ∀𝑘 ∈ 𝐼 , 𝜙𝐹 is stronger than 𝜙𝐹𝑘 on the subset 𝐻 , where

𝐻={𝑡 | ∀𝑘∈𝐼 (𝛽𝑘Δ𝐹𝑘 (𝑡)≥0) ∨ ∀𝑘∈𝐼 (𝛽𝑘Δ𝐹𝑘 (𝑡)≤0)}, and
(3) ∀𝑘 ∉ 𝐼 , |𝜌𝐹,𝐹𝑘 | < 1

2
.

Algorithm 1: Procedure to generate linear projections.

Inputs :A dataset 𝐷 ⊂ Dom𝑚

Output :A set {(𝐹1, 𝛾1), . . . , (𝐹𝐾 , 𝛾𝐾) } of projections and
importance factors

1 𝐷𝑁 ← 𝐷 after dropping non-numerical attributes

2 𝐷′
𝑁
← [®1;𝐷𝑁]

3 { ®𝑤1, . . . , ®𝑤𝐾 } ← eigenvectors of 𝐷′
𝑁
𝑇𝐷′

𝑁

4 foreach 1 ≤ 𝑘 ≤ 𝐾 do

5 ®𝑤′
𝑘
← ®𝑤𝑘 with first element removed

6 𝐹𝑘 ← 𝜆 ®𝐴 :

®𝐴𝑇 ®𝑤′
𝑘

| | ®𝑤′
𝑘
| |

7 𝛾𝑘 ← 1

log(2+𝜎 (𝐹𝑘 (𝐷𝑁)))
8 return {(𝐹1, 𝛾1𝑍), . . . , (𝐹𝐾 ,

𝛾𝐾
𝑍
) }, where 𝑍 =

∑
𝑘 𝛾𝑘

The theorem establishes that to detect violations for tuples in 𝐻 :

(1) projections with low standard deviations define stronger con-

straints (and, thus, are preferable), and (2) a set of constraints with

highly correlated projections is suboptimal (as they can be linearly

combined to generate stronger constraints). Note that 𝐻 is a con-

servative estimate for the set of tuples where 𝜙𝐹 is stronger than

each 𝜙𝐹𝑘 ; there exist tuples outside 𝐻 for which 𝜙𝐹 is stronger.

Boundedprojections vs. convex polytope.Bounded projections

(Example 7) relate to the computation of convex polytopes [68].

For example, one can compute a convex hull—the minimal convex

polytope that includes all the training tuples—and then any tuple

falling outside it is considered non-conforming. However, a convex

hull overfits to the training tuples and is extremely sensitive to

outliers. For example, consider a training dataset over attributes

𝑋 and 𝑌 : {(1, 10), (2, 20), (3, 30)}. A convex hull in this case would

be a line segment—starting at (1, 10) and ending at (3, 30)—and
the tuple (5, 50) will fall outside it. Unlike convex hull—whose

goal is to find the smallest possible “inclusion zone” that includes

all training tuples—our goal is to find a “conformance zone” that

reflects the trend of the training tuples. This is inspired from the

fact that ML models aim to generalize to tuples outside training

set; thus, conformance constraints also need to capture trends and

avoid overfitting. Our definition of good conformance constraints

(low variance and low mutual correlation) balances overfitting

and overgeneralization. Therefore, beyond the minimal bounding

hyper-box over the training tuples, we take into consideration the

distribution of the interaction among attributes (trends). For the

above example, conformance constraints will model the interaction

trend: 𝑌 = 10𝑋 , allowing the tuple (5, 50).

4.1.3 PCA-inspired Projection Derivation. Theorem 12 sets the re-

quirements for good projections (see also [43, 46, 69] that make

similar observations in different ways). It indicates that we can

start with any arbitrary projections and then iteratively improve

them. However, we can get the desired set of best projections in one

shot using an algorithm inspired by principal component analysis

(PCA). PCA relies on computing eigenvectors. There exist different

algorithms for computing eigenvectors (from the infinite space of

possible vectors). The general mechanism involves applying nu-

merical approaches to iteratively converge to the eigenvectors (up

to a desired precision) as no analytical solution exists in general.

Algorithm 1 returns projections that correspond to the principal

components of a slightly modified version of the given dataset:

Line 1 Drop all non-numerical attributes from𝐷 to get the numeric

dataset 𝐷𝑁 . This is necessary because PCA only applies to numer-

ical values. Instead of dropping, one can also consider embedding

techniques to convert non-numerical attributes to numerical ones.

Line 2 Add a new column to 𝐷𝑁 that consists of the constant 1,

to obtain the modified dataset 𝐷 ′
𝑁

:= [®1;𝐷𝑁], where ®1 denotes the
column vector with 1 everywhere. We do this transformation to

capture the additive constant within principal components, which

ensures that the approach works even for unnormalized data.

Line 3 Compute 𝐾 eigenvectors of the square matrix 𝐷 ′
𝑁
𝑇𝐷 ′

𝑁
,

where 𝐾 denotes the number of columns in 𝐷 ′
𝑁
. These eigenvec-

tors provide coefficients to construct projections.

Lines 5–6 Remove the first element (coefficient for the newly

added constant column) of all eigenvectors and normalize them

to generate projections. Note that we no longer need the constant

element of the eigenvectors since we can appropriately adjust the

bounds, lb and ub, for each projection by evaluating it on 𝐷𝑁 .

Line 7 Compute importance factor for each projection. Since pro-

jections with smaller standard deviations are more discerning (i.e.,

stronger), we assign each projection an importance factor (𝛾) that

is inversely proportional to its standard deviation over 𝐷𝑁 .

Line 8 Return the linear projections with corresponding normal-

ized importance factors.

We now claim that the projections returned by Algorithm 1

include the projection with minimum standard deviation and the

correlation between any two projections is 0. This indicates that we

cannot further improve the projections, and, thus they are optimal.

Theorem 13 (Correctness of Algorithm 1). Given a numerical

dataset 𝐷 over the schema R, let F = {𝐹1, 𝐹2, . . . , 𝐹𝐾 } be the set of
linear projections returned by Algorithm 1. Let 𝜎∗ = min

𝐾
𝑘
𝜎 (𝐹𝑘 (𝐷)).

If 𝜇 (𝐴𝑘 (𝐷)) = 0 for all attribute 𝐴𝑘 in R, then,2
(1) 𝜎∗ ≤ 𝜎 (𝐹 (𝐷)) ∀𝐹 = ®𝐴𝑇 ®𝑤 where | | ®𝑤 | | ≥ 1, and

(2) ∀𝐹 𝑗 , 𝐹𝑘 ∈ F s.t. 𝐹 𝑗 ≠ 𝐹𝑘 , 𝜌𝐹 𝑗 ,𝐹𝑘 = 0.

