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ABSTRACT

Data profiling refers to the task of extracting technical metadata or
profiles and has numerous applications such as data understanding,
validation, integration, and cleaning. While a number of data profil-
ing primitives exist in the literature, most of them are limited to cat-
egorical attributes. A few techniques consider numerical attributes;
but, they either focus on simple relationships involving a pair of
attributes (e.g., correlations) or convert the continuous semantics of
numerical attributes to a discrete semantics, which results in infor-
mation loss. To capture more complex relationships involving the
numerical attributes, we developed a new data-profiling primitive
called conformance constraints, which can model linear arithmetic
relationships involving multiple numerical attributes.

We present CoCo, a system that allows interactive discovery and
exploration of Conformance Constraints for understanding trends
involving the numerical attributes of a dataset, with a particular fo-
cus on the application of data cleaning. Through a simple interface,
CoCo enables the user to guide conformance constraint discovery
according to their preferences. The user can examine to what extent
a new, possibly dirty, dataset satisfies or violates the discovered
conformance constraints. Further, CoCo provides useful sugges-
tions for cleaning dirty data tuples, where the user can interactively
alter cell values, and verify by checking change in conformance
constraint violation due to the alteration. We demonstrate how
CoCo can help in understanding trends in the data and assist the
users in interactive data cleaning, using conformance constraints.
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1 INTRODUCTION

Data profiling [1] is a key data-management task that involves
discovering technical metadata or profiles that provide a high-level,
informative summary of data. Data profiles encapsulate constraints,
patterns, and trends within data and have important applications
in data integration, validation, and cleaning. A number of data-
profiling primitives exist in the literature such as integrity and
denial constraints [4], functional dependencies and its variants (e.g.,
soft, approximate, relaxed, metric, conditional, pattern) [10], and sta-
tistical constraints [12]. However, most of them focus on categorical
or text attributes and cannot be trivially extended to (noisy) numer-
ical attributes. To support numerical attributes, existing techniques
apply binning or use relational operators to convert the continuous
semantics of numerical attributes to a discrete semantics. However,
such transformations result in significant information loss. Espe-
cially, existing data profiling primitives fall short in capturing the
arithmetic relationships involving multiple numerical attributes.

Example 1.1. Consider a schema of a flight dataset with the nu-
merical attributes: (1) departureTime, (2) arrivalTime, (3) duration,
(4) distance, and (5) delay. There exist a number of natural con-
straints involving these attributes that any instance over this schema
should (ideally) satisfy. E.g., consider the following two constraints:
(C1) arrivalTime − departureTime ≈ duration

(C2) AVG_AIRCRAFT_SPEED × (duration − delay) ≈ distance

The above two constraints can be further used to generate many
other constraints. For instance, we can substitute duration in C1
with ( distance

AVG_AIRCRAFT_SPEED + delay)—obtained from C2—to get a new
constraint over arrivalTime, departureTime, distance and delay.

Conformance constraints. The constraints in Example 1.1 encode
linear arithmetic relationships involving the numerical attributes,
which can generally be expressed using the following template:

LOWER_BOUND ≤
∑
𝑖

𝑤𝑖A𝑖 ≤ UPPER_BOUND

Here, LOWER_BOUND and UPPER_BOUND are numerical constants, A𝑖
denotes the 𝑖th attribute, and𝑤𝑖 denotes the corresponding numer-
ical coefficient (relative weight). Unfortunately, no existing data
profiling primitive is expressive enough to capture these linear
arithmetic constraints. To model linear dependencies across numer-
ical attributes within a noisy dataset, we developed conformance
constraints [9], which can model constraints in the above template.

Automatic discovery of conformance constraints. Traditionally, in-
tegrity constraints are specified along with the schema to keep the
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“integrity” of new data over that schema, e.g., to prevent erroneous
tuple insertion. Like other data profiles, conformance constraints
can also be specified during schema design. However, it is difficult
to come up with the right set of conformance constraints manually.
First, real-world data is often noisy and pre-specified constraints
can be too strict, resulting in unwanted conservativeness during
future data operations. Second, figuring out the right set of confor-
mance constraints requires complete understanding of the domain
and semantics of each attribute (e.g., duration includes both the
flight time and the delay). Third, finding the coefficients manually
is tedious: it requires knowledge of the measurement units of the
attributes (e.g., distance is in miles). Thus, it is preferable to have
a mechanism for automatic discovery of conformance constraints
from a given dataset, which we developed in a prior work [9].

