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Abstract

Data-driven decision-making is at the core of many modern appli-
cations, and understanding the data is critical in supporting trust
in these decisions. However, data is dynamic and evolving, just like
the real-world entities it represents. Thus, an important component
of understanding data is analyzing and drawing insights from the
changes it undergoes. Existing methods for exploring data change
list differences exhaustively, which are not interpretable by humans
and lack salient insights regarding change trends.

We demonstrate ChARLES, a system that derives semantic sum-
maries of changes between two snapshots of an evolving database,
in an effective, concise, and interpretable way. Our key observation
is that while datasets often evolve through point and other small-
batch updates, rich data features can reveal latent semantics that
can intuitively summarize the changes. Under the hood, ChARLES
compares database versions, infers feasible transformations by fit-
ting multiple regression lines over different data partitions to de-
rive change summaries, and ranks them. ChARLES allows users to
customize the ranking to obtain their preferred explanation by nav-
igating the accuracy-interpretability tradeoff, and offers a proof of
concept for reasoning about data evolution over real-world datasets.
Demo video: https://users.cs.utah.edu/~afariha/charles.mp4

1 Introduction

The task of data summarization is of prime importance to make
sense of data. Existing data summarization systems enable users
to interactively understand the content of a static database [4].
However, data is dynamic, evolving over time, and summarization
techniques for static databases are ineffective at explaining this
data evolution. Datasets often evolve through many tuple-level or
small-batch-level updates. However, exhaustively listing all such
fine-grained changes overwhelms human analysts. Fortunately, rich
features in the data have the potential to concisely summarize such
fine-grained changes, offering an “explanation” that captures the
salient semantics of the data’s evolution.

To understand change, we need to understand its cause (why),
mechanism (how), and quantification (howmuch). This information
is hard to extract from raw change logs, which are often unavailable
to end users. Thus, understanding data changes via large change
logs poses a significant hurdle for non-expert data consumers. Data
versioning techniques can trace the locations and quantities of
changes, but high-level trends are not typically obvious at that fine
granularity. Instead, changes should be summarized at a coarser
granularity to reveal the underlying causes and mechanisms.

Example 1. Figure 1 presents two snapshots of a salary database

in (a) 2016 and (b) 2017. In 2016, bonus was a flat 10% of salary for

all employees. In contrast, we observed no such straightforward trend

name gen edu exp salary bonus

Anne F PhD 2 $230,000 $23,000
Bob M PhD 3 $250,000 $25,000
Amber F MS 5 $160,000 $16,000
Allen M MS 1 $130,000 $13,000
Cathy F BS 2 $110,000 $11,000
Tom M MS 4 $150,000 $15,000
James M BS 3 $120,000 $12,000
Lucy F MS 4 $150,000 $15,000
Frank M PhD 1 $210,000 $21,000

(a) 2016 snapshot

name gen edu exp salary bonus

Anne F PhD 3 $230,000 $25,150
Bob M PhD 4 $250,000 $27,250
Amber F MS 6 $160,000 $17,440
Allen M MS 2 $130,000 $13,790
Cathy F BS 3 $110,000 $11,000
Tom M MS 5 $150,000 $16,400
James M BS 4 $120,000 $12,000
Lucy F MS 5 $150,000 $16,400
Frank M PhD 2 $210,000 $23,050

(b) 2017 snapshot

Figure 1: Employee salaries have evolved over a year, with the bonus
attribute increasing by 8–10% (highlighted in yellow). Context and

trends of these changes are not apparent from the point updates.

in 2017. In some cases, the value of bonus differs from last year’s

value (highlighted in yellow), while in some cases they are identical

(for Cathy and James). Furthermore, the difference ranges from 8%

to 10% and is not identical for everyone. Simply knowing that bonus
changed from last year leaves one unsatisfied, as it is not obvious what

is the underlying trend behind such non-uniform changes. It turns

out that the company adopted a new policy to reward long-serving

employees and promote educational advancement based on three

principles: (1) no one should receive lower bonus than the previous

year, (2) employees with higher educational degree should be rewarded

more, and (3) long-serving employees should be rewarded more.

This is not immediately apparent by just looking at the data, since

bonus for 2017 is no longer directly tied to salary, as was the case
in 2016. Instead, it is calculated based on a combination of last year’s

bonus, employee’s education (edu), and years of experience (exp).
Specifically, the following rules accurately explain the change trend:

• R1: Employees who have a PhD receive a 5% increase on last

year’s bonus, plus flat $1000.