Using projections 𝐹1, . . . , 𝐹𝐾 , and importance factors 𝛾1, . . . , 𝛾𝐾 ,

returned by Algorithm 1, we generate the simple (conjunctive) con-

straint with 𝐾 conjuncts:

∧
𝑘 lb𝑘 ≤ 𝐹𝑘 (®𝐴) ≤ ub𝑘 . We compute the

bounds lb𝑘 and ub𝑘 following Section 4.1.1 and use the importance

factor 𝛾𝑘 for the 𝑘𝑡ℎ conjunct in the quantitative semantics.

Example 14. Algorithm 1 finds the projection of the conformance

constraint of Example 1, but in a different form. The actual airlines

dataset has an attribute distance (DIS) that represents miles trav-

elled by a flight. In our experiments, we found the following confor-

mance constraint
3
over the dataset of daytime flights:

0.7 × AT − 0.7 × DT − 0.14 × DUR − 0.07 × DIS ≈ 0 (1)

This constraint is not quite interpretable by itself, but it is in fact a

linear combination of two expected and interpretable constraints:
4

AT − DT − DUR ≈ 0 (2)

DUR − 0.12 × DIS ≈ 0 (3)

2
When the condition ∀𝐴𝑘 𝜇 (𝐴𝑘 (𝐷)) = 0 does not hold, slightly modified variants

of the claim hold. However, by normalizing 𝐷 (i.e., by subtracting attribute mean

𝜇 (𝐴𝑘 (𝐷)) from each𝐴𝑘 (𝐷)), it is always possible to satisfy the condition.

3
For ease of exposition, we use 𝐹 (®𝐴) ≈ 0 to denote 𝜖1 ≤ 𝐹 (®𝐴) ≤ 𝜖2 , where 𝜖𝑖 ≈ 0.

4
We developed a tool [20] to explain causes of non-conformance. [21]

Here, (2) is the one mentioned in Example 1 and (3) follows from the

fact that average aircraft speed is about 500 mph implying that it

requires 0.12 minutes per mile. 0.7 × (2) + 0.56 × (3) yields:

0.7 × (AT − DT − DUR) + 0.56 × DUR − 0.56 × 0.12 × DIS ≈ 0

=⇒ 0.7 × AT − 0.7 × DT − 0.14 × DUR − 0.07 × DIS ≈ 0

Which is exactly the conformance constraint (1). Algorithm 1 found

the optimal projection of (1), which is a linear combination of the

projections of (2) and (3). The reason is: there is a correlation between

the projections of (2) and (3) over the dataset (Theorem 12). One

possible explanation of this correlation is: whenever there is an error

in the reported duration of a tuple, it violates both (2) and (3). Due to

this natural correlation, Algorithm 1 returned the optimal projection

of (1), that “covers” both projections of (2) or (3).

4.2 Compound Conformance Constraints

The quality of our PCA-based simple linear constraints relies on

how many low variance linear projections we are able to find on

the given dataset. For many datasets, it is possible we find very few,

or even none, such linear projections. In these cases, it is fruitful

to search for compound constraints; we first focus on disjunctive

constraints (defined by𝜓𝐴 in our language grammar).

The PCA-based approach fails in cases where there exist differ-

ent piecewise linear trends within the data, as it will result into

low-quality constraints, with very high variances. In such cases,

partitioning the dataset and then learning constraints separately on

each partition will result in significant improvement of the learned

constraints. A disjunctive constraint is a compound constraint of

the form

∨
𝑘 ((𝐴 = 𝑐𝑘) ▷ 𝜙𝑘), where each 𝜙𝑘 is a constraint for

a specific partition of 𝐷 . Finding disjunctive constraints involves

horizontally partitioning the dataset𝐷 into smaller disjoint datasets

𝐷1, 𝐷2, . . . , 𝐷𝐿 . Our strategy for partitioning 𝐷 is to use categorical

attributes with a small domain in 𝐷 ; in our implementation, we

use those attributes 𝐴 𝑗 for which |{𝑡 .𝐴 𝑗 |𝑡 ∈ 𝐷}| ≤ 50. If 𝐴 𝑗 is

such an attribute with values 𝑣1, 𝑣2, . . . , 𝑣𝐿 , we partition 𝐷 into 𝐿

disjoint datasets 𝐷1, 𝐷2, . . . , 𝐷𝐿 , where 𝐷𝑙 = {𝑡 ∈ 𝐷 |𝑡 .𝐴 𝑗 = 𝑣𝑙 }. Let
𝜙1, 𝜙2, . . . , 𝜙𝐿 be the 𝐿 simple conformance constraints we learn

for 𝐷1, 𝐷2, . . . , 𝐷𝐿 using Algorithm 1, respectively. We compute the

following disjunctive conformance constraint for 𝐷 :

((𝐴 𝑗 = 𝑣1) ▷ 𝜙1) ∨ ((𝐴 𝑗 = 𝑣2) ▷ 𝜙2) ∨ · · · ∨ ((𝐴 𝑗 = 𝑣𝐿) ▷ 𝜙𝐿)
We repeat this process and partition 𝐷 across multiple attributes

and generate a compound disjunctive constraint for each attribute.

Then we generate the final compound conjunctive conformance

constraint (Ψ) for 𝐷 , which is the conjunction of all these disjunc-

tive constraints. Intuitively, this final conformance constraint forms

a set of overlapping hyper-boxes around the data tuples.

4.3 Theoretical Analysis

4.3.1 Runtime Complexity. Computing simple constraints involves

two computational steps: (1) computing 𝑋𝑇𝑋 , where 𝑋 is an 𝑛 ×𝑚
matrix with 𝑛 tuples and𝑚 attributes, which takes O(𝑛𝑚2) time,

and (2) computing the eigenvalues and eigenvectors of an𝑚 ×𝑚
positive definite matrix, which has complexity O(𝑚3) [47]. Once
we obtain the linear projections using the above two steps, we

need to compute the mean and variance of these projections on the

original dataset, which takes O(𝑛𝑚2) time. In summary, the overall

procedure is cubic in the number of attributes and linear in the num-

ber of tuples. For computing disjunctive constraints, we greedily

pick attributes that take at most 𝐿 (typically small) distinct values,

and then run the above procedure for simple constraints at most

𝐿 times. This adds just a constant factor overhead per attribute.

4.3.2 Memory Complexity. The procedure can be implemented in

O(𝑚2) space. The key observation is that 𝑋𝑇𝑋 can be computed as∑𝑛
𝑖=1 𝑡𝑖𝑡

𝑇
𝑖
, where 𝑡𝑖 is the 𝑖

𝑡ℎ
tuple in the dataset. Thus, 𝑋𝑇𝑋 can

be computed incrementally by loading only one tuple at a time into

memory, computing 𝑡𝑖𝑡
𝑇
𝑖
, and then adding that to a running sum,

which can be stored in O(𝑚2) space. Note that instead of such an in-
cremental computation, this can also be done in an embarrassingly

parallel way where we horizontally partition the data (row-wise)

and each partition is computed in parallel.

