
Expert Systems with Applications 41 (2014) 1847–1863
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Mining frequent correlated graphs with a new measure
0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.08.082

⇑ Corresponding author. Mob.: +33 629 271 568.
E-mail addresses: samiullah@cse.univdhaka.edu (Md. Samiullah), cfahmed@

unistra.fr, farhan@cse.univdhaka.edu (C.F. Ahmed), purpleblueanna@gmail.com
(A. Fariha), mislam@csu.edu.au (Md. Rafiqul Islam), nicolas.lachiche@unistra.fr
(N. Lachiche).
Md. Samiullah a, Chowdhury Farhan Ahmed b,⇑, Anna Fariha a, Md. Rafiqul Islam c, Nicolas Lachiche b

a Department of Computer Science and Engineering, University of Dhaka, Bangladesh
b ICube Laboratory, University of Strasbourg, France
c School of Computing and Mathematics, Charles Sturt University, Australia

a r t i c l e i n f o a b s t r a c t
Keywords:
Data mining
Knowledge discovery
Correlated patterns
Graph mining
Correlation mining is recognized as one of the most important data mining tasks for its capability to iden-
tify underlying dependencies between objects. On the other hand, graph-based data mining techniques
are increasingly applied to handle large datasets due to their capability of modeling various non-tradi-
tional domains representing real-life complex scenarios such as social/computer networks, map/spatial
databases, chemical-informatics domain, bio-informatics, image processing and machine learning. To
extract useful knowledge from large amount of spurious patterns, correlation measures are used. None-
theless, existing graph based correlation mining approaches are unable to capture effective correlations
in graph databases. Hence, we have concentrated on graph correlation mining and proposed a new graph
correlation measure, gConfidence, to discover more useful graph patterns. Moreover, we have developed
an efficient algorithm, CGM (Correlated Graph Mining), to find the correlated graphs in graph databases.
The performance of our scheme was extensively analyzed in several real-life and synthetic databases
based on runtime and memory consumption, then compared with existing graph correlation mining
algorithms, which proved that CGM is scalable with respect to required processing time and memory con-
sumption and outperforms existing approaches by a factor of two in speed of mining correlations.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Data mining extracts useful knowledge from databases. It also
discovers patterns (Agrawal & Srikant, 1994; Ahmed, Tanbeer,
Jeong, & Lee, 2009; Ahmed, Tanbeer, Jeong, & Choi, 2011; Ahmed,
Tanbeer, Jeong, & Choi, 2012; Han, Pei, & Yin, 2000; Hu, Huang, &
Kao, 2013; Inokuchi, Washio, & Motoda, 2000; Inokuchi, Washio,
& Motoda, 2005; Kuramochi & Karypis, 2001; Nishi, Ahmed,
Samiullah, & Jeong, 2013; Nori, Deypir, & Sadreddini, 2013;
Tanbeer, Ahmed, Jeong, & Lee, 2009) hidden in data and useful
correlations/affinities between the patterns. Correlation mining is
a very interesting and important area of data mining which finds
the underlying dependencies/affinities among the patterns/objects
(Lee, Kim, Cai, & Han, 2003; Omiecinski, 2003; Tan, Kumar, & Sri-
vastava, 2002; Xiong, Tan, & Kumar, 2003). The implicit informa-
tion within databases, and mainly the interesting association
relationships among sets of objects, those lead to association rules,
may disclose useful patterns for decision support, financial fore-
cast, marketing policies, even medical diagnosis and many other
applications. Nowadays, as data mining techniques are being
increasingly applied to non-traditional domains, existing ap-
proaches for finding frequent patterns cannot be used as they can-
not model the requirements of these domains.

Graphs can be used as an alternate way of modeling the objects
in datasets (Inokuchi et al., 2000; Kuramochi & Karypis, 2001;
Lahiri & Berger-Wolf, 2008; Lahiri & Berger-Wolf, 2010; Yan &
Han, 2003). Within that model, the problem of finding frequent
patterns becomes that of discovering subgraphs that occur fre-
quently over the entire set of graphs (Kuramochi & Karypis,
2001). In particular, each vertex of the graph will correspond to
an entity and each edge will correspond to a relation between
two entities. In this model, both vertices and edges may have labels
associated with them which are not required to be unique. The
graph structured data mining to derive frequent subgraphs from
a graph dataset is difficult because the search for subgraphs is
combinatorially explosive and includes subgraph isomorphism
matching (Kramer, Pfahringer, & Helma, 1997) which is an NP-
complete problem. Power of using graphs, to model complex
datasets, has been recognized by many researchers in chemical
informatics (Chittimoori, Holder, & Cook, 1999; Dehaspe, Toivonen,
& King, 1998; Srinivasan, King, Muggleton, & Sternberg, 1997a;
Srinivasan, King, Muggleton, & Sternberg, 1997b), computer vision
(Klviinen & Oja, 1990; Piriyakumar, Murthy, & Levi, 1998), image
and object retrieval (Cicirello, 1999; Dupplaw & Lewis, 2000),
and machine learning (Chen & Yun, 2003; Holder, Cook, & Djoko,
1994; Yoshida & Motoda, 1995) domain.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.08.082&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.08.082
mailto:samiullah@cse.univdhaka.edu
mailto:cfahmed@unistra.fr
mailto:cfahmed@unistra.fr
mailto:farhan@cse.univdhaka.edu
mailto:purpleblueanna@gmail.com
mailto:mislam@csu.edu.au
mailto:nicolas.lachiche@unistra.fr
http://dx.doi.org/10.1016/j.eswa.2013.08.082
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

1848 Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863
Correlation mining in graph databases is a very important graph
mining task due to its wide range of application domains. Existing
works (He & Singh, 2006; Holder et al., 1994; Raymond, Gardiner,
& Willett, 2002; Williams, Huan, & Wang, 2007; Yan, Zhu, Yu, &
Han, 2006) mainly focus on structural similarity search, which
aim to find graphs those are similar in structure. However, in many
applications, two structurally similar graphs do not imply that they
are correlated or similar in characteristics. For example, in chemis-
try, isomers refer to molecules with the same chemical formula
and similar structures. The chemical properties of isomers can be
quite different due to different positions of atoms and functional
groups. Consider the case that a chemist needs to find some mole-
cules those share similar chemical properties with a given mole-
cule. Structural similarity search is not relevant, since it mostly
returns isomers of the given molecule that have similar structures
but different chemical properties, which is undesirable.

In Ke, Cheng, and Ng (2008), the authors proposed an algorithm
of mining graph correlation based on statistical similarity, that is,
CGS (Correlated Graph Search) algorithm, which is able to obtain
the molecules that share similar chemical properties but may or
may not have similar structures to the given molecule. In particu-
lar, CGS is a searching algorithm, which works for searching corre-
lation of a specific query graph with the database. Therefore, it has
limitations in describing inherent correlation within graphs of
graph databases and the domain knowledge is mandatory in using
CGS, otherwise lots of queries would be meaningless.

Consider a scenario shown in Fig. 1, where two frequent graphs
are found from a set of graphs representing a group of people in a
social network. Each graph in the set represents friend circle of an
individual where nodes represent individuals and edges represent
interaction among individual pairs. The circles around graphs rep-
resent the interaction of a group of people all together (sub-group).
Moreover, nodes in the frequent graphs represent the most inter-
active individuals and edges are their mutual interaction in various
friend circle representing graphs. Integer values beside the edges
and circles represent the frequencies of the edges and frequent
graphs within the set of graphs respectively. The frequency of
edges indicates the number of graphs where such interactions oc-
cur in the graph database (network) and the frequency of circles
represents the number of graphs where such sub-grouping of indi-
viduals with their interactions occurred.

In order to determine the most correlated group between the
two groups in Fig. 1, so that we can perform various operations
on the most correlated group (as example, target group for task
assignment, social/cyber crime investigation, common notification
sending etc.), frequencies of the frequent graphs cannot provide
any hint due to the tie in frequency of both graphs.

In this circumstance, our measure, which is proposed in
Section 3.1, will suggest that people of G2 are more correlated.
Fig. 1. An example scenario.
Because, G1’s people interact together in 30 events and the maxi-
mum number of interactions between any pair in G1 is 100. There-
fore, according to our approach, CorrelationðG1Þ ¼ 30

100 ¼ 0:3. The
second group’s people interact together in 30 events and the max-
imum number of interactions between any pair in G2 is 60, hence
CorrelationðG2Þ ¼ 30

60 ¼ 0:5. Indeed, such correlation measure helps
in mining more useful/meaningful graph patterns and knowledge,
since it can discover inherent correlation among the elements of a
graph. As a consequence, if the graph database, from which the two
frequent subgraphs of Fig. 1 were extracted, can be used for mining
correlated graphs with the correlation threshold value 0.4, then the
first frequent subgraph will be pruned and the second one will be
selected as a strong correlated subgraph among the graphs of the
database.

These facts motivated us in developing such a new measure and
to the best of our knowledge, such correlation mining in graph dat-
abases has not been proposed yet. The key contributions of this pa-
per are as follows:

1. A new measure, gConfidence, is proposed to capture more
interesting inherent correlation in graph databases.

2. Our proposed measure satisfies the downward closure
property, consequently, allows to prune a large number of
candidate patterns.

3. We have proposed an algorithm, CGM (Correlated Graph
Mining), which uses the proposed measure and efficiently
mines correlation by constructing a hierarchical reduced
search space in large graph databases.