• R2: Employees who have an MS and served for at least 3 years

receive a 4% increase on last year’s bonus, plus flat $800.

• R3: Employees who have an MS and served for less than 3

years receive a 3% increase on last year’s bonus, plus flat $400.

There are two desirable properties for a change summary: (1) it
should be precise, i.e., be able to explain the changes accurately,
and (2) it should be interpretable and succinct for easy human con-
sumption. Note that there is a natural tension between these two
desirable properties. Consider the following change summary:

• R4: Everyone receives about 6% increase on last year’s bonus.

R4 is more interpretable (more succinct and human-consumable)
than {R1, R2, R3}; however, R4 does not accurately capture the
change, while {R1, R2, R3} does. In contrast, one can provide
a change summary by listing each individual cell that changed.
However, such a summary—despite being very precise—would lack
interpretability as this level of detail overwhelms the user.

https://users.cs.utah.edu/~afariha/charles.mp4


edu = PhD

bonus2017 = 1.05 × bonus2016 + 1000
YES

edu = MS

exp < 3

bonus2017 = 1.03 × bonus2016 + 400
YES

bonus2017 = 1.04 × bonus2016 + 800
NO

YES
None

NO

NO

Figure 2: A linear model tree explaining diff in datasets in Figure 1.

ChARLES. To meet the requirements of accuracy and interpretabil-
ity, we developed ChARLES (Change-Aware Recovery of Latent
Evolution Semantics), a system for producing a semantic summary

of changes between two snapshots of a relational database, while
striking a balance between accuracy and interpretability. Our key
observation is that data changes are often driven by some underly-
ing policies and the patterns within data evolution, as manifested by
the changes, can potentially recover those policies. In this work, we
focus on temporal changes and assume that given a source dataset
(earlier version) and a target dataset (later version) of identical
schema, the latter is obtained via a set of update operations over
the former. Furthermore, we assume that no tuples are inserted or
deleted1; only (numerical) values of various cells are altered2.

The key challenge is to derive a partitioning of the tuples, such
that tuples within each partition conform to a uniform “transfor-
mation” of reasonable complexity. As a proof of concept, ChARLES
uses Linear Model Trees [8] to guide the search for data partitions
based on a subset of data attributes (e.g., education and year of
experience) and obtain a linear regression model at each leaf of
the tree (e.g., bonus2017 = 1.05 × bonus2016 + 1000). The output is
a tree (Figure 2), where the path from the root to a leaf defines a
partition and the leaf defines the transformation (a linear model).

Furthermore, ChARLES enhances user experience by (1) cus-
tomization—users can specify system parameters such as the maxi-
mumnumber of attributes theywant to see in the change summary—
and (2) visualization—they can interactively inspect different parti-
tions of the data and the corresponding change trends.
Limitations.ChARLES focuses on finding an interpretable summary
of data changes based only on the data, without any knowledge
of external information. While the change summary produced by
ChARLESmay not always match the factual explanation (e.g., when
change is due to some external factors), it nevertheless helps facil-
itate the development of hypotheses about the underlying causes
of these changes. While ChARLES relies on linear models to cap-
ture change trends, this can be extended by augmenting the data
with nonlinear features. However, nonlinear models are less inter-
pretable, which justifies our choice of linear models.
Related work. Prior work [1] explores the history of changes in a
database, but is limited to syntactic changes, suitable for historical
change exploration involving a particular entity. Database com-
parator tools [7] and version control systems [3] only look for
syntactic changes—changed values, altered objects, removal/addi-
tion of rows—which is not concise enough to provide high-level
insights of the changes. Data-diff [11] explores change in data distri-
butions in the context of data wrangling. But, these works cannot on
semantically summarize changes between two database versions.
1This assumption often holds for a vast majority of tuples for many databases (e.g.,
databases of employees, products, countries, etc.). Even when it doesn’t hold, we can
focus change summarization involving the entities that are present in both versions.
2Non-numeric attributes may also change, however, this work focuses on explaining
numerical changes as those are the hardest for humans to comprehend intuitively.