4.3.3 Implication, Redundancy, and Minimality. Definition 8 gives

us the notion of implication on conformance constraints: for a

dataset 𝐷 , satisfying 𝜙1 that is stronger than 𝜙2 implies that 𝐷

would satisfy 𝜙2 as well. Lemma 11 and Theorem 12 associate re-

dundancy with correlation: correlated projections can be combined

to construct a new projection that makes the correlated projections

redundant. Theorem 13 shows that our PCA-based procedure finds

a non-redundant (orthogonal and uncorrelated) set of projections.

For disjunctive constraints, it is possible to observe redundancy

across partitions. However, our quantitative semantics ensures that

redundancy does not affect the violation score. Another notion

relevant to data profiles (e.g., FDs) is minimality. In this work, we

do not focus on finding the minimal set of conformance constraints.

Towards achieving minimality for conformance constraints, a fu-

ture direction is to explore techniques for optimal data partitioning.

However, our approach computes only𝑚 conformance constraints

for each partition. Further, for a single tuple, only𝑚𝑁 ·𝑚𝐶 confor-

mance constraints are applicable, where𝑚𝑁 and𝑚𝐶 are the number

of numerical and categorical attributes in 𝐷 (i.e.,𝑚 = 𝑚𝑁 +𝑚𝐶).
The quantity𝑚𝑁 ·𝑚𝐶 is upper-bounded by

𝑚2

4
.

5 TRUSTED MACHINE LEARNING

In this section, we provide a theoretical justification of why con-

formance constraints are effective in identifying tuples for which

learned models are likely to make incorrect predictions. To that end,

we define unsafe tuples and show that an “ideal” conformance con-

straint provides a sound and complete mechanism to detect unsafe

tuples. In Section 4, we showed that low-variance projections con-

struct strong conformance constraints. We nowmake a similar argu-

ment, but in a slightly different way: we show that projections with

zero variance give us equality constraints that are useful for trusted

machine learning. We start with an example to provide the intuition.

Example 15. Consider the airlines dataset 𝐷 and assume that all

tuples in 𝐷 satisfy the equality constraint 𝜙 := AT − DT − DUR = 0

(i.e., lb = ub = 0). Note that for equality constraint, the correspond-

ing projection has zero variance—the lowest possible variance. Now,

suppose that the task is to learn some function 𝑓 (AT, DT, DUR). If the
above constraint holds for 𝐷 , then the ML model can instead learn the

function 𝑔(AT, DT, DUR) = 𝑓 (DT + DUR, DT, DUR). 𝑔 will perform just as

well as 𝑓 on 𝐷 : in fact, it will produce the same output as 𝑓 on 𝐷 . If a

new serving tuple 𝑡 satisfies 𝜙 , then 𝑔(𝑡) = 𝑓 (𝑡), and the prediction

will be correct. However, if 𝑡 does not satisfy 𝜙 , then 𝑔(𝑡) will likely be
significantly different from 𝑓 (𝑡). Hence, violation of the conformance

constraint is a strong indicator of performance degradation of the

learned prediction model. Note that 𝑓 need not be a linear function:

as long as 𝑔 is also in the class of models that the learning procedure

is searching over, the above argument holds.

We proceed to formally define unsafe tuples. We use [𝐷 ;𝑌] to
denote the annotated dataset obtained by appending the target

attribute 𝑌 to a dataset 𝐷 , and coDom to denote 𝑌 ’s domain.

Definition 16 (Unsafe tuple). Given a class C of functions

with signature Dom𝑚 ↦→ coDom, and an annotated dataset [𝐷 ;𝑌] ⊂
(Dom𝑚 × coDom), a tuple 𝑡 ∈ Dom𝑚 is unsafe w.r.t. C and [𝐷 ;𝑌],
if ∃𝑓 , 𝑔 ∈ C s.t. 𝑓 (𝐷) = 𝑔(𝐷) = 𝑌 but 𝑓 (𝑡) ≠ 𝑔(𝑡).

Intuitively, 𝑡 is unsafe if there exist two different predictor func-

tions 𝑓 and 𝑔 that agree on all tuples in 𝐷 , but disagree on 𝑡 . Since,

we can never be sure whether the model learned 𝑓 or 𝑔, we should

be cautious about the prediction on 𝑡 . Example 15 suggests that 𝑡

can be unsafe when all tuples in 𝐷 satisfy the equality conformance

constraint 𝑓 (®𝐴) − 𝑔(®𝐴) = 0 but 𝑡 does not. Hence, we can use the

following approach for trusted machine learning:

(1) Learn conformance constraints Φ for the dataset 𝐷 .

(2) Declare 𝑡 as unsafe if 𝑡 does not satisfy Φ.

The above approach is sound and complete for characterizing

unsafe tuples, thanks to the following proposition.

Proposition 17. There exists a conformance constraint Φ for 𝐷

s.t. the following statement is true: “¬Φ(𝑡) iff 𝑡 is unsafe w.r.t. C and

[𝐷 ;𝑌] for all 𝑡 ∈ Dom𝑚”.

The required conformance constraint Φ is: ∀𝑓 , 𝑔 ∈ C : 𝑓 (𝐷) =
𝑔(𝐷) = 𝑌 ⇒ 𝑓 (®𝐴) −𝑔(®𝐴) = 0. Intuitively, when all possible pairs of

functions that agree on 𝐷 also agree on 𝑡 , only then the prediction

on 𝑡 can be trusted. (More discussion is in our technical report [21].)

5.1 Applicability

Generalization to noisy settings.While our analysis and formal-

ization for using conformance constraints for TML focused on the

noise-free setting, the intuition generalizes to noisy data. Specifi-

cally, suppose that 𝑓 and 𝑔 are two possible functions a model may

learn over 𝐷 ; then, we expect that the difference 𝑓 − 𝑔 will have
small variance over𝐷 , and, thus, would be a good conformance con-

straint. In turn, the violation of this constraint would mean that 𝑓

and 𝑔 diverge on a tuple 𝑡 (making 𝑡 unsafe); since we are oblivious

of the function the model learned, prediction on 𝑡 is untrustworthy.

False positives. Conformance constraints are designed to work in

a model-agnostic setting. Although this setting is of great practical

importance, designing a perfect mechanism for quantifying trust in

ML model predictions, while remaining completely model-agnostic,

is challenging. It raises the concern of false positives: conformance

constraints may incorrectly flag tuples for which the model’s predic-

tion is in fact correct. This may happen when the model ignores the

trend that conformance constraints learn. Since we are oblivious of

the prediction task and the model, it is preferable that conformance

constraints behave rather conservatively so that the users can be

cautious about potentially unsafe tuples. Moreover, if a model ig-

nores some attributes (or their interactions) during training, it is still

necessary to learn conformance constraints over them. Particularly,

in case of concept drift [66], the ground truth may start depending

on those attributes, and by learning conformance constraints over

all attributes, we can better detect potential model failures.