4. Elaborate descriptions with examples of real-life applica-
tions are given to explain the realistic usefulness of our
approach. Advantages of CGM over existing graph correla-
tion mining algorithms as well as the relationship with
them are discussed and comprehensively analyzed.

5. An extensive performance study was conducted to show
the efficiency, scalability, correctness and effectiveness of
our approach. Real-life and complex-large synthetic graph
datasets were used to compare our method with existing
approaches with respect to runtime and memory
consumption.

Our proposed algorithm can be applied in various real-life do-
mains where data can be represented by graphs such as chemical
informatics domain, gene sequence databases, bio-informatics, im-
age processing, machine learning, neural networks and lot more.

Rest of the paper is organized as follows: Section 2 contains Re-
lated Works, our proposed scheme is presented in Section 3, where
Section 4 focuses on the performance analysis of our proposed
algorithm. We have discussed the applicability of our scheme in
real-life scenarios in Section 5 and finally, we conclude our work
in Section 6.
2. Related works

Data mining focuses on frequent data values in structured data,
but in semi-structured and graph data, the emphasis is on frequent
labels and common topologies. Difficulties arise in the discovery
task from the complexity of some of the required sub-tasks, such
as subgraph isomorphism. In any data mining algorithm which
uses an Apriori-based approach, two issues arise: (1) the basic
building block from which frequent patterns are composed; (2)
making sure that at each step of the algorithm, all frequent pat-
terns for that step are found (Inokuchi et al., 2000).

In graph mining domain, most of the graphs are considered
labeled, that is, either the vertices or the edges or both contain a
specific value. Transaction graphs can be represented by

Fig. 2. DFS Code Representation of a Graph.

Table 1
Potential DFS Codes of graph in Fig. 2.

edge DFS_Code1 DFS_Code2 DFS_Code3

e0 (0, 1, X, a, X) (0, 1, X, a, X) (0, 1, Y, b, X)
e1 (1, 2, X, a, Z) (1, 2, X, b, Y) (1, 2, X, a, X)
e2 (2, 0, Z, b, X) (1, 3, X, a, Z) (2, 3, X, b, Z)
e3 (1, 3, X, b, Y) (3, 0, Z, b, X) (3, 1, Z, a, X)

Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863 1849
G = {V(G), E(G), L(V(G)), L(E(G))}, that is, the set of vertices, the set of
edges and set of labels for vertices and edges, respectively. Size of a
graph can be important in several algorithms and varies in terms of
the definition in many algorithms such as it can be number of
nodes or edges or disjoint paths in a graph. For graph dataset, sup-
port and confidence can be stated as in Inokuchi et al. (2000), given
a graph database, GD, with Gs, Gb and Gh are subgraphs of any
graph, G 2 GD, The metric support is:

SuppðGsÞ ¼
No: of graphs where Gs # G 2 GD

Total No: of graph G 2 GD

The metric confidence is:

Conf ðGb) GhÞ ¼
fNo: of graphs GjGb [Gh # G 2 GDg
fNo: of graphs Gb # G 2 GDg

These imply that the support of Gs is the ratio between the fre-
quency of Gs’s super-graph and total number of transaction graphs.
Moreover, confidence of Gb with respect to Gh is the ratio between
the joint-occurrence frequency of Gb along with Gh and frequency
of the super-graph for Gb.

To tackle graph isomorphism problem various labelings is intro-
duced in many algorithms. In particular, the canonical labeling en-
sures the graph isomorphism solution. The canonical labeling for
the normal form representation, X of a graph G can be defined as
in Yan and Han (2002)

Xc ¼ arg minX2NFðGÞ codeðXÞ

That means, Xc is the minimum DFS (Depth First Search) Code
among all possible DFS Codes of G. The DFS Code (Yan & Han,
2002) is a representation of any graph G = (V,E), constructed from
an edge sequence ei 2 E(G) based on an ordering such that ei comes
before ei+1 2 E(G) within the ordering, for i = 0, . . . ,jEj � 1. In such
system, to define the ordering, an edge can be represented as a 5 tu-
ple: (i, j,li,li,j,lj). To tackle the subgraph isomorphism problem while
graph data mining, such representation and coding scheme are
proved useful. The values of i and j correspond to the time stamp
value of nodes in a graph while running a DFS traversal. Next three
values represent the label of terminal nodes of an edge and the
edge’s label itself. This type of edge representation imposes an
ordering on the edges for a graph. Moreover, the minimum among
all possible edge orderings of the graph has a canonical aspect, that
is, the canonical representation of such graph representation is un-
ique and can solve the graph isomorphism problem in an effective
way (Yan & Han, 2002).

The ordering among the edges can be defined as Yan and Han
(2003), e1 < e2 iff

� e1; e2 2 Ef
T , and j1 < j2 or i1 > i2 ^ j1 = j2

� e1; e2 2 Eb
T , and i1 < i2 or i1 = i2 ^ j1 < j2

� e1 2 Eb
T ; e2 2 Ef

T , and i1 < j2

� e1 2 Eb
T ; e2 2 Ef

T , and j1 6 i2

Where, e1 ¼ ði1; j1; li1 ; li1 ;j1 ; lj1 Þ 2 EðGÞ and e2 ¼ ði2; j2; li2 ; li2 ;j2 ; lj2 Þ 2
EðGÞ and Ef

T indicates the set of forward edges in the DFS tree of
G. As well as Eb

T indicates the set of backward edges in the same
tree of G. Moreover, the ordering among the terminal node labels
and edge labels is straight forward and converges to lexicographic
ordering. Hence, as an example, consider the graph in Fig. 2 with
four vertices and four edges. The table residing in Fig. 2 contains
the canonical representation, that is, minimum among all possible
DFS Codes of the graph. Table 1 contains three potential DFS Codes
among all possible potential DFS Codes of the graph in Fig. 2.
Accordingly, the minimum code is the first one here, which is also
considered as the canonical representation of the graph.

The frequent graph mining problem can be divided into:
� Apriori-based approach, which works in Apriori-based level
by level wise BFS (Breadth First Search) manner. As for
example AGM (Apriori-based Graph Mining) (Inokuchi
et al., 2000), FSG (Frequent Subgraph Mining) (Kuramochi
& Karypis, 2001) and Disjoint Path-based (Gudes, Shimony,
& Vanetik, 2006) frequent graph pattern searching algo-
rithms are apriori based algorithms.

� Pattern growth-based approach, which works in a pattern
growth-based manner, that is, DFS-based approach of min-
ing frequent graph patterns. For example, gSpan(Yan & Han,
2002) and graph pattern (Li, Liu, & Gao, 2011) which works
in pattern growth-based manner and performs much better
than the former approach.

In Inokuchi et al. (2000), authors proposed a novel approach
named AGM, which is a vertex-based algorithm, to efficiently mine
association rules among the frequently appearing sub-structures in
a given graph dataset. A transaction graph is represented by an
adjacency matrix, and the frequent patterns appearing in the
matrices are mined through the extended algorithm of the basket
analysis. In Kuramochi and Karypis (2001), authors presented a
new algorithm, named FSG, which considers edges as building
block, for finding all connected subgraphs those appear frequently
in a large graph database. This algorithm finds frequent subgraphs
using the same level-by-level expansion adopted in Apriori (Agra-
wal & Srikant, 1994). It incorporates various optimizations for can-
didate generation and counting, which allows it to scale up to large
graph databases.

The Apriori-like algorithms suffer two problems: (Yan & Han,
2002).

� Costly subgraph isomorphism test. Since subgraph isomor-
phism is an NP-complete problem, no polynomial time
algorithm can solve it. Thus, testing of false candidates
(false test or false search) degrades the performance a lot.

� Costly candidate generation. The generation of size (k + 1)
subgraph candidates, from size k frequent subgraphs, is
more complicated and costly than that of itemsets, as
observed in Kuramochi and Karypis (2001).

1850 Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863
In Yan and Han (2002), authors developed gSpan, a new graph-
based substructure mining algorithm, which requires no candidate
generation and aims to avoid the two most significant costs men-
tioned above. The gSpan algorithm adopts DFS as opposed to BFS
used inherently in Apriori-like algorithms. It provides a new
canonical labeling system (DFS lexicographic order) to support
DFS. Each graph is assigned a unique minimum DFS Code, based
on which a hierarchical search tree is constructed. By pre-order
traversal of the tree, gSpan discovers all frequent subgraphs with
required support. Since the design combines the subgraph isomor-
phism test and frequent subgraph growth into one procedure,
gSpan dramatically accelerates the mining process. The authors
introduced methods for partitioning the frequent graphs according
to the DFS lexicographic order and projection of graph datasets to
fit the partitions. The partition and projection deliver good parallel
and scale up properties.

Followed by frequent pattern mining, correlation mining is rec-
ognized as one of the most important data mining tasks for its
capability to identify underlying dependencies between objects
(Ke et al., 2008). For mining correlation there are several measures,
most of which are used in mining correlation among itemsets in
traditional domains (Tan et al., 2002). Authors of Ke et al. (2008)
proposed a new problem of correlation mining from graph dat-
abases, called Correlated Graph Search (CGS). They adopted Pear-
son’s correlation coefficient as the correlation measure to take into
account the occurrence distributions of graphs. The CGS faces sig-
nificant challenges, since every subgraph of a graph in the database
is a candidate, but the number of subgraphs is exponential.
Authors (Ke et al., 2008), devised an efficient algorithm that mines
the candidate set from a much smaller projected database, and
thus, CGS can obtain a significantly smaller set of candidates. More-
over, three heuristic rules were developed to refine the candidate
set. They further improved their approach by introducing three
additional heuristic rules and using some of the bounds defined
in their paper, to directly answer high-support queries without
mining the candidates.