Explain-Da-V [10] is closest to ChARLES as it also explains
transformations that convert a source dataset to a target dataset.
However, it makes a strict assumption that changes are program-
matically achieved by data scientists while achieving data-science
tasks. As such, it focuses on the semantics of schema and data
format transformations (e.g., data extraction, row deletion, adding
attributes representing length of an attribute). We found Explain-
Da-V to fail even for the toy dataset of Figure 1, as it does not
support disjoint linear transformations such as {R1, R2, R3} of
Example 1. In contrast, ChARLES can discover disjoint changes in-
volving numeric attributes where the values of an attribute change
based on interactions among other attributes, which represent nat-
ural evolution of real world entities. Furthermore, Explain-Da-V
uses only accuracy as the primary objective and explainability just
as a tie-breaker. In contrast, ChARLES allows the users to specify
their desired balance between accuracy and explainability.

Local explanations for ML models [9] is inapplicable in our use
case as they focus on classification. In contrast, we focus on the
challenging problem of pattern-based grouping, where we need
to find groups where elements share the same change patterns.
However, a cyclic dependency exists here: change patterns can only
be discovered once tuple groups are formed, but the appropriateness
of the groups depends on the consistency of their change patterns.

Demonstration. In our demonstration, participants will witness how
ChARLES generates change summaries from two datasets, tailored
to user preferences, and enables them to effectively gain insights
about data changes. We proceed to describe our solution sketch in
Section 2 and then outline the demonstration scenario in Section 3.

2 Solution Sketch

Given a source dataset D𝑠 and a target dataset D𝑡 of identical
schema, and a numerical attribute of interest 𝑎𝑖 , we aim to produce
a ranked list of change summaries that capture the changes observed
between D𝑠 (𝑎𝑖 ) and D𝑡 (𝑎𝑖 ). Each change summary consists of a
set of transformations over different data partitions. We rank the
summaries based on their scores, which indicate how well they can
strike a balance between accuracy and interpretability. As justified
before, we assume that D𝑠 and D𝑡 contain the same real-world en-
tities, i.e., only values of non-primary-key attributes were modified,
and there were no insertions or deletions of tuples.

Change summary and conditional transformation. Our unit
of explanation within a change summary is a conditional trans-

formation (CT), which comprises a condition and a transformation.
A summary 𝑆 = {𝐶𝑇1,𝐶𝑇2, . . . } comprises a set of CTs. The con-
dition explains why a change happened, and the transformation
describes the change itself. For instance, the following CT explains
that employees with a PhD got 5% increase in bonus plus $1000.

edu = PhD︸      ︷︷      ︸
Condition

→ new_bonus = 1.05 × old_bonus + 1000︸                                             ︷︷                                             ︸
Transformation

Desiderata for change summary. A desirable change summary
must ensure that (1) all or most of the data changes are accurately
covered and (2) the summary itself is interpretable and succinct for
human consumption. To this end, we introduce 𝑆𝑐𝑜𝑟𝑒 (𝑆) ∈ [0, 1]
for a summary 𝑆 , which indicates how well 𝑆 can represent the
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differences between D𝑠 (𝑎𝑖 ) and D𝑡 (𝑎𝑖 ).
𝑆𝑐𝑜𝑟𝑒 (𝑆) = 𝛼 ×𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑆) + (1 − 𝛼) × 𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑆) (1)

Here, 𝛼 is a system parameter that controls the interplay between
accuracy and interpretability.
Modeling accuracy.WemodelAccuracy by the inverse 𝐿1 distance
between D̂𝑠 (𝑎𝑖 ) and D𝑡 (𝑎𝑖 ), where D̂𝑠 is the transformed dataset
obtained by applying the CTs in 𝑆 on D𝑠 . Other distance metrics
can be plugged in here, we chose 𝐿1 distance for simplicity.
Modeling interpretability. We prioritize the following character-
istics of summaries:
• Smaller summaries. A summary with fewer CTs is preferable, as
it leads to increased conciseness.

• Simpler conditions and transformations. A condition consists of a
series of descriptors that identify specific segments of the data,
so we prefer a simpler condition with fewer descriptors. E.g.,
the transformation “All Female employees received 5% bonus” is
more interpretable than “All Asian, European Females, or Females
working in HR received a 5% bonus”. Similarly, transformations
with fewer variables in the linear equation is preferred.

• Conditions with higher data coverage. A condition that yields a
small data partition explains little of the change. Thus, we prefer
conditions with higher coverage, yielding larger partitions.