False negatives. Another concern involving conformance con-

straints is of false negatives: linear conformance constraints may

miss nonlinear constraints, and, thus, fail to identify some unsafe

tuples. However, the linear dependencies modeled in conformance

constraints persist even after sophisticated (nonlinear) attribute

transformations. Therefore, violation of conformance constraints is

a strong indicator of potential failure of a possibly nonlinear model.

Modeling nonlinear constraints.While linear conformance con-

straints are the most common ones, we note that our framework can

be easily extended to support nonlinear conformance constraints

using kernel functions [57]—which offer an efficient, scalable, and

powerful mechanism to learn nonlinear decision boundaries for sup-

port vector machines (also known as kernel trick). Briefly, instead

of explicitly augmenting the dataset with transformed nonlinear

attributes—which grows exponentially with the desired degree of

polynomials—kernel functions enable implicit search for nonlinear

models. The same idea also applies for PCA called kernel-PCA [5,

34]. While we limit our evaluation to only linear kernel, polynomial

kernels—e.g., radial basis function (RBF) [38]—can be plugged into

our framework to model nonlinear conformance constraints.

In general, our conformance language is not guaranteed to model

all possible functions that an ML model can potentially learn, and,

thus, is not guaranteed to find the best conformance constraint.

However, our empirical evaluation on real-world datasets shows

that our language models conformance constraints effectively.

6 EXPERIMENTAL EVALUATION

We now present experimental evaluation to demonstrate the ef-

fectiveness of conformance constraints over our two case-study

applications (Section 2): trusted machine learning and data drift.

Our experiments target the following research questions:

• How effective are conformance constraints for trusted machine

learning? Is there a relationship between constraint violation

score and the ML model’s prediction accuracy? (Section 6.1)

• Can conformance constraints be used to quantify data drift?

How do they compare to other state-of-the-art drift-detection

techniques? (Section 6.2)

Efficiency. In all our experiments, our algorithms for deriving con-

formance constraints were extremely fast, and took only a few

seconds even for datasets with 6 million rows. The number of

attributes were reasonably small (∼40), which is true for most prac-

tical applications. As our theoretical analysis showed (Section 4.3),

our approach is linear in the number of data rows and cubic in

the number of attributes. Since the runtime performance of our

techniques is straightforward, we opted to not include further dis-

cussion of efficiency here and instead focus this empirical analysis

on the techniques’ effectiveness.

Implementation: CCSynth. We created an implementation of

conformance constraints and our method for synthesizing them,

CCSynth, in Python 3 [11]. Experiments were run on a Windows

10 machine (3.60 GHz processor and 16GB RAM).

Train

Serving

Daytime Overnight Mixed

Average violation 0.02% 0.02% 27.68% 8.87%

MAE 18.95 18.89 80.54 38.60

Figure 4: Average constraint violation (in percentage) and MAE (for

linear regression) of four data splits on the airlines dataset. The con-

straints were learned on Train, excluding the target attribute, delay.

Figure 5: Constraint violation strongly correlates with the absolute

error of delay prediction of a linear regression model.

Datasets

Airlines [4] contains data about flights and has 14 attributes —year,

month, day, day of week, departure time, arrival time, carrier, flight

number, elapsed time, origin, destination, distance, diverted, and

arrival delay. We used a subset of the data containing all flight

information for year 2008. In this dataset, most of the attributes

follow uniform distribution (e.g., month, day, arrival and departure

time, etc.); elapsed time and distance follow skewed distribution

with higher concentration towards small values (implying that

shorter flights are more common); arrival delay follows a slightly

skewed gaussian distribution implying most flights are on-time, few

arrive late and even fewer arrive early. The training and serving

datasets contain 5.4M and 0.4M rows, respectively.

HumanActivity Recognition (HAR) [63] is a real-world dataset

about physical activities for 15 individuals, 8 males and 7 females,

with varying fitness levels and BMIs.We use data from two sensors—

accelerometer and gyroscope—attached to 6 body locations—head,

shin, thigh, upper arm, waist, and chest. We consider 5 activities—

lying down, running, sitting, standing, and walking. The dataset

contains 36 numerical attributes (2 sensors × 6 body-locations × 3

co-ordinates) and 2 categorical attributes—activity-type and person-

ID. We pre-processed the dataset to aggregate the measurements

over a small time window, resulting in 10,000 tuples per person and

activity, for a total of 750,000 tuples.

Extreme Verification Latency (EVL) [62] is a widely used bench-

mark to evaluate drift-detection algorithms in non-stationary en-

vironments under extreme verification latency. It contains 16 syn-

thetic datasets with incremental and gradual concept drifts over

time. The number of attributes of these datasets vary from 2 to 6

and each of them has one categorical attribute.

6.1 Trusted Machine Learning

We now demonstrate the applicability of conformance constraints

in the TML problem. We show that, serving tuples that violate the

training data’s conformance constraints are unsafe, and therefore,

an ML model is more likely to perform poorly on those tuples.

Airlines. We design a regression task of predicting the arrival

delay and train a linear regression model for the task. Our goal

is to observe whether the mean absolute error of the predictions

(positively) correlates to the constraint violation for the serving

tuples. In a process analogous to the one described in Example 1, our

training dataset (Train) comprises of a subset of daytime flights—

flights that have arrival time later than the departure time (in 24

hour format). We design three serving sets: (1) Daytime: similar to

Train, but another subset, (2) Overnight: flights that have arrival
time earlier than the departure time (the dataset does not explicitly

report the date of arrival), and (3) Mixed: a mixture of Daytime
and Overnight. A few sample tuples of this dataset are in Fig. 1.

Our experiment involves the following steps: (1) CCSynth com-

putes conformance constraints Φ over Train, while ignoring the tar-
get attribute delay. (2) We compute average constraint violation for

all four datasets—Train, Daytime, Overnight, and Mixed—against
Φ (first row of Fig. 4). (3) We train a linear regression model over

Train—including delay—that learns to predict arrival delay. (4) We

compute mean absolute error (MAE) of the prediction accuracy

of the regressor over the four datasets (second row of Fig. 4). We

find that constraint violation is a very good proxy for prediction

error, as they vary in a similar manner across the four datasets. The

reason is that the model implicitly assumes that the constraints

(e.g., 𝐴𝑇 − 𝐷𝑇 − 𝐷𝑈𝑅 ≈ 0) derived by CCSynth will always hold,

and, thus, deteriorates when the assumption no longer holds.