In this paper, we have proposed a measure to effectively capture
inherent correlations among graphs, as well as an efficient algo-
rithm to mine the correlated graphs using the measure for address-
ing the limitations of existing approaches. However, this paper
includes substantively new and different contributions beyond
the preliminary conference version (Samiullah et al., 2013) includ-
ing revised and optimized algorithm, enhanced motivation with
real-life applications, rigorous analysis of the mining technique as
well as the performance of the algorithm, elaborate explanation
on applying the proposed algorithm in mining correlated graphs
with our proposed measure, even in large size graph databases,
with new figures and tables, a comprehensive presentation of the
background, and detailed experimental results with discussions.
3. Proposed algorithm

Correlated graph mining is one of the most important graph
mining tasks. In this paper, we have proposed a new measure,
gConfidence and a new method, CGM (Correlated Graph Mining),
to search correlation among graphs within graph databases. Since
searching for frequent subgraphs is a prime need for correlation
search, we have used a mechanism similar to gSpan (Yan & Han,
2002) to find frequent subgraphs. A hierarchical search space is
constructed to facilitate correlated graph search efficiently. More-
over, correlation is searched based on user specified minimum cor-
relation threshold, hence, the search space can be pruned based on
two values, one for minimum support threshold and another one is
minimum confidence threshold. Proposed CGM is an ‘‘edge’’-based
correlation mining algorithm, as well as the concept of ‘‘Projected
Database’’ is used to reduce the costly searching operation for
counting occurrences of any graph/subgraph.

3.1. Problem formulation

In this section, we have defined the proposed measure gConfi-
dence and discussed some of its properties as well. Problem of
graph correlation mining and gConfidence Tree construction along
with their utilizations are described later.

In this paper, we have focused on undirected simple graph with
vertices and edges having labels associated. However, our algo-
rithm can fit in mining correlation to directed graph and unlabeled
graph. With very few modifications, our algorithm can be extended
to process non-simple graphs with self-loops and multiple edges.

Definition 1. (gConfidence). Given a graph database GD ¼ fG1;

G2; . . . ;GNg of N graphs and any of its transaction graph G = {V,E}
where V = {v0,v1, . . . ,vk} and E = {e0,e1, . . . ,em}, then we have
defined the gConfidence of Gs # G as

gConfidenceðGsÞ ¼
fNo: of graphs GjGs # G 2 GDg

maxðfNo: of graphs Gi # G 2 GDj8Gi # GsgÞ
ð1Þ

Where ‘‘maxðfNo: of graphs Gi # G 2 GDj8Gi # GsgÞ’’ is the max-
imum support of any subgraph among possible subgraphs of Gs.
This formal definition simply states that gConfidence is the smallest
correlation of any graph Gs, that is, gConfidence(Gs) = min{correla-
tion(Gs)}. The value of gConfidence(Gs) falls within the range [0,
1], that is, 0 6 gConfidence(Gs) 6 1.

The Eq. (1) is for computing correlation among the elements of a
graph Gs where all possible subgraphs of a graph are considered to
compute the correlation. However, the following Lemma 1 pro-
vides an optimistic solution to the exponential number of sub-
graph generation challenge of Eq. (1). The lemma is based on the
Apriori-knowledge, that is, the frequency of any super-graph Gsup

of a graph G = (V,E) is smaller than or equal to the frequency of
G. Hence, the smallest possible subgraph, Gsub of any graph G =
(V,E) is the one edge graph constructed by any edge ei,ei 2 E(G).
Hence, during calculation of gConfidence, emphasis should be on
the edges.

Lemma 1. Given a graph database GD ¼ fG1;G2; . . . ;GNg of N
graphs and any of its transaction graph G = {V,E}, where
V = {v0,v1, . . . ,vk} with jVjP 2 and E = {e0,e1, . . . ,em} with jEjP 1,
then we can define the gConfidence of Gs # G derived in Eq. (1) as

gConfidenceðGsÞ¼
fNo: of Graphs GjGs #G2GDg

maxðf8ei 2EðGsÞ; No: of graphs Gjjei 2EðGjÞ; Gj 2GDgÞ
ð2Þ
Proof. In Eq. (1), ‘‘maxðfNo: of graphs Gi # G 2 GDj8Gi # GsgÞ’’ rep-
resents the maximum value of the frequency of all possible sub-
graphs of Gs. Our approach of mining correlation is edge-based
and we start from a single edge {e0} then we add 1 edge every time
to get next subgraph pattern {e0,e1}. Now, Consider that
frequency({e0}) = ‘‘X’’ and frequency({e0, e1}) = ‘‘Y’’. Here, frequency
({e0}) P frequency({e0, e1}). In this manner, for larger patterns, the
same scenario will be observed. Therefore, we can conclude that
for maximum frequency of any subgraph of Gs, the individual edge
frequency of Gs, that is, frequency(ei 2 E(Gs)) will dominate and we
can replace ‘‘maxðfNo: of graphs Gi # G 2 GDj8Gi # GsgÞ’’ by ‘‘max
ðf8ei 2 EðGsÞ; No: of graphs Gjjei 2 EðGjÞ; Gj 2 GDgÞ’’ and calculate
the metric gConfidence. Hence, Eq. (2) will provide same result as
in Eq. (1). h

Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863 1851
As an example, suppose we need to compute the inherent cor-
relation of two groups of people shown in Fig. 1, as discussed in
Section 1. We found that frequency of G1 is 30, that is, G1’s people
work together in 30 events and the maximum frequency of any
edge of the graph representing G1 is 100, i.e., highest number of
interactions performed by any individual is 100. Therefore, gConfi-
dence(G1) = 0.3 and for the second group the frequency of G2 is 30,
that means, people of second group work in 30 events all together.
As well as maximum frequency of any edge is 60, that is, highest
interaction of any individual of G2 is 60. Therefore, gConfidence
(G2) = 0.5 which implies that people of second group are more
inherently correlated than people of first group.

Definition 2. (Correlated Graph Mining). Given a graph database
GD ¼ fG1;G2; . . . ;GNg, a user specified minimum support thresh-
old, r and a user specified minimum correlation threshold, h,
interesting graphs/subgraphs need to be searched, that is, the set of
graphs GI = {"Gijsupp(Gi) P r; gConfidence(Gi) P h} need to be
mined.

It implies that the problem is to search for graphs having sup-
port count greater than or equal to r and gConfidence value greater
than or equal to h.

For convenience, we assume E as the set of edges and V as the
set of vertices, found in the graph database GD unless stated other-
wise, that is, GD ¼ fV; Eg.

Definition 3. (Internal Occurrence). For a graph database GD ¼
fG1;G2; . . . ;GNg and any frequent subgraph G # Gi 2 GD, where
G = {V,E} and V = {v0,v1, . . . ,vn}, E = {e0,e1, . . . , em}, any edge ej 2 E,

the internal occurrence of ej w.r.t. G is OCG
T

OCej

���
���, where OCG is

the set of occurrence graphs of G and OCej is the set of occurrence
graphs for ej.
Definition 4. (External Occurrence). For a graph database GD ¼
fG1;G2; . . . ;GNg and any frequent subgraph G # Gi 2 GD, where
G = {V,E} and V = {v0,v1, . . . ,vn}, E = {e0,e1, . . . , em}, any edge ej 2 E,

the external occurrence of ej w.r.t. G is OCej
� OCG

T
OCej

n o���
���, where

OCG is the set of occurrence graphs of G and OCej
is the set of occur-

rence graphs for ej.
Definition 5. (Occurrence Ratio). For a graph database GD ¼
fG1;G2; . . . ;GNg and any frequent subgraph G # Gi 2 GD, where
G = {V, E} and V = {v0,v1, . . . ,vn}, E = {e0,e1, . . . , em}, for any edge
ej 2 E # E with the internal occurrence of ej w.r.t. G being IOCej

and external occurrence of ej w.r.t. G being EOCej
, then the Occur-

rence ratio of ej w.r.t. G is the ratio among IOCej
and EOCej

in G.

In particular, the Occurrence ratio is an indication of correlation
that takes into account the statistical distribution of ej 2 E. It con-
siders the contribution of that particular edge ej in constructing a
graph {G} and the contribution of that same edge ej in constructing
other graphs fG0 2 GD� Gg. Hence, the occurrence ratio is captur-
ing internal correlation among the elements of a graph. As a conse-
quence, in calculating gConfidence, the occurrence ratio of each
edge and each subgraph is brought into consideration and internal
correlation is captured.

As an example, say in any graph dataset GD ¼ fG1;G2; . . . ;Gkg, if
any edge e 2 EðGi 2 GDÞ is found n times where the edge e co-oc-
curs m times with a frequent subgraph G # Gi 2 GD, then the inter-
nal occurrence of e will be m with respect to G. Moreover, the
external occurrence of e will be n �m with respect to G. As a con-
sequence, the Occurrence Ratio of e will be m

n�m for the subgraph G.
For instance, consider the graph G1 in Fig. 1, which consists of se-
ven edges with frequencies in ascending order {50, 62, 65, 70, 75,
90, 100} in a particular graph database. However, the frequency
of G1 is 30 only in that graph database. Then the set of Occurrence
Ratio for the edges will be 30

20 ;
30
32 ;

30
35 ;

30
40 ;

30
45 ;

30
60 ;

30
70

� �
. As a consequence,

the smallest value is 30
70, which is the smallest occurrence distribu-

tion among any of the element of the graph G1, indicating the small-
est affection among the elements (vertices and edges) of the graph
G1 and considered as the analogous correlation value of gConfidence.

