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ABSTRACT

ENHANCING USABILITY AND EXPLAINABILITY
OF DATA SYSTEMS

SEPTEMBER 2021

ANNA FARIHA

B.S., UNIVERSITY OF DHAKA

M.S., UNIVERSITY OF DHAKA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Alexandra Meliou

The recent growth of data science expanded its reach to an ever-growing user base of

nonexperts, increasing the need for usability, understandability, and explainability in these

systems. Enhancing usability makes data systems accessible to people with different skills

and backgrounds alike, leading to democratization of data systems. Furthermore, proper

understanding of data and data-driven systems is necessary for the users to trust the func-

tion of the systems that learn from data. Finally, data systems should be transparent: when

a data system behaves unexpectedly or malfunctions, the users deserve proper explanation

of what caused the observed incident.

Unfortunately, most existing data systems offer limited usability and support for ex-

planations: these systems are usable only by experts with sound technical skills, and even
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expert users are hindered by the lack of transparency into the systems’ inner workings and

functions. The aim of my thesis is to bridge the usability gap between nonexpert users and

complex data systems, aid all sort of users—including the expert ones—in data and sys-

tem understanding, and provide explanations that help reason about unexpected outcomes

involving data systems. Specifically, my thesis has the following three goals: (1) enhanc-

ing usability of data systems for nonexperts, (2) enable data understanding that can assist

users in a variety of tasks such as achieving trust in data-driven machine learning, gaining

data understanding, and data cleaning, and (3) explaining causes of unexpected outcomes

involving data and data systems.

For enhancing usability, we focus on example-driven user intent discovery. We de-

velop systems based on example-driven interactions in two different settings: querying

relational databases and personalized document summarization. Towards data understand-

ing, we develop a new data-profiling primitive that can characterize tuples for which a

machine-learned model is likely to produce untrustworthy predictions. We also develop an

explanation framework to explain causes of such untrustworthy predictions. Additionally,

this new data-profiling primitive enables interactive data cleaning. Finally, we develop two

explanation frameworks, tailored to provide explanations in debugging data system com-

ponents, including the data itself. The explanation frameworks focus on explaining the root

cause of a concurrent application’s intermittent failure and exposing issues in the data that

cause a data-driven system to malfunction.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Enhancing Usability: Example-Driven Intent Discovery . . . . . . . . . . . . . . . . . . . 3

1.1.1 Querying Relational Databases by Example (SQUID) . . . . . . . . . . . . . . 3
1.1.2 Summarizing Documents by Example (SUDOCU) . . . . . . . . . . . . . . . . . 5

1.2 Data Understanding: Conformance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Explanation Frameworks for Debugging Data Systems . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Causality-Guided Adaptive Interventional Debugging (AID) . . . . . . . . 8
1.3.2 Exposing Disconnect between Data and Systems

(DATAEXPOSER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Enhancing System Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Programming by Example (PBE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Query by Example (QBE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Set Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Interactive Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Query Reverse Engineering (QRE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.7 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



2.1.8 User Study of PBE Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.9 Personalized Document Summarization . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.10 Dataset for Subjective Document Summarization . . . . . . . . . . . . . . . . . 17

2.2 Data Understanding: Conformance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Data Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Trusted AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Data Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Explaining Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Explanation Frameworks for Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Explanation-centric Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Statistical Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Interventional Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.5 Data Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.6 Group Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.7 Extracting Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.8 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.9 Control-flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.10 Differential Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

PART I: ENHANCING USABILITY: EXAMPLE-DRIVEN
INTENT DISCOVERY

3. QUERYING RELATIONAL DATABASES BY EXAMPLE:
SEMANTIC-SIMILARITY-AWARE QUERY INTENT DISCOVERY
(SQUID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 SQUID Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 The Query Intent Discovery Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Abductive Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Solution Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Modeling Query Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Semantic Properties and Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Filters and Example Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