To observe the rate of false positives and false negatives, we inves-

tigate the relationship between constraint violation and prediction

error at tuple-level granularity. We sample 1000 tuples from Mixed
and organize them by decreasing order of violations (Fig. 5). For all

the tuples (on the left) that incur high constraint violations, the re-

gression model incurs high error for them as well. This implies that

CCSynth reports no false positives. There are some false negatives

(right part of the graph), where violation is low, but the prediction

error is high. Nevertheless, such false negatives are very few.

HAR.We design a supervised classification task to identify persons

from their activity data that contains 36 numerical attributes. We

construct train_x with data for sedentary activities (lying, stand-

ing, and sitting), and train_y with the corresponding person-IDs.

We learn conformance constraints on train_x, and train a Logistic

Regression (LR) classifier using the annotated dataset [train_x;
train_y]. During serving, we mix mobile activities (walking and

running) with held-out data for sedentary activities and observe

how the classification’s mean accuracy-drop (i.e., how much the

mean prediction accuracy decreases compared to the mean pre-

diction accuracy over the training data) relates to average con-

straint violation. To avoid artifacts due to sampling bias, we repeat

this experiment 10 times for different subsets of the data by ran-

domly sampling 5000 data points for each of training and serving.

Fig. 6(a) depicts our findings: classification degradation has a clear

positive correlation with violation (pcc = 0.99 with p-value = 0).

Noise sensitivity. Intuitively, noiseweakens conformance constraints

by increasing variance in the training data, which results in reduced

violations of the serving data. However, this is desirable: as more

noise makes machine-learned models less likely to overfit, and,

thus, more robust. In our experiment for observing noise sensitiv-

ity of conformance constraints, we use mobile activity data as the

serving set and start with sedentary data as the training set. Then

we gradually introduce noise in the training set by mixing mobile

10 30 50 70 90

Fraction of mobile data (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
C

v
io

la
ti

on
/

ac
c-

d
ro

p

CCSynth

Classifier (LR)

5 15 25 35 45 55

Noise (%) during training

CCSynth

Classifier (LR)

(a) (b)

1 3 5 7 9 11 13 15

#Persons

0.0

0.2

0.4

A
ve

ra
ge

v
io

la
ti

on DI

W-PCA

SynthCC

(c)

Figure 6: (a) As a higher fraction of mobile activity data is mixed

with sedentary activity data, conformance constraints are violated

more, and the classifier’smean accuracy-drop increases. (b) Asmore

noise is added during training, conformance constraints get weaker,

leading to less violation and decreased accuracy-drop. (c) CCSynth

detects the gradual local drift on the HAR dataset as more people

start changing their activities. In contrast, weighted-PCA (W-PCA)

fails to detect drift in absence of a strong global drift.

Figure 7: Inter-person constraint violation heat map. Each person

has a very low self-violation.

activity data. As Fig. 6(b) shows, when more noise is added to the

training data, conformance constraints start getting weaker; this

leads to reduction in violations. However, the classifier also gains

robustness with more noise, which is evident from gradual decrease

in accuracy-drop (i.e., increase in accuracy). Therefore, even under

the presence of noise, the positive correlation between classification

degradation and violation persists (pcc = 0.82 with p-value = 0.002).

Key takeaway: CCSynth derives conformance constraints whose

violation is a strong proxy of model prediction accuracy. Their

correlation persists even in the presence of noise.

6.2 Data Drift

We now present results of using conformance constraints for drift-

detection; specifically, for quantifying drift in data. Given a baseline

dataset 𝐷 , and a new dataset 𝐷 ′, we measure the drift as average

violation of tuples in 𝐷 ′ on conformance constraints learned for 𝐷 .

HAR.We perform two drift-quantification experiments on HAR:

Gradual drift. For observing how CCSynth detects gradual drift, we

introduce drift in an organic way. The initial training dataset con-

tains data of exactly one activity for each person. This is a realistic

scenario as one can think of it as taking a snapshot of what a group

of people are doing during a reasonably small time window. We

introduce gradual drift to the initial dataset by altering the activity

of one person at a time. To control the amount of drift, we use a

parameter 𝐾 . When 𝐾 = 1, the first person switches their activity,

i.e., we replace the tuples corresponding to the first person perform-

ing activity A with new tuples that correspond to the same person

performing another activity B. When 𝐾 = 2, the second person

switches their activity in a similar fashion, and so on. As we increase

𝐾 from 1 to 15, we expect a gradual increase in the drift magnitude

compared to the initial training data. When𝐾 = 15, all persons have

switched their activities from the initial setting, and we expect to

observemaximum drift. We repeat this experiment 10 times, and dis-

play the average constraint violation in Fig. 6(c): the drift magnitude

(violation) indeed increases as more people alter their activities.

The baseline weighted-PCA approach (W-PCA) fails to model

local constraints (who is doing what), and learns some weaker

global constraints indicating that “a group of people are perform-

ing some activities”. Thus, it fails to detect the gradual local drift.

CCSynth can detect drift when individuals switch activities, as it

learns disjunctive constraints that encode who is doing what.

Inter-person drift. The goal of this experiment is to observe how

effectively conformance constraints can model the representation

of an entity and whether such learned representations can be used

to accurately quantify drift between two entities. We use half of

each person’s data to learn the constraints, and compute violation

on the held-out data. CCSynth learns disjunctive constraints for

each person over all activities, and then we use the violation w.r.t.

the learned constraints to measure how much the other persons

drift. While computing drift between two persons, we compute

activity-wise constraint violation scores and then average them out.

In Fig. 7, the violation score at row p1 and column p2 denotes how

much p2 drifts from p1. As one would expect, we observe a very low
self-drift across the diagonal. Interestingly, our result also shows

that some people are more different from others, which appears

to have some correlation with (the hidden ground truth) fitness

and BMI values. This asserts that the constraints we learn for each

person are an accurate abstraction of that person’s activities, as

people do not deviate too much from their usual activity patterns.

EVL. We now compare CCSynth against other state-of-the-art

drift detection approaches on the EVL benchmark.

Baselines. We use two drift-detection baselines as described below:

(1) PCA-SPLL [43] similar to us, also argues that principal com-

ponents with lower variance are more sensitive to a general drift,

and uses those for dimensionality reduction. It then models multi-

variate distribution over the reduced dimensions and applies semi-

parametric log-likelihood (SPLL) to detect drift between two multi-

variate distributions. However, PCA-SPLL discards all high-variance

principal components and does not model disjunctive constraints.

(2) CD (Change Detection) [51] is another PCA-based approach

for drift detection in data streams. But unlike PCA-SPLL, it ignores

low-variance principal components. CD projects the data onto top

𝑘 high-variance principal components, which results into multiple

univariate distributions. We compare against two variants of CD:

CD-Area, which uses the intersection area under the curves of

two density functions as a divergence metric, and CD-MKL, which

uses Maximum KL-divergence as a symmetric divergence metric,

to compute divergence between the univariate distributions.