In actual sense, gConfidence is directly proportional to Occur-
rence Ratio. This can also be realized from the definition of gConfi-
dence(Definition 1), that is, smallest Occurrence Ratio (Definition 5)
of any subgraph indicates the correlation among the elements of
any graph and conforms gConfidence for a particular graph. We
should note that the maximum value will occur when the sub-
graph of Gs consists of a single edge. Adding additional edges nei-
ther increases the frequency of Gs nor the gConfidence, and, the
Occurrence Ratio remains same or decreases as well.

We have listed some of the important properties of gConfidence
measure below:

Property 1. It has the downward closure property. If a subgraph/
graph is passing a minimal gConfidence threshold, so is every one of its
subgraphs.
Proof. If a graph/subgraph Gi = {Vi,Ei} does not support minimum
confidence threshold, then further growing of such graph will not
support the minimum confidence threshold, that is, if support(Gi)
< r then support(Gj) < r where Gi � Gj since frquency(Gi) P fre-
quency(Gj). In calculating gConfidence we have a denominator
‘‘maxðf8ei 2 EðGsÞ; No: of graphs Gjjei 2 EðGjÞ; Gj 2 GDgÞ’’ in Eq.
(2), where increasing of graph sequences will either increase the
denominator and decrease the gConfidence value or the value will
remain same. Hence, the extended sequence will not satisfy gCon-
fidence threshold if original does not. Similarly, we can state that, if
any graph pattern, ‘‘GP’’ satisfies the correlation threshold, that is,
if gConfidence(GP) P h, then the denominator of Eq. (2) for its any
subgraph pattern, ‘‘SGP’’, will be smaller or equal and gConfi-
dence(SGP) P h, hence gConfidence(SGP) P gConfidence(GP). There-
fore, we can state that, gConfidence measure satisfies the
downward closure property. h

For illustration, consider a graph that has correlation value as c
and its subgraph has correlation value sc, then it must hold that
c 6 sc. Hence, if c P h, then sc P h must hold with h being the cor-
relation threshold. This corresponds to the Apriori property, that is,
if a graph passes the correlation threshold barrier then all of its
subgraph will surely pass the barrier.

The most important property of a metric in measuring correla-
tion in a large database is Null-invariance. It’s a property of some
transactions known as null transactions. To be precise, a null trans-
action is referred to as a transaction where there are some items
which are not examined in the measure. In a typical transaction
database, a particular item appearing in very few transactions
may have very small probability. Since most of the transactions
do not contain such item, they are null transactions with respect
to the item. If the correlation among a set of patterns being ana-
lyzed is affected by the transactions that contain none of them
(i.e., null- transactions), such a measure is unlikely to be of high
quality (Wu, Chen, & Han, 2007).

Property 2. This measure is null-invariance. That is, it is not affected
by null-transactions.

1852 Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863
Proof. In calculating gConfidence(G) for a graph G ¼ ðV ; EÞ 2 GD,
we consider only the edges e 2 E(G). We need not to consider those
edges which don’t belong to the set of edges of the graph i.e. jE� ej.
From Lemma 1, we found that gConfidence(Gs) for a graph Gs =
(Vs,Es) depends on two values, the frequency (Gs), i.e., we need to

consider only the frequency(v 2 Vs(Gs)),frequency(e 2 Es(Gs)) and
‘‘maxðf8ei 2 EðGsÞ; No: of graphs Gjjei 2 EðGjÞ; Gj 2 GDgÞ’’, that is,
only the edges ei 2 Es(Gs) are brought into consideration. Hence,
we can state that the measure gConfidence is null-invariant. h

As an example, in calculating the correlation for the graphs in
Fig. 1, we only considered the frequency of the elementary edges
for a particular graph and never considered values which corre-
spond to the frequency of elements other than elements of the
graph itself.

Property 3. gConfidence ensures a lower bound on confidence for any
subgraph, which satisfies the minimum threshold.
Proof. This particularly describes an implication of gConfidence,
that is, the correlation calculated by this measure for a particular
graph Gs = (V,E), indicates the lower bound of correlation for any
subgraph of Gs, that is, gConfidence(Gs) = Min(Correlation(Gi)) where
"i Gi # Gs. Indeed, the Lemma 1 ensures that gConfidence is the
ratio among frequency(Gs) and Max(frequency(ei)) where ei 2 E(Gs).
Moreover, the denominator of Eq. (2) indicates that the edge-wise
elementary maximum frequency contributes in gConfidence calcu-
lation. Hence, for that particular graph Gs, calculated correlation
found by applying the Eq. (2), is smallest among all the correlation
values. Now, the impact of numerator needs to be considered,
which is constant for the same graph Gs. Hence, gConfidence safely
holds this property. h

gConfidence provides information about implication that it is the
minimal confidence among the set of subgraphs of Gs. As an exam-
ple, consider the first frequent graph in Fig. 1, where correlation is
calculated 0.3 which is the smallest value among the correlations
calculated for all possible subgraphs of the graph. Hence, gConfi-
dence can be regarded as the lower bound of the confidence/corre-
lation of the graph.

Property 4. gConfidence finds graphs/subgraphs those are inherently
correlated and statistically co-occur.
Fig. 3. gConfidence Tree: A search space.
Proof. From Lemma 1, we can conclude that in order to calculate
gConfidence of a graph Gs, we need to consider the ratio among
frequencyðGs 2 GDÞ and the Max(freq(ei)) where ei 2 E(Gs). Now,
consider two graphs g1 = (V1,E1) and g2 = (V2,E2) with
frequency(g1) = f1 and frequency(g2) = f2 respectively. Say, f1 and f2

are equal in this case. Also consider max(g1) = m1 and max(g2) = m2

where, max(G) = Max(frequency(ei)) where ei 2 E(G) for a graph G =
(V,E). Therefore, gConfidenceðg1Þ ¼ f1

m1
and gConfidenceðg2Þ ¼ f2

m2
.

Now, gConfidence(g1) � gConfidence(g2) if m1�m2. This implies,
g2’s elements are loosely connected within the graph g2 with com-
pared to g1. Hence, we can claim that gConfidence finds graphs those
are more inherently correlated. Furthermore, we have considered
that f1 and f2 are same. Some of the edges/vertices of g2 occur a large
number of times with other graphs. Hence, the occurrence ratio of
g2, that is, the ratio among IOc(g2) and EOc(g2), is smaller than g1’s
occurrence ratio. Hence, it can be stated that the measure gConfi-
dence selects graphs those have more statistical co-occurrence
ratio, that is, more statistically co-occurring graphs. h

This property describes that gConfidence is a measure where
two most important characteristics, inherent correlation, i.e.,
correlation among various elements and statistical distribution of
a graph, are considered. As an example, in the scenario, illustrated
in Fig. 1, the second frequent graph is found more correlated than
the first one. Because, the elements of second one are most statis-
tically co-located and more inherently correlated.

3.1.1. gConfidence tree
In a gConfidence Tree, each node represents a graph or subgraph

by storing corresponding DFS Code and also represents correlation
by storing gConfidence value ‘‘gC’’, the relation between parent
node and child node complies with the relation that a parent is
one edge shorter in size than its child and a child is one edge larger
than its parent and no child has ‘‘gC’’ greater than its parent. The
relation between siblings is consistent with the DFS lexicographic
order. That is, the pre-order search of gConfidence Tree follows
the DFS lexicographic order.

If we are given a label set L = {l0,l1, . . . ,lk}, a gConfidence Tree can
be constructed by the metrics of Eq. (1) or Eq. (2), which could con-
tain all possible graphs for this label set. In Fig. 3, we have shown a
gConfidence Tree where the (n + 1)-th level of the tree has nodes
which contain DFS Codes of n-edge graphs and a value ‘‘gC’’, which
represents the correlation of that particular subgraph with the
other subgraphs in the tree.

The DFS Code and node in the gConfidence Tree are equivalent in
the sense that one can be derived from the other. Any valid DFS
Code has a unique corresponding node in the gConfidence Tree
and any node in the gConfidence Tree contains a valid DFS Code. Cer-
tainly some of the nodes contain a minimum DFS Code while others
do not. Nonetheless, there could be some nodes having ‘‘gC’’ values
smaller than the minimum correlation threshold. This ensures sec-
ond level of pruning of subgraph candidates in optimizing correla-
tion calculation. The value for gC also maintains a parent and child
relationship, that is, gC(a) P gC(b) where a = (a0,a1, . . . ,am) and
b = (a0,a1, . . . ,am,b), that is, a is b’s parent.

Eq. (1) can calculate gConfidence for a graph Gs = (Vs,Es) by con-
sidering all possible subgraphs of Gs and Eq. (2) can optimize the
calculation cost by only considering the edges e 2 Es(Gs). However,
we still need to compare the frequency of the edges e 2 Es(Gs) to
determine the most frequent edge. The following Lemma 2 per-
forms another level of optimization by removing the necessity of
computing maximum frequency among the frequency of the edges
e 2 Es(Gs).