Interactive exploration of conformance constraints. A shortcoming
of our approach for conformance constraint discovery is that it pri-
oritizes effectiveness (finds the strongest conformance constraints)
over interpretability (may involve a large number of numerical at-
tributes). For example, if there exists a correlation between the two
constraints of Example 1.1 over the data, i.e., all tuples tend to incur
similar violation scores against both, then they can be merged to
derive a stronger constraint. However, such an increase in strength
comes at the cost of interpretability, as a conformance constraint
that involves too many numerical attributes is less interpretable. To
address this issue, CoCo allows the user to tune the parameters for
conformance constraint discovery: they can specify the attributes
that are of interest and the maximum number of attributes they pre-
fer within the conformance constraints. While this might produce
suboptimal constraints, it nonetheless is valuable because it gives
users more control and confidence. In particular, CoCo displays
the strength of each discovered conformance constraint and also
shows the top 15 most violating tuples, which helps the user judge
the effectiveness of the constraints.

Conformance constraints for data cleaning. An obvious application
of conformance constraints is data cleaning. The idea is to first
learn conformance constraints over a clean (reference) dataset and
then consult the learned constraints for data cleaning. Specifically,
violation of the learned constraints by a new tuple indicates that
the tuple may be dirty. Furthermore, the closed form expression
of conformance constraints also allows us to provide suggestions
regarding valid values for each cell (Figure 1), which can guide
the user throughout the data cleaning process. CoCo provides an
interactive data cleaning solution where the user can edit a cell
within a tuple and gets immediate feedback about the corresponding
change in constraint violation: reduction or removal of constraint
violation confirm a correct cleaning operation (Figure 2).

Related work. We developed complete algorithms for conformance
constraint discovery and demonstrated their effectiveness in trusted
machine learning and data drift quantification in a prior work [9].
To interpret conformance constraints in the context of trusted ma-
chine learning, we previously demonstrated ExTuNe [8], which
blames data attributes for causing tuple nonconformance. CoCo sig-
nificantly differs from ExTuNe, in three ways: (1) Unlike ExTuNe,
CoCo allows the user to guide conformance constraint discovery
and explore the discovered constraints directly. (2) CoCo associates

constraint violation with the constraints themselves and not with
the data attributes. (3) CoCo is focused on data cleaning, while Ex-
TuNe’s focus was trusted machine learning. In summary, ExTuNe
was a causal-intervention-centric system built on top of confor-
mance constraints, while CoCo is a demonstration of the discovery
and implication of conformance constraints and their application
in interactive data cleaning.

Integrity constraints and functional dependencies have long been
used for error detection and data cleaning [3, 6, 7]. Holistic data
cleaning [5] provides a unified framework to allow different types
of user-provided constraints for data cleaning. Instead of relying
on user-provided rules, a practical idea is to automatically discover
them from clean data. ANMAT [11] exploits automatically discov-
ered pattern functional dependencies for error detection, but it is
limited to text attributes. In summary, none of the existing efforts in
data cleaning consider automatically generated constraints involv-
ing linear arithmetic expressions over numerical attributes, which is
the primary focus of conformance-constraint-driven data cleaning.

In our demonstration, participants will observe how CoCo dis-
covers interpretable conformance constraints, based on their pref-
erences, and experience how violation of conformance constraints
can facilitate interactive data cleaning. We proceed to describe the
solution sketch and then provide an outline of our demonstration.

2 SOLUTION SKETCH

Conformance constraint discovery. The core component of CoCo
is a discovery engine for conformance constraints. Conformance
constraints enforce that certain projections of the data tuples stay
within certain bounds. A projection ®𝑃 is simply a weighted linear
combination of the numerical attributes (

∑
𝑖 𝑤𝑖A𝑖 ). Given a projec-

tion ®𝑃 , we can compute the bounds of the corresponding confor-
mance constraint by evaluating ®𝑃 over the dataset 𝐷 . In our work,
we use the following formulas to compute the bounds, where ` and
𝜎 denote mean and standard deviation, respectively:

LOWER_BOUND = ` ( ®𝑃 (𝐷)) − 4 × 𝜎 ( ®𝑃 (𝐷))
UPPER_BOUND = ` ( ®𝑃 (𝐷)) + 4 × 𝜎 ( ®𝑃 (𝐷))

However, the key task here is to find a set of good projections that
result in strong conformance constraints. To this end, we apply
our prior work on conformance constraint discovery [9], which
is based on the principles of principal component analysis (PCA).
At a high level, the key idea is to find projections that incur low
variance over the reference data, as this, intuitively, implies that the
data shows an “almost constant” trend along that low-variance pro-
jection. PCA generates a set of projections (principal components)
over a given data, where the first principal component captures the
maximum variance and the last principal component captures the
least variance of the data. While traditionally, only high-variance
principal components have been used to reduce data dimensionality
with the aim of reducing reconstruction error, our key idea is that
we can use the “by-product” of PCA—the low-variance principal
components—to construct strong conformance constraints.