0.0

0.5

1.0

1CDT

CD-MKL CD-Area PCA-SPLL (25%) DISynth

2CDT 1CHT 2CHT 4CR 4CRE-V1 4CRE-V2 5CVT

0 0.5 1

Time step (norm.)

0.0

0.5

1.0

C
h

an
ge

(n
or

m
al

iz
ed

)

1CSurr

0 0.5 1

Time step (norm.)

4CE1CF

0 0.5 1

Time step (norm.)

UG-2C-2D

0 0.5 1

Time step (norm.)

MG-2C-2D

0 0.5 1

Time step (norm.)

FG-2C-2D

0 0.5 1

Time step (norm.)

UG-2C-3D

0 0.5 1

Time step (norm.)

UG-2C-5D

0 0.5 1

Time step (norm.)

GEARS-2C-2D

CC

Figure 8: In the EVL benchmark, CCSynth quantifies drift correctly for all cases, outperforming other approaches. PCA-SPLL fails to detect

drift in a few cases by discarding all principal components; CD-MKL and CD-Area are too sensitive to small drift and detect spurious drifts.

Fig. 8 depicts how CCSynth compares against CD-MKL, CD-

Area, and PCA-SPLL, on 16 datasets in the EVL benchmark. For

PCA-SPLL, we retain principal components that contribute to a

cumulative explained variance below 25%. Beyond drift detection,

which just detects if drift is above some threshold, we focus on drift

quantification. A tuple (𝑥,𝑦) in the plots denotes that drift magni-

tude for dataset at 𝑥𝑡ℎ time window, w.r.t. the dataset at the first

time window, is 𝑦. Since different approaches report drift magni-

tudes in different scales, we normalize the drift values within [0, 1].
Additionally, since different datasets have different number of time

windows, for the ease of exposition, we normalize the time window

indices. Below we state our key findings from this experiment:

CCSynth’s drift quantification matches the ground truth. In all of

the datasets in the EVL benchmark, CCSynth is able to correctly

quantify the drift, which matches the ground truth [17] exception-

ally well. In contrast, as CD focuses on detecting the drift point,

it is ill-equipped to precisely quantify the drift, which is demon-

strated in several cases (e.g., 2CHT), where CD fails to distinguish

the deviation in drift magnitudes. In contrast, both PCA-SPLL and

CCSynth correctly quantify the drift. Since CD only retains high-

variance principal components, it is more susceptible to noise and

considers noise in the dataset as significant drift, which leads to

incorrect drift quantification. In contrast, PCA-SPLL and CCSynth

ignore the noise and only capture the general notion of drift.

CCSynth models local drift.When the dataset contains instances

frommultiple classes, the drift may be just local, and not global (e.g.,

4CR dataset [21]). In such cases, PCA-SPLL fails to detect drift (4CR,

4CRE-V2, and FG-2C-2D). In contrast, CCSynth learns disjunctive

constraints and quantifies local drifts accurately.

Key takeaways: CCSynth can effectively detect data drift, both

global and local, is robust across drift patterns, and significantly

outperforms the state-of-the-art methods.

7 RELATEDWORK

There is extensive literature on data-profiling [1] primitives that

model relationships among data attributes, such as functional de-

pendencies (FD) [48, 75] and their variants [10, 19, 30, 32, 40, 42, 50],

differential dependencies [60], denial constraints [8, 12, 44, 49],

statistical constraints [74], etc. However, none of them focus on

learning approximate arithmetic relationships that involve multiple

numerical attributes in a noisy setting, which is the focus of our

work. Some FD variants [10, 30, 32, 40, 42] consider noisy setting,

but they require noise parameters to be explicitly specified by the

user. In contrast, we do not require any explicit noise parameter.

The issue of trust, resilience, and interpretability of artificial

intelligence (AI) systems has been a theme of increasing interest

recently [33, 35, 55, 71], particularly for safety-critical data-driven

AI systems [65, 72]. A standard way to decide whether to trust a

classifier or not, is to use the classifier-produced confidence score.

However, this is not always effective since the classifier’s confi-

dence scores are not well-calibrated [34]. While some recent tech-

niques [15, 26, 34, 56] aim at validating the inferences made by

machine-learned models on unseen tuples, they usually require

knowledge of the inference task, access to the model, and/or ex-

pected cases of data shift, which we do not. Furthermore, they

usually require costly hyper-parameter tuning and do not generate

closed-form data profiles like conformance constraints (Fig. 2). Prior

work on data drift, change detection, and covariate shift [3, 7, 9,

13, 14, 16, 18, 22, 23, 28, 29, 31, 37, 39, 54, 58, 59, 61, 67, 73] relies

on modeling data distribution. However, data distribution does not

capture constraints, which is the primary focus of our work.

Few works [15, 26, 45] use autoencoder’s [27, 53] input recon-

struction error to determine if a new data point is out-of-distribution.

Our approach is similar to outlier-detection [41] and one-class-

classification [64]. However, conformance constraints differ from

these approaches as they perform under the additional requirement

to generalize the data in a way that is exploited by a given class

of ML models. In general, there is a clear gap between represen-

tation learning (that models data likelihood) [2, 27, 36, 53] and

the (constraint-oriented) data-profiling techniques to address the

problem of trusted AI and our aim is to bridge this gap.

8 SUMMARY AND FUTURE DIRECTIONS

We introduced conformance constraints, and the notion of unsafe

tuples for trusted machine learning. We presented an efficient and

scalable approach for synthesizing conformance constraints and

empirically demonstrated their effectiveness in tagging unsafe tu-

ples and quantify data drift. We studied two use-cases from a large

pool of potential applications using linear conformance constraints.

In future, wewant to exploremore powerful nonlinear conformance

constraints using autoencoders. Moreover, we plan to explore ap-

proaches to learn conformance constraints in a decision-tree-like

structure where categorical attributes will guide the splitting con-

ditions and leaves will contain simple conformance constraints.

Acknowledgements: This work was partially supported by the

NSF grants IIS-1453543 and CCF-1763423, and by Oracle Labs.

REFERENCES

[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. VLDB J. 24, 4 (2015), 557–581.

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas.

2018. Learning Representations and Generative Models for 3D Point Clouds. In

ICML, Vol. 80. 40–49.

[3] Charu C. Aggarwal. 2003. A Framework for Diagnosing Changes in Evolving

Data Streams. In SIGMOD. 575–586.

[4] Airlines Dataset 2009. http://kt.ijs.si/elena_ikonomovska/data.html.

[5] Carlos Alzate and Johan AK Suykens. 2008. Kernel component analysis using an

epsilon-insensitive robust loss function. IEEE Transactions on Neural Networks

19, 9 (2008), 1583–1598.

[6] Jean Paul Barddal, Heitor Murilo Gomes, Fabrício Enembreck, and Bernhard

Pfahringer. 2017. A survey on feature drift adaptation: Definition, benchmark,

challenges and future directions. Journal of Systems and Software 127 (2017),

278–294.