Lemma 2. For a graph database GD ¼ fG1;G2; . . . ;GNg of N number
of graphs, gConfidence for a subgraph Gs = (Vs,Es) of any transaction
graph G = (V,E) where V = {v1,v2, . . . ,vm} with jVjP 2 and E = {e1,
e2, . . . ,em} with jEjP 1, i.e., any Gs # G with S = Min(DFS_Code(Gs))

Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863 1853
and e0 being the first edge in the minimum DFS Code representation of
the subgraph Gs, then gConfidence(Gs), defined in Eq. (1) can be
defined as:

gConfidenceðGsÞ¼
fNo: of Graphs GjGs #G2GDg

fNo: of graphs Gje0 2S;e0 2EðGsÞ; Gs #G2GDÞg
ð3Þ
Fig. 4. Sample chemical and corresponding graph database.

Fig. 5. Selecting and sorting of vertices and edges.

Fig. 6. Selecting Frequent-Correlated graph C1.
Proof. From Lemma 1, we found that the denominator of Eq. (2) in
calculating gConfidence(Gs) is the maximum value among the fre-
quencies of the elementary edges of Gs. While constructing graphs
as candidate by adding one edge at a time, the proposed algorithm
represents the graphs by DFS Code, as proposed in gSpan (Yan &
Han, 2002) with assurance that the edge will be inserted in the rep-
resentation in descending order of their frequency. In this way, fre-
quency(e0) = Max(frequency(e 2 E(Gs))), where e0 is the first and
most frequent edge in the minimum DFS Code representation of a
graph Gs = (V,E). Hence, frequency(e 2 {E(Gs) � e0}) 6 frequency(e0).
Therefore, it can be claimed that ‘‘maxðf8ei 2 EðGsÞ; No: of
graphs Gjjei 2 EðGjÞ; Gj 2 GDgÞ’’ and ‘‘fNo: of graphs Gje0 2 S;
e0 2 EðGsÞ; Gs # G 2 GDÞg’’ are equal and equivalent. h

As a consequence, we can calculate gConfidence(Gs) more effi-
ciently and in a more optimistic way by using Eq. (3) instead of
Eqs. (2) and (1).

3.1.2. The snapshot of the algorithm
Here we have stated the basic steps of CGM, required to calcu-

late the graph correlation using our proposed measure gConfidence.

� Mine frequent vertices and edges along with their
frequency.

� Keep the edges support count global.
� When any frequent subgraph is found, treat it as a candi-

date of being a node in gConfidence Tree.
� In each node of the tree, store Max and gC which represent

maximum value of single item (edge) frequency and gConfi-
dence respectively.

� To determine maximum elementary edge frequency of any
graph G, keep the frequency(e0)
frequency()=function for counting frequency,
e0 = the first edge among the edges within DFS Code of
graph G.

� Apply gConfidence measure to calculate correlation among
graphs.

� At the termination we will have our frequent-interesting
graph patterns.

For illustrating the working procedure of our CGM algorithm,
we can consider the graph database for the chemical dataset
shown in Fig. 4. We have assumed the support threshold, r ¼ 1

3
and correlation threshold, h ¼ 2

3. For simplicity we have chosen
such a graph database of Fig. 4, which contains no cyclic graph.
Hence, in generating potential children we need not to consider
the children found by adding a back edge or self loop.

According to our algorithm we have calculated support and
gConfidence of each edge and vertex and then selected the fre-
quent and correlated vertices and edges. Now, we have to con-
struct single edge graph for each frequent-correlated edge and
the edge set is also used to construct GLOBAL EDGE MATRIX. This
matrix is sorted based on support count and DFS Code and can be
used in a chronological order for constructing potential children
(smallest DFS Code oriented child first) and also helps in count-
ing maximum elementary edge support count of a graph. (See
Fig. 5).
We have created a Null-rooted gConfidence Tree and then
started mining for the first 1-edge graph C1. Since it satisfies both
threshold values, we have added it in the search space which is

Fig. 8. Selecting C1.2 for further extension.

Fig. 9. Pruning of C1.2.1 based on gConfidence metric.

1854 Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863
illustrated in Fig. 6 and started mining the correlation of its poten-
tial children recursively. Its first child C1.1 is not frequent. Hence
we have pruned it as shown in Fig. 7. The second child C1.2 is
frequent and correlated, hence added to the search space as shown
in Fig. 8. However, recursive calculation of its children shows that
C1.2.1 and C1.2.4 are frequent but not correlated and C1.2.2 as well as
C1.2.3 are not frequent, hence we have to eliminate them as shown
in Fig. 9. The fifth child of C1.2, that is, C1.2.5 is found correlated and
added to gConfidence Tree and this is shown in Fig. 10. The eighth
child of C1.2.5 is found correlated and added in the search space
as in Fig. 11 but first seven children of C1.2.5 are not frequent hence
we did not consider it for correlation searching using our proposed
measure and pruned from the search space. Therefore, we have to
search further for the correlation of all possible children of C1.2.5.8.

Since no child of C1.2.5.8 was found frequent-correlated, we
can backtrack to C1.2.5. However, already we have checked all
possible children of C1.2.5, hence we can trace back again to
C1.2 for checking correlation of its remaining children. We found
sixth and seventh children of C1.2 non-frequent and by skipping
them we have calculated the correlation of eighth child of C1.2,
that is C1.2.8, and added it in the gConfidence Tree because it is
found frequent-correlated as shown in Fig. 12. Then we have
to recursively mine the correlation of all potential children of
C1.2.8. However, all children of C1.2.8 were found non-frequent
and we have pruned them from the search space. Therefore,
we backtrack to C1.2 and no child of C1.2 remains unchecked.
Hence we go for checking remaining children of C1 by tracing
back one level up in the search space.

Then we get the next child of C1, i.e., C1.3 as frequent and corre-
lated and added it to the search space as shown in Fig. 13. Now we
have to check the correlation of all possible children of C1.3. We
found that first child of C1.3, i.e., C1.3.1 is frequent but not correlated
and pruned it. Then the second to sixth children of C1.3, that is,
C1.3.2 to C1.3.6 are found non-frequent and pruned. Seventh and
eighth children of C1.3 are found duplicate by subgraph isomor-
phism test, that is, these are already mined. However, ninth child
of C1.3, i.e., C1.3.9 was found frequent-correlated and has been added
to gConfidence Tree as shown in Fig. 14.

Now we have to recursively mine correlation of all potential
children of C1.3.9. We found that C1.3.9.2 is duplicate and C1.3.9.1

and C1.3.9.3 to C1.3.9.5 are infrequent. Hence we trace back to C1.3

and all of its children have been checked. Therefore, we have to
backtrack to one level up in the gConfidence Tree and need to check
for remaining children of C1.3. All children of C1.3 have been
checked. So, we again trace back to one level up in the search space
and tried for the next child of C1, that is, C1.4 and it is found
frequent-correlated, hence, is added to the search space as shown
in Fig. 15. Accordingly, we have added it in the search space.
Fig. 7. Pruning infrequent graph C1.1.
However, no child of C1.4 is found frequent-correlated and has been
eliminated. Now we trace back to one level up in the tree and
found no remaining child to be processed.

Now we start mining for second 1-edge graph C2 and found it
frequent-correlated and added in the search space as shown in
Fig. 16. Then we have mined its all potential children for correla-
tion searching and first child C2.1 is frequent but not correlated,
C2.2 is duplicate and C2.3, C2.4 are found infrequent. However, C2.5

is found frequent and correlated. Hence we added it to the search
space as shown in Fig. 17. Now we find that its second child C2.5.2 is
duplicate and all other children are non-frequent and have been
pruned. Then we have traced back to one level up in the search
space and found that C2 has no more unchecked child.

Then we started mining correlation of 3rd 1-edge graph, that is,
C3 and found it frequent and correlated. After adding it as shown in
Fig. 18, we started mining correlation for its potential children.
None of its children are found frequent except the first one, C3.1,
which is frequent but not correlated and the second child is

Fig. 10. gConfidence calculation and adding C1.2.5 in gConfidence Tree.

Fig. 11. gConfidence calculation and adding C1.2.5.3 in gConfidence Tree.

Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863 1855
duplicate. As a consequence, we have pruned all of C3’s children.
Then we start mining correlation for fourth 1-edge graph C4. C4

is found frequent-correlated and added in the gConfidence Tree as
shown in Fig. 19. We found none of C4’s children frequent-corre-
lated and pruned all of them. Now, the last one edge graph C5

should be considered in the hierarchy, which is found frequent
and correlated based on the thresholds of support and correlation.
Hence, C5 can be safely added in the gConfidence Tree as a child
node of the root, similarly as Fig. 20.

As a consequence, we have to recursively check for the potential
children of C5. However, the children of C5 were found neither fre-
quent nor correlated and were safely pruned from the search
space. In this way, we have calculated the correlation of the given
graph database and found a complete gConfidence Tree in Fig. 20.
Nodes of the tree contain correlated graphs along with the amount
of correlation and we have used the concept of using projected
database to reduce the cost of searching databases. Since gConfi-
dence satisfies the downward closure property, we have safely used
the projected database to reduce the searching cost.

3.2. Algorithm description and analysis

In Section 3, we have presented our algorithm for mining graph
correlation using our proposed measure gConfidence. Here we have
presented the pseudo code of our algorithm, described the algo-
rithm in a broader sense and then analyzed our algorithm to some
extent.

3.2.1. Description of the proposed algorithm
Fig. 21 shows the pseudo code of the Correlated Graph Mining

(CGM) algorithm, where from lines 2 to 13, sorting of vertices
and edges and elimination of non frequent of them are done. Lines
14 and 15 relabel the vertices and edges in descending order of
their frequency so that the nodes and edges having larger
frequency will be assigned minimum label to ensure minimum
DFS Code assignment to frequently appearing elements. In line
16, we have constructed a global cost matrix for the easy retrieval
of elementary frequency of each single element (edge), named
GLOBAL EDGE MATRIX. Lines 17 to 19 constructed 1-edge frequent
subgraphs and sorted them in the set, so that minimum DFS Code
holder and maximum frequency oriented graphs can be processed
first.