• Higher “normality” for conditions and transformations. Conditions
and transformations may involve numeric constants. We prefer
the ones involving more “normal” values. E.g., the condition “Age
> 25” is more normal than “Age > 23.796”, and 5% for a salary
increase is more normal (and interpretable) than 2.479%. We rely
on domain expertise to model such notions of normality.
Then the interpretability score of a summary 𝑆 is computed using

the following equation3, where 𝛽1, . . . , 𝛽4 are tunable parameters:

𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑆) = 𝛽1 · 𝑆𝑖𝑧𝑒 (𝑆) + 𝛽2 · 𝑆𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 (𝑆)
+ 𝛽3 ·𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑆) + 𝛽4 · 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 (𝑆)

System parameters. Enhancing interpretability without signifi-
cantly compromising accuracy results in a more effective summary,
with a higher overall score. The parameter 𝛼 controls the tradeoff
between accuracy and interpretability, and the parameters 𝛽1, . . . ,
𝛽4 control the relative weights of various interpretability compo-
nents. While the user is free to tune these parameters based on their
preferences, we set default values of these parameters (e.g., we set
𝛼 to 0.5 to assign equal weight to interpretability and accuracy)
to cater to a diverse audience, allowing novices to bypass system
parameter tuning and experts to adjust parameters.
ChARLES. ChARLES consists of two components: the setup assis-
tant, which helps the users (optionally) tune the system parameters,
and the diff discovery engine, which is responsible for generating
the change summaries.
Setup assistant. For datasets with many attributes, the search space
for possible summaries can be large. Users can help narrow down
the set of relevant attributes, which has the dual benefits of reduc-
ing the search space, and pivoting the change summaries around
attributes of interest. However, users who are unfamiliar with the
3We omit the implementation details of 𝑆𝑖𝑧𝑒 (.) , 𝑆𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 (.) ,𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (.) , and
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 (.) due to space limitations, however, these implementations are orthog-
onal to ChARLES and any user-defined implementations can be plugged in.

schema may fail to do so. ChARLES addresses this challenge by
estimating the influence of each attribute on the target attribute us-
ing correlation analysis and presents to the user a shortlist of most
promising condition (A𝑐𝑜𝑛𝑑 ) and transformation (A𝑡𝑟𝑎𝑛) attributes
for explaining the changes (Steps 4○ & 5○ in Figure 3).

ChARLES also allows the user to narrow down or expand the
candidate attributes using two parameters: (1) 𝑐 , the maximum
number of attributes ∈ A𝑐𝑜𝑛𝑑 to use for partition discovery, and
(2) 𝑡 , the maximum number of numerical attributes ∈ A𝑡𝑟𝑎𝑛 to use
to fit the linear model within each partition (Step 3○). Additionally,
ChARLES also sets the default values for other system parameters
such as 𝛼 , 𝛽1, . . . , 𝛽4 based on optimal empirical findings (Step 6○).

Diff discovery engine. Instead of directly finding the best-scoring
summaries via an optimization technique, ChARLES follows a two-
step procedure: (1) generate a diverse set of candidate summaries,
and (2) rank them based on their scores, and return the top-k.

To this end, ChARLES first adopts Linear Model Tree (LMT) [8],
which uses a greedy strategy to obtain a tree (Figure 2). Each leaf
denotes a partition and a conjunction of the conditions along the
path from the root to a leaf defines that leaf’s partition’s condi-
tion. At each leaf, a linear regression model is fitted based on the
available transformation attributes 𝐴𝑡𝑟𝑎𝑛 . All such transformations
over different partitions (leaves), together, form a change summary
consisting of multiple conditional transformations.

Like decision trees, at each node, LMT greedily decides on the
best partitioning scheme, over the available condition attributes
𝐴𝑐𝑜𝑛𝑑 , only based on the next-level accuracy (inverse of𝐿1 distance),
which is computed by prematurely fitting a linear regression line at
each child node and aggregating their regression errors. However,
this can be sub-optimal because further splitting of a child node can
drastically increase its accuracy, but is impossible to know ahead
of time. Furthermore, since LMT only focuses on accuracy, it may
produce summaries that are less interpretable.