[7] Albert Bifet and Ricard Gavaldà. 2007. Learning from Time-Changing Data with

Adaptive Windowing. In SDM. 443–448.

[8] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial

Constraint Discovery with Hydra. PVLDB 11, 3 (2017), 311–323.

[9] Li Bu, Cesare Alippi, and Dongbin Zhao. 2018. A pdf-Free Change Detection Test

Based on Density Difference Estimation. IEEE Trans. Neural Netw. Learning Syst.

29, 2 (2018), 324–334.

[10] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016. On the dis-

covery of relaxed functional dependencies. In Proceedings of the 20th International

Database Engineering & Applications Symposium. 53–61.

[11] CCSynth Source Code 2021. https://github.com/microsoft/prose/tree/main/misc/

CCSynth.

[12] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.

PVLDB 6, 13 (2013), 1498–1509.

[13] Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubramanian, and Ke

Yi. 2006. An information-theoretic approach to detecting changes in multi-

dimensional data streams. In Symp. on the Interface of Statistics, Computing

Science, and Applications.

[14] Rodrigo Fernandes deMello, Yule Vaz, Carlos HenriqueGrossi Ferreira, andAlbert

Bifet. 2019. On learning guarantees to unsupervised concept drift detection on

data streams. Expert Syst. Appl. 117 (2019), 90–102.

[15] Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Buu Phan,

and Sachin Vernekar. 2018. Improving Reconstruction Autoencoder Out-of-

distribution Detection with Mahalanobis Distance. CoRR abs/1812.02765 (2018).

arXiv:1812.02765

[16] Denis Moreira dos Reis, Peter A. Flach, Stan Matwin, and Gustavo E. A. P. A.

Batista. 2016. Fast Unsupervised Online Drift Detection Using Incremental

Kolmogorov-Smirnov Test. In SIGKDD. 1545–1554.

[17] Extreme Verification Latency Benchmark Video (Nonstationary Environments -

Archive): 2020. https://sites.google.com/site/nonstationaryarchive/home.

[18] William J. Faithfull, Juan José Rodríguez Diez, and Ludmila I. Kuncheva. 2019.

Combining univariate approaches for ensemble change detection in multivariate

data. Information Fusion 45 (2019), 202–214.

[19] Wenfei Fan, Floris Geerts, Laks V. S. Lakshmanan, and Ming Xiong. 2009. Dis-

covering Conditional Functional Dependencies. In ICDE. 1231–1234.

[20] Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, and Sumit Gulwani. 2020.

ExTuNe: Explaining Tuple Non-conformance. In SIGMOD. 2741–2744.

[21] Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, and Alexandra

Meliou. 2020. Conformance Constraint Discovery: Measuring Trust in Data-

Driven Systems. CoRR abs/2003.01289 (2020).

[22] Mohamed Medhat Gaber and Philip S Yu. 2006. Classification of changes in evolv-

ing data streams using online clustering result deviation. In Proc. Of International

Workshop on Knowledge Discovery in Data Streams.

[23] João Gama, Pedro Medas, Gladys Castillo, and Pedro Pereira Rodrigues. 2004.

Learning with Drift Detection. In Advances in Artificial Intelligence - SBIA. 286–

295.

[24] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. 2014. A survey on concept drift adaptation. ACM Comput. Surv. 46,

4 (2014), 44:1–44:37.

[25] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration

of modern neural networks. In Proceedings of the 34th International Conference

on Machine Learning-Volume 70. 1321–1330.

[26] Dan Hendrycks and Kevin Gimpel. 2017. A Baseline for Detecting Misclassified

and Out-of-Distribution Examples in Neural Networks. In ICLR.

[27] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-

ity of data with neural networks. science 313, 5786 (2006), 504–507.

[28] Shen-Shyang Ho. 2005. A martingale framework for concept change detection

in time-varying data streams. In ICML. 321–327.

[29] Bryan Hooi and Christos Faloutsos. 2019. Branch and Border: Partition-Based

Change Detection in Multivariate Time Series. In Proceedings of the 2019 SIAM

International Conference on Data Mining, SDM. 504–512.

[30] Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE:

An efficient algorithm for discovering functional and approximate dependencies.

The computer journal 42, 2 (1999), 100–111.

[31] Dino Ienco, Albert Bifet, Bernhard Pfahringer, and Pascal Poncelet. 2014. Change

detection in categorical evolving data streams. In SAC. 792–797.

[32] Ihab F. Ilyas, VolkerMarkl, Peter J. Haas, Paul Brown, and Ashraf Aboulnaga. 2004.

CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies.

In SIGMOD. 647–658.

[33] Susmit Jha. 2019. Trust, Resilience and Interpretability of AI Models. In Numerical

Software Verification - 12th International Workshop, NSV@CAV. 3–25.

[34] Heinrich Jiang, Been Kim, Melody Y. Guan, and Maya R. Gupta. 2018. To Trust

Or Not To Trust A Classifier. In NeurIPS. 5546–5557.

[35] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2020. Model

Assertions for Monitoring and Improving ML Models. In MLSys.

[36] Theofanis Karaletsos, Serge J. Belongie, and Gunnar Rätsch. 2016. When crowds

hold privileges: Bayesian unsupervised representation learning with oracle con-

straints. In ICLR.

[37] Yoshinobu Kawahara and Masashi Sugiyama. 2009. Change-Point Detection in

Time-Series Data by Direct Density-Ratio Estimation. In SDM. 389–400.

[38] S Sathiya Keerthi and Chih-Jen Lin. 2003. Asymptotic behaviors of support vector

machines with Gaussian kernel. Neural computation 15, 7 (2003), 1667–1689.

[39] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. 2004. Detecting Change in

Data Streams. In PVLDB. 180–191.

[40] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian.

2009. Metric functional dependencies. In ICDE. 1275–1278.

[41] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. 2012. Outlier

Detection in Arbitrarily Oriented Subspaces. In ICDM. 379–388.

[42] Sebastian Kruse and Felix Naumann. 2018. Efficient discovery of approximate

dependencies. PVLDB 11, 7 (2018), 759–772.

[43] Ludmila I. Kuncheva and William J. Faithfull. 2014. PCA Feature Extraction for

Change Detection in Multidimensional Unlabeled Data. IEEE Trans. Neural Netw.

Learning Syst. 25, 1 (2014), 69–80.

[44] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx-

imate Denial Constraints. PVLDB 13, 10 (2020), 1682–1695.

[45] Haochuan Lu, Huanlin Xu, Nana Liu, Yangfan Zhou, and Xin Wang. 2019.

Data Sanity Check for Deep Learning Systems via Learnt Assertions. CoRR

abs/1909.03835 (2019). arXiv:1909.03835

[46] Tveten Martin and Ingrid K. Glad. 2019. Online Detection of Sparse Changes

in High-Dimensional Data Streams Using Tailored Projections. arXiv preprint

arXiv:1908.02029 (2019).