Now, the ‘‘for loop’’ in lines 20 to 26 processes each single edge
graph by first initializing a single edge graph with their projected
graph database. For efficient management of memory, instead of
storing whole graph database, we have just stored projected data-
base. However, for each pass of the ‘‘for loop’’ in lines 20 to 26, the
MAX value that stores the maximum frequency among the all pos-
sible subgraphs of a graph, which is required for the calculation of
gConfidence for that graph, is set to the frequency of a single edge
graph which belongs to the level � 1 nodes in gConfidence Tree.
According to Lemma 2, the graphs which can be formed by travers-
ing any branch of the gConfidence Tree, will have frequency smaller
than or equal to the frequency of the level � 1 graph of that partic-
ular branch.

Then we call for gConfMining() procedure of the algorithm to
calculate gConfidence for that single edge graph. The procedure is
recursive, which mines all the descendent of this graph along with

Fig. 12. gConfidence calculation and adding C1.2.8 in gConfidence Tree.

Fig. 13. gConfidence calculation and adding C1.3 in gConfidence tree.

1856 Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863
their gConfidence values. We have passed 5 parameters in the pro-
cedure gConfMining(), those are GS, S, s, MAX and S1 representing
Projected database of s, set of frequent-correlated graphs mined
so far, the most recent subgraph which will be considered for
expanding and set of frequent-correlated 1-edge graphs those
can be used for children generation, respectively. After completing
the gConfMining() procedure, we remove the edge from the edge
set of the actual graph setting to ensure non-redundant children
creation and processing.

In the procedure gConfMining() of Fig. 21, at first we check for
whether the graph that needs to be processed has minimum DFS
Code or not in lines 30 to 32. If the code is not minimum then it
can be concluded that the graph has already been generated ear-
lier. In lines 34 to 37, the gConfidence measure of minimum DFS
Code oriented subgraph is calculated and then the value is com-
pared against the threshold. If the graph support count does not
satisfy support threshold and/or the gConfidence of the graph is less
than the correlation threshold then the graph will be pruned and
will not be included in the gConfidence Tree. If any graph satisfies
all the three constraints imposed by CGM algorithm then it is
added in the search space and its gConfidence value is added in
the graph and recursively call the gConfMining() to mine its descen-
dants in a DFS manner from lines 38 to 46.
3.2.2. Pruning by gConfidence
We can prune non-frequent nodes from extending within the

gConfidence Tree, using a minimum support threshold, r. As well
as we have added an extra feature of pruning nodes from extend-
ing, using a minimum correlation threshold, h. Because of the
downward closure property of gConfidence measure, we can safely
prune those graphs having gConfidence value smaller than h along
with all of the descendants of those graphs. This pruning is safe and
advantageous. Because, it prunes a large number of graphs and
subgraphs, those could be a candidate for being a node in gConfi-
dence Tree.
3.2.3. Efficiency of selection by CGM over CGS
CGS algorithm extracts co-occurring graphs, those share similar

properties in spite of having diverse structure, from a graph data-
base, GD ¼ fG1;G2; . . . ;GNg. Suppose, for the graph database, ex-
posed in Fig. 22, the confidence threshold is h ¼ 2

3. Using CGS we
can extract those graphs/subgraphs, G = {V0,E0} which can be found
together in at least two graphs with a query graph, q = {v00, e00}. As
instance, consider the query graphs in Fig. 22. In order to seek sim-
ilarity between these two graphs, their co-occurrence can be calcu-
lated which indicates that these co-occur in all three graphs.
Hence, according to the molecular characteristics, statistical
co-occurrence, rather than structural similarity, can define unique-
ness. Again, the CGS can look for correlation for any of the query

Fig. 14. gConfidence calculation and adding C1.3.9 in gConfidence Tree. Fig. 15. gConfidence calculation and adding C1.4 in gConfidence Tree.

Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863 1857
graph with the graphs and subgraphs found in GD in almost sim-
ilar approach.

Conversely, CGM mines the frequent-closed-correlated graph
fragments G00 = {V00,E00} from the graph database GD at the highest
level of its hierarchy whilst processing the database. As an in-
stance, for the same graph database of Fig. 22 with same correla-
tion threshold, the closed-frequent-correlated database shown in
the same figure will be generated. From Section 3.2.2, it is clear
that CGM carries out another level of filtering using gConfidence
as a correlation measure. Since the correlation threshold helps in
selecting graphs/subgraphs with precise level of correlation affini-
ties as well as both the measure of CGM and CGS emphasize on co-
occurrence to mine correlation, the correlated closed graph mined
by CGM contains the correlated graphs/subgraphs those co-occur,
which is substantiated in the Property 4 of gConfidence measure.
Moreover, Property 3 guaranteed that gConfidence of a graph is
the minimum confidence for that particular graph. It can be no-
ticed that both the query graphs are contained in the frequent-
closed-correlated graph.

As a consequence, any graph query can be executed for finding
correlation within a graph database by checking the query as a
subgraph of the frequent-closed-correlated graph segment. This
implies construct frequent-correlated-closed graphs from a data-
base once and run query on these graph segments only, which
are very smaller in number. That means, query optimization to
an order of magnitude is done with an efficient filtering and selec-
tion of correlated graph segments using CGM algorithm and gCon-
fidence measure. Hence, no domain knowledge is mandatory for
the user and an overview can be found that whether and which
graphs are in good affinities by computing all possible subgraphs
of the closed-frequent-correlated graph segments.
4. Experimental results

We have performed a comprehensive performance study in our
experiments on both synthetic and real-life datasets. We have used
our own synthetic graph generator to construct synthetic dataset.
The real-life datasets we have tested are cancer datasets provided
in Pubchem (2011). In both type of data, our algorithm is proved to
be sound and efficient as well as found scalable, faster and efficient
enough that it can mine correlated graphs with any size and any
level of complexity. The graph size can vary on number of vertices,
number of edges, number of labels and density of the connectivity
among nodes in a graph. Another form of variation in graph size or
data size can be the number of graphs in a graph database. More-
over, we have compared the performance of our proposed CGM
algorithm with CGS (Ke et al., 2008) and gSpan (Yan & Han, 2002)
to ensure the efficiency of our proposed method and measure in
mining correlated graphs.

All experiments of CGM, CGS and gSpan have been performed on
a 2.1 GHz Intel (R) Core (TM) Duo PC with 1 GB RAM and Windows
7 operating system, using C/C++programming language. As real-life
data we have used graph dataset provided in Yan (2011), which
provides information on the biological activities of small mole-
cules, containing the bioassay records for anti-cancer screen tests
with different cancer cell lines found from Pubchem (2011),
whereas Yan (2011) provides its equivalent graph formatted data-
set. Each dataset belongs to a certain type of cancer screen with the
outcome active or inactive. From these screen tests, we have col-
lected two graph datasets with active labels among the eleven
datasets with active and inactive labels. Two real-life datasets are
MOLT-4 having 39765 number of graphs about Leukemia and
NCI-H23 with 40353 number of graphs about Non-Small Cell Lung.

Fig. 16. gConfidence calculation and adding C2 in gConfidence Tree.

Fig. 17. gConfidence calculation and adding C2.5 in gConfidence Tree.

Fig. 18. gConfidence calculation and adding C3 in gConfidence Tree.

Fig. 19. gConfidence calculation and adding C4 in gConfidence Tree.

1858 Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863

Fig. 20. gConfidence calculation and adding C5 in gConfidence Tree.

Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863 1859
On an average, the real datasets contain about 40 K graphs with
average 25 nodes and 30 edges along with an average of 17 distinct
labels for vertices and edges.

The synthetic graph generator can generate random graphs
based on user specified number of vertices, edges and maximum
number of supported labels. The synthetic dataset can be described
by four parameters:

� jDj, the total number of graphs in the dataset.
� jNj, the number of distinct labels for vertices and edges in the

dataset.
� jTj, the average size of the graphs in terms of edges.
� jVj, the average size of the graphs in terms of vertices.

Therefore, a dataset with 10 K graphs in total with 40 number of
distinct labels along with 30 edges and 50 vertices can be described
as D10KN40T30V50. For assessing the performance of our scheme
with respect to various parameters, we have kept the support
threshold, r fixed at 5% and varied the correlation threshold, h from
45% to 85% unless stated otherwise. In some cases, we have varied
the size of database by adding or removing transaction graphs ran-
domly from the actual database.
4.1. Performance analysis

In Fig. 23, we have shown the performance of our proposed
algorithm with respect to Processing Time vs. Data Density with
varying Correlation Threshold, when run on the MOLT-4 graph data-
base. There were almost 40 K graphs initially and on an average 30
nodes with 21 labels and 35 number of edges. Since we are assess-
ing the performance of our algorithm against graph density we
have chosen such dense graph database. We have varied the size
of the graph database by incrementally adding graphs with an ini-
tial choice of 15 K graphs. It can be noticed that maximum 150 s
were needed and minimum required time was 25 s in mining such
database with any confidence threshold within the specified range.
In Fig. 24, we have shown the performance of our proposed
algorithm for Scalability w.r.t. Time with varying Data Size, when
run on the NCI-H23 graph database. The database contains more
than 40 K graphs initially and on an average 20 nodes with 14 la-
bels and average 21 number of edges. Since we are assessing the
scalability property, we have chosen such dense graph among
the 11 given real-life database and from the real-life data we have
initially taken first 20 K graphs and added every time 5 K graphs
with the initial choice. We have found that 50 to 100 s are required
in mining such database with any confidence threshold within the
specified range.