Strength of conformance constraints. A projection with very low
variance yields a strong constraint, as “low variance” implies “al-
most constant” value for a projection, i.e., a steady trend. In contrast,
a high-variance projection does not yield a useful constraint. Hence,



we use inverse of standard deviation (square root of variance) of
a projection to denote the “strength” of the corresponding confor-
mance constraint: lower the variance, stronger the constraint. We
normalize the strength using the conversion _𝜎 : 1

ln(𝑒+𝜎) .

Interpretable conformance constraints. Involving all attributes dur-
ing learning yields the strongest set of conformance constraints.
However, as discussed before, it results in poor interpretability.
CoCo allows the user to specify a parameter 𝐾 that denotes the
maximum number of attributes preferred within a conformance
constraint. Additionally, CoCo allows the user to tune a second
parameter A which denotes a set of attributes over which con-
formance constraint discovery should be limited. With 𝐾 and A
specified by the user, CoCo learns constraints on different vertical
partitions of the reference dataset, with each partition limited to
a subset of 𝐾 attributes from A. Although, theoretically, this re-
sults in combinatorial explosion, the set A is expected to be small
and the value 𝐾 must be small (≤ 5) for ensuring interpretability.
Therefore, in practice, such a runtime complexity is acceptable.

CoCo preprocesses the discovered conformance constraints be-
fore presenting them to the user. The preprocessing involves (1) re-
moving attributes that are associated with very small weights
within a constraint, as this improvs interpretability, and (2) remov-
ing redundant constraints that involve the same attributes (and,
thus, are equivalent) by keeping only one of the redundant con-
straints. E.g., the constraints −2 ≤ 𝑋+𝑌 ≤ 2 and −4 ≤ 2𝑋+2𝑌 ≤ 4
are equivalent and keeping only one of them is sufficient.

Computing constraint violation. A violation function computes how
much a tuple 𝑡 violates a conformance constraint involving projec-
tion ®𝑃 . Specifically, it measures howmany standard deviations away
®𝑃 (𝑡) is from the bounds of the conformance constraint involving ®𝑃 :

violation (𝑡, lb ≤ ®𝑃 ≤ ub) =


0 if lb ≤ ®𝑃 (𝑡) ≤ ub
®𝑃 (𝑡 )−ub
𝜎 ( ®𝑃 (𝐷))

if ®𝑃 (𝑡) > ub

lb− ®𝑃 (𝑡 )
𝜎 ( ®𝑃 (𝐷))

if ®𝑃 (𝑡) < lb

To aggregate violation scores over a set of constraints, we com-
pute a weighted sum over all constraint violations, where weights
are proportional to the strength of the constraint. Finally, we nor-
malize the violation score using the monotonic function _𝑧 : 1−𝑒−𝑧 .

Generating suggestions for data cleaning. For data cleaning, we use
a reasonably clean dataset as a reference data. Discovery of con-
formance constraints requires only a small amount of data that
are reasonably clean (number of tuples should be more than the
number of attributes for PCA to work). However, our technique for
conformance constraint discovery is robust to uniformly distributed
outliers across all projections, and straightforward modification
in bound computation (tightening) can adjust to noisy data. For a
tuple 𝑡 , all of whose attributes are correct, except the jth attribute,
we can generate a range of valid values for the jth attribute to fix
it by exploiting a given conformance constraint 𝐶 . When we have
a set of such constraints 𝐶1, 𝐶2, . . . , we can generate a range of
valid values for each 𝐶𝑖 and take their intersection to find a range
that will satisfy all of the constraints. Using this mechanism, CoCo
generates suggestions on how to alter value of a single cell of a
tuple to fix it. However, we note that when multiple attributes are
incorrect, such a suggestion may not be helpful.