[47] Victor Y. Pan and Zhao Q. Chen. 1999. The Complexity of the Matrix Eigenprob-

lem. In ACM Symposium on Theory of Computing. 507–516.

[48] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer

Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. 2015. Functional

dependency discovery: An experimental evaluation of seven algorithms. PVLDB

8, 10 (2015), 1082–1093.

[49] Eduardo HM Pena, Eduardo C de Almeida, and Felix Naumann. 2019. Discovery

of approximate (and exact) denial constraints. PVLDB 13, 3 (2019), 266–278.

[50] Abdulhakim Qahtan, Nan Tang, Mourad Ouzzani, Yang Cao, and Michael Stone-

braker. 2020. Pattern functional dependencies for data cleaning. PVLDB 13, 5

(2020), 684–697.

[51] Abdulhakim Ali Qahtan, Basma Alharbi, Suojin Wang, and Xiangliang Zhang.

2015. A PCA-Based Change Detection Framework for Multidimensional Data

Streams: Change Detection in Multidimensional Data Streams. In SIGKDD. 935–

944.

[52] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should I

Trust You?”: Explaining the Predictions of Any Classifier. In SIGKDD. 1135–1144.

[53] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning

internal representations by error propagation. Technical Report. California Univ

San Diego La Jolla Inst for Cognitive Science.

[54] Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, and Piotr Duda. 2015. A

New Method for Data Stream Mining Based on the Misclassification Error. IEEE

Trans. Neural Netw. Learning Syst. 26, 5 (2015), 1048–1059.

[55] Suchi Saria and Adarsh Subbaswamy. 2019. Tutorial: Safe and Reliable Machine

Learning. CoRR abs/1904.07204 (2019). arXiv:1904.07204

[56] Sebastian Schelter, Tammo Rukat, and Felix Bießmann. 2020. Learning to Validate

the Predictions of Black Box Classifiers on Unseen Data. In SIGMOD. 1289–1299.

[57] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. 2002. Learning with

kernels: support vector machines, regularization, optimization, and beyond.

[58] Tegjyot Singh Sethi and Mehmed M. Kantardzic. 2017. On the reliable detection

of concept drift from streaming unlabeled data. Expert Syst. Appl. 82 (2017),

77–99.

[59] Tegjyot Singh Sethi, Mehmed M. Kantardzic, and Elaheh Arabmakki. 2016. Mon-

itoring Classification Blindspots to Detect Drifts from Unlabeled Data. In IEEE

International Conference on Information Reuse and Integration, IRI. 142–151.

[60] Shaoxu Song and Lei Chen. 2011. Differential dependencies: Reasoning and

discovery. ACM Transactions on Database Systems (TODS) 36, 3 (2011), 1–41.

[61] Xiuyao Song, Mingxi Wu, Christopher M. Jermaine, and Sanjay Ranka. 2007.

Statistical change detection for multi-dimensional data. In SIGKDD. 667–676.

http://kt.ijs.si/elena_ikonomovska/data.html
https://github.com/microsoft/prose/tree/main/misc/CCSynth
https://github.com/microsoft/prose/tree/main/misc/CCSynth
https://arxiv.org/abs/1812.02765
https://sites.google.com/site/nonstationaryarchive/home
https://arxiv.org/abs/1909.03835
https://arxiv.org/abs/1904.07204

[62] V. M. A. Souza, D. F. Silva, J. Gama, and G. E. A. P. A. Batista. 2015. Data Stream

Classification Guided by Clustering on Nonstationary Environments and Extreme

Verification Latency. In SDM. 873–881.

[63] Timo Sztyler andHeiner Stuckenschmidt. 2016. On-body Localization ofWearable

Devices: An Investigation of Position-Aware Activity Recognition. In PerCom.

1–9.

[64] David M. J. Tax and Klaus-Robert Müller. 2003. Feature Extraction for One-Class

Classification. In ICANN/ICONIP. 342–349.

[65] Ashish Tiwari, Bruno Dutertre, Dejan Jovanovic, Thomas de Candia, Patrick

Lincoln, JohnM. Rushby, Dorsa Sadigh, and Sanjit A. Seshia. 2014. Safety envelope

for security. In HiCoNS. 85–94.

[66] Alexey Tsymbal. 2004. The problem of concept drift: definitions and related work.

Computer Science Department, Trinity College Dublin 106, 2 (2004), 58.

[67] Alexey Tsymbal, Mykola Pechenizkiy, Padraig Cunningham, and Seppo Puuronen.

2006. Handling Local Concept Drift with Dynamic Integration of Classifiers:

Domain of Antibiotic Resistance in Nosocomial Infections. In IEEE International

Symposium on Computer-Based Medical Systems (CBMS). 679–684.

[68] Francesco Turchini, Lorenzo Seidenari, and Alberto Del Bimbo. 2017. Convex

polytope ensembles for spatio-temporal anomaly detection. In International Con-

ference on Image Analysis and Processing. 174–184.

[69] Martin Tveten. 2019. Which principal components are most sensitive to distribu-

tional changes? arXiv preprint arXiv:1905.06318 (2019).

[70] Vladimir Vapnik, Steven E Golowich, and Alex J Smola. 1997. Support vector

method for function approximation, regression estimation and signal processing.

In NeurIPS. 281–287.

[71] Kush R. Varshney. 2019. Trustworthy machine learning and artificial intelligence.

ACM Crossroads 25, 3 (2019), 26–29.

[72] Kush R. Varshney andHomaAlemzadeh. 2017. On the Safety ofMachine Learning:

Cyber-Physical Systems, Decision Sciences, and Data Products. Big Data 5, 3

(2017), 246–255.

[73] Heng Wang and Zubin Abraham. 2015. Concept Drift Detection for Imbalanced

Stream Data. CoRR abs/1504.01044 (2015). arXiv:1504.01044

[74] Jing Nathan Yan, Oliver Schulte, Mohan Zhang, Jiannan Wang, and Reynold

Cheng. 2020. SCODED: Statistical Constraint Oriented Data Error Detection. In

SIGMOD. 845–860.

[75] Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A Statistical Per-

spective on Discovering Functional Dependencies in Noisy Data. In SIGMOD.

861–876.

https://arxiv.org/abs/1504.01044

	Abstract
	1 Introduction
	2 Case Studies
	3 Conformance Constraints
	3.1 Conformance Language
	3.2 Quantitative Semantics

	4 Conformance Constraint Synthesis
	4.1 Simple Conformance Constraints
	4.2 Compound Conformance Constraints
	4.3 Theoretical Analysis

	5 Trusted Machine Learning
	5.1 Applicability

	6 Experimental Evaluation
	6.1 Trusted Machine Learning
	6.2 Data Drift

	7 Related Work
	8 Summary and Future Directions
	References