3.3 Probabilistic Abduction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Notations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Modeling Query Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2.1 Semantic Context Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2.2 Query Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2.3 Semantic Context Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Offline Abduction Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Entity Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Semantic Property Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 Smart Selectivity Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Query Intent Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Entity and Context Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1.1 Entity Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.1.2 Semantic Context Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Query Abduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1.1 Datasets and Benchmark Queries . . . . . . . . . . . . . . . . . . . . . . 53
3.6.1.2 Case Study Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.1.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.1.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.3 Abduction Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.3.1 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.3.2 Effect of Entity Disambiguation . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.4 Qualitative Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.5 Query Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.6 Comparison with Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.7 SQUID Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Comparative User Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7.1 Quantitative Results From Controlled Experiment . . . . . . . . . . . . . . . . 66

x



3.7.2 Qualitative Results from Interview Study . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7.3 Limitations and Suggestions for Extension . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4. SUMMARIZING DOCUMENTS BY EXAMPLE (SUDOCU) . . . . . . . . . . . . . . 73

4.1 Contrast with Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 SUDOCU Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Modeling Personalized Extractive Summaries . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.3 Summarization Intent Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.4 Efficient Summary Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 SUBSUME: A Dataset for Subjective Summary Extraction from
Wikipedia Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Intents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.3 Interface and Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.5.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

PART II: DATA UNDERSTANDING: CONFORMANCE
CONSTRAINTS

5. CONFORMANCE CONSTRAINTS AND THEIR APPLICATIONS . . . . . . . . . 91

5.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Conformance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Conformance Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 Conformance Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.3 Quantitative Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.3.1 Quantitative Semantics of Compound Constraints . . . . . . . 105

5.3 Conformance Constraint Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xi



5.3.1 Simple Conformance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1.1 Synthesizing Bounds for Projections . . . . . . . . . . . . . . . . . . 106
5.3.1.2 Principle for Synthesizing Projections . . . . . . . . . . . . . . . . . 107
5.3.1.3 PCA-inspired Projection Derivation . . . . . . . . . . . . . . . . . . . 110

5.3.2 Compound Conformance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Trusted Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.1 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.1.1 Implementation: CCSYNTH . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.2 Trusted Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.5.3 Data Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6 Interactive Exploration of Conformance Constraints for Data
Understanding and Data Cleaning (COCO) . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6.1 Interpretable Conformance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.6.2 Generating Suggestions for Data Cleaning . . . . . . . . . . . . . . . . . . . . . . 132

5.7 Explaining Tuple Non-conformance (EXTUNE) . . . . . . . . . . . . . . . . . . . . . . . . 134

5.7.1 Solution Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7.1.1 Responsibility for Non-conformance . . . . . . . . . . . . . . . . . . 136

5.7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.8 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

PART III: EXPLANATION FRAMEWORKS FOR DEBUGGING
DATA SYSTEMS

6. CAUSALITY-GUIDED ADAPTIVE INTERVENTIONAL DEBUGGING
(AID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xii



6.1 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2 AID Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.1 AID Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2.2 AID Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2.3 Program Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Approximating Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.4 Causal Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4.1 Problem Definition and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.4.2 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.3 Predicate Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.4.4 Causality-guided Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.4.1 Branch Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.5.1 Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.5.2 Lower Bound of Number of Interventions . . . . . . . . . . . . . . . . . . . . . . 171
6.5.3 Upper Bound of Number of Interventions . . . . . . . . . . . . . . . . . . . . . . 172

6.5.3.1 Branch Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.5.3.2 Predicate Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.6.1 Case Studies of Real-world Applications . . . . . . . . . . . . . . . . . . . . . . . 174

6.6.1.1 Data Race in Npgsql . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.6.1.2 Use-after-free in Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.6.1.3 Timing Bug in Azure Cosmos DB Application . . . . . . . . . . 176
6.6.1.4 Bugs in Proprietary Software . . . . . . . . . . . . . . . . . . . . . . . . 177