3 DEMONSTRATION

We will demonstrate CoCo on a real-world airlines dataset [2].
The dataset contains information about flights over 14 attributes
including origin, destination, departure time, arrival time, duration,
distance, and delay. We will use a subset of the data, manually se-
lected to be reasonably clean, as a reference dataset. We expect that
most participants will be familiar with this data domain and will be
able to correctly interpret the conformance constraints that CoCo
discovers. Figure 1 shows a screenshot of CoCo’s graphical user in-
terface. The top panel is for conformance constraint discovery and
selection, and the bottom panel serves the purpose of interactive
exploration of constraint violations by data tuples and data cleaning.
During the demonstration, we will guide the participants through
ten steps. We have annotated each step with a circle in Figure 1.

Step 1○ (Uploading reference data) First, the user uploads a
reference dataset, over which CoCo will learn conformance con-
straints. Ideally, tuples within the reference dataset should bemostly
clean. For our guided scenario, the user uploads a clean subset of
the airlines dataset as the reference data.

Step 2○ (Parameter tuning) Next, the user tunes two param-
eters for conformance constraints: (1) The maximum number of
attributes (𝐾 ) that can appear in any conformance constraint, which
can be specified through a slider. A small value for this parame-
ter yields more interpretable conformance constraints that involve
fewer attributes. However, this might compromise the effectiveness
of the discovered constraints. For our scenario, the user sets the
value of 𝐾 to be 3. (2) A set of attributes A over which confor-
mance constraints should be learned. The user selects the attributes
{distance, arrivalTime, departureTime, duration, and delay},
as they deem these attributes as most relevant.

Step 3○ (Conformance constraint discovery) The user re-
quests CoCo to discover conformance constraints based on the
specified parameters 𝐾 andA. CoCo learns accordingly and shows
a progress bar to keep the user informed about its progress during
conformance constraint discovery.

Step 4○ (Viewing constraints for data understanding)CoCo
presents the discovered conformance constraints to the user, along
with their strengths, from which the user can gain insights about
the dataset. For example, the first conformance constraint is equiv-
alent to the constraint C1 of Example 1.1. The green bars indicate
the strengths of the constraints.

Steps 5○ - 6○ (Constraint selection) CoCo can produce many
constraints and not all of them are useful for the task at hand. Hence,
CoCo lets the user choose a subset of the discovered constraints
that they deem useful. Once the user confirms their selection, the
selected constraints are shown in the left side of the bottom panel.

Step 7○ (Uploading test data) The user now uploads a new,
potentially dirty, dataset for observing to what extent its tuples
satisfy or violate the selected conformance constraints. For our
guided scenario, the user uploads the dataset containing all flights.

Step 8○ (Viewing and selecting tuples) CoCo presents the
top 15 most violating tuples within the test data to the user, along
with their overall violation scores (not shown in Figure 1). The user
selects the 7th tuple to dig deeper.

Step 9○ (Viewing constraint-wise violation) In this step, the
user views breakdown of constraint-wise violation by the selected
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Figure 1: The CoCo demo: 1○ upload reference (clean) data, 2○ select relevant attributes and specify the maximum number of attributes de-

siredwithin the conformance constraints, 3○ discover conformance constraints, 4○ view the discovered constraints alongwith their strengths,

5○ select a subset of conformance constraints for further exploration, 6○ view the selected conformance constraints, 7○ upload test (unclean)

data, 8○ view top 15 most violating tuples and select a tuple for checking its violations, 9○ view constraint-wise violations for the selected

tuple, 10○ hover on a cell to get suggestion on how to alter its value to satisfy the conformance constraints.

Figure 2: Interactive data cleaning: the user edits a cell in-place and

views changes in constraint violation. Changing ArrTime from 605 to
670 for the 7 th

tuple reduces its violation against the first constraint,

but increases violation against the 6
th

constraint.

tuple. The length of a red bar denotes the amount of violation
against the corresponding conformance constraint.

Step 10○ (Interactive data cleaning) The last step is designed
to facilitate interactive data cleaning. Upon viewing the violations

by a tuple, the user may want to edit a cell. Once the user hovers on
a cell, CoCo automatically provides a suggestion on how to alter
its value to satisfy the selected conformance constraints using the
mechanism described in Section 2. Once the user edits a cell, CoCo
instantly updates the red violation bars according to the altered
tuple. Figure 2 shows a snapshot of such an operation.

Demonstration engagement. After our guided demonstration, partic-
ipants will be able to plug their own datasets into CoCo. Through
the demonstration, we will showcase how CoCo can effectively
learn useful conformance constraints according to the user’s pref-
erences. The key takeaway is that conformance constraints provide
a natural way for data understanding and interactive data cleaning.
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