For assessing our algorithm’s scalability w.r.t. memory consump-
tion with varying Data Size, in Fig. 25, we have used same graph set-
ting as we have used earlier to verify scalability w.r.t. processing
time. We found that our algorithm is scalable enough even in den-
ser graph oriented database with the assurance that it never re-
quires more than 40 MB of memory space.

Since the real graph datasets are smaller in size and have lower
density, we have used our synthetic graph data generator to gener-
ate larger and denser graph dataset. The synthetic graph generator
can generate random graphs based on user specified number of
vertices, edges and maximum number of supported labels.

In Fig. 26, we have shown the performance of our proposed
algorithm in terms of Processing time vs. Data Density with varying
Correlation Threshold, when run on another synthetic graph data-
base. There were initially 200 K graphs with 50 number of nodes
in each graph, having 30 labels in average and number of edge
was at most 80. Since we are assessing the performance of our
algorithms against graph density, we have chosen such dense
graph database. We have varied the size of the graph database in
a similar way of MOLT-4. The remarkable fact was that minimum
required time was 100 s and except some exceptional cases most
of the time processing completes within 1000 s in mining such
database with any confidence threshold within the specified range.

In Fig. 27, we have shown the performance of our proposed
algorithm in terms of Scalability w.r.t. Time with varying Data Size
when run on a synthetic graph database, where each graph con-
tains average 40 number of edges, 30 number of nodes with 20
number of labels for nodes and edges, moreover, the graph data-
base contains about 200 K graphs. For assessing scalability issue
on synthetic data we have initially taken first 60 K graphs and
added every time 30 K graphs with initial choice. The remarkable
fact was that 300 to 1200 s are required in mining such database
with any confidence threshold within range specified earlier.

To assess our algorithm’s Scalability w.r.t. Memory Consumption
with Varying Data Size for synthetic dataset, we have used same
graph setting as used earlier in verifying scalability w.r.t. process-
ing time. Our algorithm proved itself scalable in such a denser
and larger graph database. Moreover, it can be noted that the algo-
rithm never requires more than 170 MB. Fig. 28 shows the perfor-
mance graphically.
4.2. Performance comparison with existing algorithms

Our proposed algorithm was found efficient enough in mining
inherently correlated graphs and subgraphs within a graph data-
base while comparing it with the existing correlation search algo-
rithm, CGS. In fact, CGS is a correlation searching algorithm and
CGM is a correlation mining algorithm as well as CGM performs
correlation search for all possible subgraphs of a graph database.
Hence, the outcome of CGS is inclusive within the outcome of
CGM irrespective of the measure used in the approaches, which
is described in Section 3.2.3. Comparison with gSpan is performed
to illustrate the effectiveness of CGM in filtering out less interesting
graph patterns.

Fig. 21. The Correlated Graph Mining (CGM) Algorithm.

Fig. 22. Efficiency of CGM over CGS.
Fig. 23. Processing time w.r.t. Graph Density with various threshold for real-life
data.

1860 Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863

Fig. 24. Scalability of CGM w.r.t. processing time for real-life data.

Fig. 25. Scalability of CGM w.r.t. memory consumption for real-life data.

Fig. 26. Processing time w.r.t. Graph Density on synthetic data (D200KN30T80V50).

Fig. 27. Scalability of CGM w.r.t. processing time for synthetic data
(D200KN20T40V30).

Fig. 28. Scalability of CGM w.r.t. memory consumption for synthetic data
(D200KN20T40V30).

Fig. 29. Performance comparison with CGS on real-life dataset (NCI-H23).

Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863 1861
For comparing the performance, once again we have used the
denser real-life and synthetic dataset, which we have used in the
scalability assessment earlier. The performance comparison with
CGS algorithm can be found in Figs. 29 and 30 for real-life and syn-
thetic dataset respectively, where a significant performance gain
can be observed. It should be noted that in designing our version
of CGS for mining correlation among all the graphs and subgraphs,
we have first performed gSpan to search for frequent subgraphs
within the database. Then we have calculated correlation for each
subgraph with all other remaining subgraphs. However, while
performing subgraph mining, we have done some optimizations
in calculating CGS, such as, projected database calculation and
subgraph list of a projected database is calculated by performing
a set intersection operation which removes redundancy in sub-
graph mining for same subgraph/graph.

To prove the efficiency of our proposed algorithm we have com-
pared it with the well known frequent subgraph mining algorithm,
gSpan. As real datasets are too small in size and density, we have
used the denser synthetic dataset used in the scalability assess-
ment and the denser real-life dataset NCI-H23. We found our algo-
rithm efficient enough in comparison with existing algorithms. The
comparisons is shown in Figs. 31 and 32. Fig. 33 contains the per-
centage of graphs filtered by CGM with respect to the graphs se-
lected by gSpan. As mentioned in the scenario of Section 1, CGM
filters out un-correlated graphs that could be selected by gSpan.

Fig. 30. Performance comparison with CGS on (D200KN20T40V30).

Fig. 31. Performance comparison with gSpan on real-life dataset (NCI-H23).

Fig. 32. Performance comparison with gSpan on (D200KN20T40V30).

Fig. 33. Comparison based on amount of graphs filtered (%) on (MOLT-4).

1862 Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863
Fig. 33 shows that the filtering percentage of CGM can be from 10%
to 40% on a real-life dataset MOLT-4 for various gConfidence
threshold.
5. Discussion

Our algorithm finds inherent correlation among the graphs in
graph databases. As a result, we can apply this algorithm in those
systems where correlation among various components or portions
are essential. Some scenarios are following, where our algorithm
can be applied and it can perform much better in mining correlated
graphs than other correlated graph search algorithms.

The algorithm CGM and the measure gConfidence can be applied
to solve the most discussed Congestion Control in computer and
communication network. The communication network can be con-
sidered as a graph with the nodes representing active devices capa-
ble of sending/receiving data and edges representing the flow of
data packet at any specific time. As a consequence, a set of graphs
can be constructed by following the mechanism at specific time
interval. Applying CGM and gConfidence, we can mine correlated
graph segments among the set of graphs along with the amount
of data load within the segment as amount of correlation value.
Based on specific threshold of the correlation, the busiest road seg-
ments can be detected and dynamic route selection to mitigate the
congestion can be performed.

Our algorithm CGM can be applied in any Social Network. As an
example, suppose we need to compare the inherent correlation
within a group of people, as shown in Fig. 1, where two different
graphs represent two groups, with nodes of the graph representing
individuals and edges represent interaction among individuals. If
we apply the gConfidence measure on these graphs, then we find
that second group of people is more inherently correlated than
the first group of people. Now we can develop and offer some
applications attractive for the group and also perform several ana-
lytical operations such as cyber crime investigation or unfriend
loosely connected friends and/or unnecessarily connected friends to
enhance friend-ability and well management of friendship as well
as users can block unnecessary or harmful activities from a group
of users.

We can apply our algorithm in Automated Diagnosis System. In
such system, each graph corresponds to a disease history of a pa-
tient and labeled with a specific set of disease. Each node corre-
sponds to a screening test or diagnosis and each edge represents
internal connections between two disease based on the test. In
such database, we can mine graph correlation by applying CGM
algorithm utilizing gConfidence and get closely correlated graph
segments. As a consequence, the newly coming suspected patients
information graph can be tested for correlation. The correlation
percentage will give an indication of the patient’s current condition
such as what can be the disease, how much the patient is attacked
or what is the level of sickness or influence of disease as well as
what can be the cure for the patient can be determined by the
automated system.

Our proposed algorithm can be applied in Automated Traffic and
Congestion Control System. Suppose the system is a collection of
areas with roads, where graphs can be constructed from the avail-
able data, found in every specific time interval, where each node is
a specific area and each edge represents road being used by a cer-
tain amount of vehicles. Correlation threshold specified by the sys-
tem experts can be used to find the busiest road segment by
utilizing our algorithm CGM (here correlation resembles the state
of road segments being busy at a specific time period). Then based
on the traffic load, the system will dynamically suggest for alter-
nate ways for the vehicles to balance the load of traffic on the roads
resulting in a lesser traffic jam.

Md. Samiullah et al. / Expert Systems with Applications 41 (2014) 1847–1863 1863
Furthermore, the proposed algorithm can be fit in most evolving
graph mining field, that is, graph clustering along with the machine
learning problem in graph context, that is, graph classification can
be performed most effectively by the proposed measure and the
proposed algorithm. As an example, the various correlation thresh-
old could be used for classification boundary and the set of graphs
can be classified effectively by using the correlation measure.
Accordingly, a set of graphs can be divided into various clusters
by using the correlation value as a similarity measure.

6. Conclusions

Mining frequent patterns or sub-patterns with larger support
threshold could miss some interesting patterns. At the same time,
if the threshold considered is small enough to capture such rare
but interesting items could generate lots of spurious patterns.
Therefore, correlation analysis is used in association of frequent
pattern mining for mining frequent-interesting patterns from a
collection of patterns, but correlation searching is a challenging
task. In graph databases, correlation searching is more challenging
due to the fact that searching frequent subgraphs faces the graph
isomorphism problem, which is NP-complete. Nonetheless, there
are several correlation search algorithms with limited facilities
and their specific limitations.