To tackle this challenge, ChARLES uses the idea of ensembles
and random forest [6]. Specifically, ChARLES guides construction
of a sufficiently large, and diverse set of LMTs by randomizing the
subsets of data attributes each LMT can use for partitioning and
generating transformations. Based on A𝑐𝑜𝑛𝑑 , A𝑡𝑟𝑎𝑛 , and the pa-
rameters 𝑐 and 𝑡 , ChARLES enumerates all possible combinations
of attributes to use for partitioning and generating transformations
and utilizes a random subset of those combinations. E.g., for 𝑐 = 3
and 𝑡 = 2, ChARLES will consider all subsets of A𝑐𝑜𝑛𝑑 with cardi-
nality ≤ 3 as partitioning attributes and all subsets of A𝑡𝑟𝑎𝑛 with
cardinality ≤ 2 as transformation attributes. During the ensemble
process, ChARLES limits possible options for each LMT in diverse
ways. This produces a diverse set of LMTs, each representing a can-
didate change summary. ChARLES then scores these summaries
using Equation 1, ranks them, and returns the top-k best summaries.
System efficiency. ChARLES greedily constructs the LMTs where
the leaves of the LMTs use simple linear regression, which makes
computation of each LMT very fast, with an amortized runtime
complexity of 𝑂 (𝑃𝑁𝑀2), where 𝑃 is the number of possible ways
to split the data, 𝑁 is the number of rows and 𝑀 is the number
of attributes in the data. Furthermore, the construction of random
forest is embarrassingly parallelizable, causing minimal impact on
the runtime performance.
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Figure 3: TheChARLES demo: 1○ upload datasets, 2○ select the target attribute, 3○ specify themaximumnumber of attributes for condition and

transformation, 4○ ChARLES selects attributes for condition automatically, 5○ ChARLES selects attributes for transformation automatically,

6○ tune score parameter 𝛼 , 7○ request change summaries, 8○ ChARLES presents a list of ranked summaries, with their overall scores, and

scores for accuracy and interpretability, 9○ click on a summary for more details, 10○ detailed visualization of data partitions.

3 Demonstration

We will demonstrate ChARLES on a real-world dataset [5] repre-
senting salary information of employees of Montgomery County,
MD for 2016 and 2017. The dataset contains 8 attributes: Depart-
ment, Department Name, Division, Gender, Base Salary, Overtime
Pay, Longevity Pay, and Grade. Figure 3 showsChARLES’s interface.
During the demonstration, we will guide the participants through
ten steps, each annotated with a circle in Figure 3.

Step 1○ (Uploading datasets) The user uploads two dataset
versions they want to compare. For ease of exposition, we use the
toy datasets of Example 1 in this demo scenario.

Step 2○ (Selecting the target attribute)Next, the user chooses
the target attribute that manifests changes they wish to investigate.
For our scenario, the user chooses “bonus”.

Step 3○ (Setting parameters) Next, the user chooses the maxi-
mum number of condition attributes to use for partitioning (3) and
the maximum number of transformation attributes (2).

Steps 4○ & 5○ (Attribute selection) ChARLES presents a
ranked list of attributes that are most promising for partitioning
4○ and generating transformations 5○. The user selects the top 3
from the first list and top 2 from the second, which is the default
selection by ChARLES: “education”, “exp year”, and “gender” as
potential condition attributes and “bonus” (of the previous year)
and “salary” as potential transformation attributes.

Steps 6○– 8○ (Change summaries) 𝛼 represents the weight
of accuracy in the 𝑆𝑐𝑜𝑟𝑒 function (set to 0.5 by default). Users can
modify it if they wish 6○. For example, for a more interpretable
summary, they can set 𝛼 to a lower value to shift the balance to-
wards interpretability at the expense of accuracy. Upon user request
7○, ChARLES displays the summaries 8○, each comprising a set
of conditional transformations—where conditions are in blue and
transformations are in pink—followed by an option to visualize
9○, overall score, accuracy, and interpretability scores. Here, the

first summary reflects the scenario described in Example 1, which
incurs a very high score of 89%. By default, ChARLES presents the
10 top-scoring summaries.

Steps 9○& 10○ (Visualization)To better understand a summary,
the user requests more details 9○. ChARLES offers an interactive
visualization 10○ comprising several non-overlapping rectangles,
each representing a data partition whose size corresponds to its data
coverage. E.g., 33.3% employees fall within the top partition. For
each partition, additional details—such as partitioning condition,
data coverage, accuracy of the transformation—are revealed when
the user hovers over the rectangle. The bottom partition, marked
by diagonal patterns, indicates that no change was observed there.

Demonstration engagement. Our target users are data analysts, de-
cision makers, and data enthusiasts who want to understand data
change trends. After our guided demonstration, participants can
plug their own datasets into ChARLES. We will also make addi-
tional datasets [2] available. Through the demonstration, we will
showcase how ChARLES can semantically summarize data changes.
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