Therefore, we have proposed a new measure gConfidence, which
can capture more interesting inherent correlation. The measure
gConfidence has the downward closure property, which helps in
pruning descendants of a non-correlated candidate and discover
more meaningful sub-graphs. However, there seems to be no single
correlation measure that works well for all cases. There are lots of
interestingness measures in the literature of data and graph min-
ing as discussed in Han and Kamber (2000) and Tan et al. (2002),
unfortunately most of the measures do not have null-invariance
property. Moreover, our proposed CGM algorithm works in a DFS
manner and constructs a tree-like search space named gConfidence
Tree and hierarchically mines the correlation, which can be applied
in both traditional and non-traditional domains. We have
conducted extensive performance analysis of CGM and found it
scalable and fast enough which outperforms existing works in
correlation search.

References

Agrawal, R., & Srikant, R., 1994. Fast algorithms for mining association rules in large
databases. In VLDB (pp. 487–499).

Ahmed, C. F., Tanbeer, S. K., Jeong, B.-S., & Choi, H.-J. (2011). A framework for mining
interesting high utility patterns with a strong frequency affinity. Information
Sciences, 181(21), 4878–4894.

Ahmed, C. F., Tanbeer, S. K., Jeong, B.-S., & Choi, H.-J. (2012). Interactive mining of
high utility patterns over data streams. Expert Systems Applications, 39(15),
11979–11991.

Ahmed, C. F., Tanbeer, S. K., Jeong, B.-S., & Lee, Y.-K. (2009). Efficient tree structures
for high utility pattern mining in incremental databases. IEEE Transactions on
Knowledge and Data Engineering, 21(12), 1708–1721.

Chen, C. -W. K., & Yun, D. Y. Y., 2003. Discovering process models from execution
history by graph matching. In IDEAL (pp. 887–892).

Chittimoori, R. N., Holder, L. B., & Cook, D. J., 1999. Applying the subdue substructure
discovery system to the chemical toxicity domain. In FLAIRS Conference (pp. 90–
94).

Cicirello, V. A., 1999. Intelligent retrieval of solid models (pp. 63–92). Drexel
University.

Dehaspe, L., Toivonen, H., & King, R. D., 1998. Finding frequent substructures in
chemical compounds. In KDD (pp. 30–36).

Dupplaw, D., & Lewis, P. H., 2000. Content-based image retrieval with scale-space
object trees. In Storage and retrieval for media databases (pp. 253–261).
Gudes, E., Shimony, S. E., & Vanetik, N. (2006). Discovering frequent graph patterns
using disjoint paths. IEEE Transactions on Knowledge and Data Engineering,
18(11), 1441–1456.

Han, J., Pei, J., & Yin, Y., 2000. Mining frequent patterns without candidate
generation. In SIGMOD Conference (pp. 1–12).

Han, J., & Kamber, M. (2000). Data mining: Concepts and techniques. Morgan
Kaufmann.

He, H., & Singh, A. K., 2006. Closure-tree: An index structure for graph queries. In
ICDE (p. 38).

Holder, L. B., Cook, D. J., & Djoko, S., 1994. Substucture discovery in the subdue
system. In KDD workshop (pp. 169–180).

Hu, Y.-H., Huang, T. C. K., & Kao, Y.-H. (2013). Knowledge discovery of weighted rfm
sequential patterns from customer sequence databases. Journal of Systems and
Software, 86(3), 779–788.

Inokuchi, A., Washio, T., & Motoda, H., 2000. An apriori-based algorithm for mining
frequent substructures from graph data. In PKDD (pp. 13–23).

Inokuchi, A., Washio, T., & Motoda, H. (2005). A general framework for mining
frequent subgraphs from labeled graphs. Fundamental Information, 66(1–2),
53–82.

Ke, Y., Cheng, J., & Ng, W. (2008). Efficient correlation search from graph databases.
IEEE Transactions on Knowledge and Data Engineering, 20(12), 1601–1615.

Klviinen, H., & Oja, E., 1990. Comparisons of attributed graph matching algorithms
for computer vision. In Finnish Artificial Intelligence Symposium (pp. 354–368).

Kramer, S., Pfahringer, B., & Helma, C., 1997. Mining for causes of cancer: Machine
learning experiments at various levels of detail. In KDD (pp. 223–226).

Kuramochi, M., & Karypis, G., 2001. Frequent subgraph discovery. In ICDM (pp. 313–
320).

Lahiri, M., & Berger-Wolf, T. Y., 2008. Mining periodic behavior in dynamic social
networks. In ICDM (pp. 373–382).

Lahiri, M., & Berger-Wolf, T. Y. (2010). Periodic subgraph mining in dynamic
networks. Knowledge Information Systems, 24(3), 467–497.

Lee, Y. -K., Kim, W. -Y., Cai, Y. D., & Han, J., 2003. Comine: Efficient mining of
correlated patterns. In ICDM (pp. 581–584).

Li, J., Liu, Y., & Gao, H. (2011). Efficient algorithms for summarizing graph patterns.
IEEE Transactions on Knowledge and Data Engineering, 23(9), 1388–1405.

Nishi, M. A., Ahmed, C. F., Samiullah, M., & Jeong, B.-S. (2013). Effective periodic
pattern mining in time series databases. Expert Systems Applications, 40(8),
3015–3027.

Nori, F., Deypir, M., & Sadreddini, M. H. (2013). A sliding window based algorithm
for frequent closed itemset mining over data streams. Journal of Systems and
Software, 86(3), 615–623.

Omiecinski, E. (2003). Alternative interest measures for mining associations in
databases. IEEE Transactions on Knowledge and Data Engineering, 15(1), 57–69.

Piriyakumar, D. A. L., Murthy, C. S. R., & Levi, P., 1998. A new a* based optimal task
scheduling in heterogeneous multiprocessor systems applied to computer
vision. In HPCN, Europe (pp. 315–323).

Pubchem web site for information on biological activities of small molecules, 2011.
<http://pubchem.ncbi.nlm.nih.gov>.

Raymond, J. W., Gardiner, E. J., & Willett, P. (2002). Rascal: Calculation of graph
similarity using maximum common edge subgraphs. Comput. J., 45(6), 631–644.

Samiullah, M., Ahmed, C. F., Nishi, M. A., Fariha, A., Abdullah, S. M., & Islam, M. R.,
2013. Correlation mining in graph databases with a new measure. In APWeb (pp.
88–95).

Srinivasan, A., King, R. D., Muggleton, S., & Sternberg, M. J. E., 1997. Carcinogenesis
predictions using ilp. In ILP (pp. 273–287).

Srinivasan, A., King, R. D., Muggleton, S., & Sternberg, M. J. E., 1997. The predictive
toxicology evaluation challenge. In IJCAI, Vol. 1 (pp. 4–9).

Tanbeer, S. K., Ahmed, C. F., Jeong, B.-S., & Lee, Y.-K. (2009). Efficient single-pass
frequent pattern mining using a prefix-tree. Information Sciences, 179(5),
559–583.

Tan, P. -N., Kumar, V., & Srivastava, J., 2002. Selecting the right interestingness
measure for association patterns. In KDD (pp. 32–41).

Williams, D. W., Huan, J., & Wang, W., 2007. Graph database indexing using
structured graph decomposition. In ICDE (pp. 976–985).

Wu, T., Chen, Y., & Han, J., 2007. Association mining in large databases: A re-
examination of its measures. In PKDD (pp. 621–628).

Xiong, H., Tan, P. -N., & Kumar, V., 2003. Mining strong affinity association patterns
in data sets with skewed support distribution. In ICDM (pp. 387–394).

Yan, X., 2011. Graph dataset provided by xifeng yan. <http://www.cs.ucsb.edu/
xyan/dataset.htm>.

Yan, X., & Han, J., 2002. gspan: Graph-based substructure pattern mining. In ICDM
(pp. 721–724).

Yan, X., & Han, J., 2003. Closegraph: Mining closed frequent graph patterns. In KDD
(pp. 286–295).

Yan, X., Zhu, F., Yu, P. S., & Han, J. (2006). Feature-based similarity search in graph
structures. ACM Transactions on Database Systems, 31(4), 1418–1453.

Yoshida, K., & Motoda, H. (1995). Clip: Concept learning from inference patterns.
Artificial Intelligence, 75(1), 63–92.

http://refhub.elsevier.com/S0957-4174(13)00703-3/h0005
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0005
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0005
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0010
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0010
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0010
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0015
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0015
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0015
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0020
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0020
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0020
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0025
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0025
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0030
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0030
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0030
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0035
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0035
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0035
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0040
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0040
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0045
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0045
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0050
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0050
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0055
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0055
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0055
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0060
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0060
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0060
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0065
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0065
http://pubchem.ncbi.nlm.nih.gov
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0070
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0070
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0075
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0075
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0075
http://www.cs.ucsb.edu/xyan/dataset.htm
http://www.cs.ucsb.edu/xyan/dataset.htm
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0080
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0080
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0085
http://refhub.elsevier.com/S0957-4174(13)00703-3/h0085

	Mining frequent correlated graphs with a new measure
	1 Introduction
	2 Related works
	3 Proposed algorithm
	3.1 Problem formulation
	3.1.1 gConfidence tree
	3.1.2 The snapshot of the algorithm

	3.2 Algorithm description and analysis
	3.2.1 Description of the proposed algorithm
	3.2.2 Pruning by gConfidence
	3.2.3 Efficiency of selection by CGM over CGS

	4 Experimental results
	4.1 Performance analysis
	4.2 Performance comparison with existing algorithms

	5 Discussion
	6 Conclusions
	References