6.6.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.7 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7. EXPOSING DISCONNECT BETWEEN DATA AND SYSTEMS
(DATAEXPOSER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.1 Preliminaries and Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.1.1 Quantifying System Malfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.1.2 Profile-Violation-Transformation (PVT) . . . . . . . . . . . . . . . . . . . . . . . . 189

xiii



7.1.2.1 Data Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.1.2.2 Profile Violation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.1.2.3 Transformation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.2 Data Profiles, Violation Functions, & Transformation Functions . . . . . . . . . . 194
7.3 Intervention Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.3.1 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.3.2 Assumptions and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.3.3 Greedy Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.3.4 Group-testing-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.4.1 Real-world Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.4.2 Synthetic Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.4.3 Effect of Various Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.4.3.1 Effect of Number of Attributes and PVTs . . . . . . . . . . . . . . 217
7.4.3.2 Effect of Number of Root Causes and their

Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.5 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8. CONCLUSIONS AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . 219

APPENDICES

A. EXAMPLE-DRIVEN INTENT DISCOVERY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
B. CONFORMANCE CONSTRAINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
C. DEBUGGING DATA SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

xiv



LIST OF FIGURES

Figure Page

3.1 Excerpt of two relations of the CS Academics database. Dan Suciu
and Sam Madden (in bold), both have research interests in data
management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Partial schema of the IMDb database. The schema contains two entity
relations: movie and person; and a semantic property relation:
genre. The relations castinfo and movietogenre associate
entities and semantic properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 SQUID’s operation includes an offline module, which constructs an
abduction-ready database (–DB) and precomputes statistics of
semantic properties. SQUID’s query intent discovery module interacts
with the –DB to identify the semantic context of the user-provided
example tuples and abduces the most likely query intent. . . . . . . . . . . . . . . . 36

3.4 A genre value (e.g., genre=Comedy) is a basic semantic property of a
movie (through the movietogenre relation). A person is
associated with movie entities (through the castinfo relation);
aggregates of basic semantic properties of movies are derived semantic
properties of person, e.g., the number of comedy movies a person
appeared in. The –DB stores the derived property in the new relation
persontogenre. (For ease of exposition, we depict attributes
genre and person instead of genre.id and person.id.) . . . . . . . . 37

3.5 Summary of notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Sample database (left) with example tuples (right). . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Top two filters of Case A are interesting. No filter is interesting in Case
B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Average abduction time over the benchmark queries in (a) IMDb
(b) DBLP and (c) 4 versions of the IMDb dataset. . . . . . . . . . . . . . . . . . . . . 55

3.9 SQUID achieves high accuracy with few examples (typically ≥ 5) in most
benchmark queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xv



3.10 SQUID rarely produces queries that are slower than the original with
respect to query runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.11 Effect of disambiguation on IMDb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.12 Precision, recall, and f-score for (a) Funny actors (b) 2000s Sci-Fi movies
(c) Prolific DB researchers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Both systems achieve perfect f-score on the Adult dataset (not shown).
SQUID produces significantly smaller queries, often by orders of
magnitude, and is often much faster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.14 SQUID produces queries with significantly fewer predicates than TALOS
and is more accurate on both IMDb and DBLP. SQUID is almost
always faster on IMDb, but TALOS is faster on DBLP. . . . . . . . . . . . . . . . . 63

3.15 (a) PU-learning needs a large fraction (> 70%) of the query results
(positive data) as examples to achieve accuracy comparable to
SQUID. (b) The total required time for training and prediction in
PU-learning increases linearly with the data size. In contrast,
abduction time for SQUID increases logarithmically. . . . . . . . . . . . . . . . . . . 65

3.16 SQUID vs. SQL in terms of average precision, recall, and F1 score. . . . . . . . . 67

3.17 t test results for precision, recall, and F1 score. Out of 12 findings, 7 are
statistically significant. In all cases, df = 33. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.18 Comparison of SQL vs. SQUID in terms of effort (average time required
and average number of attempts) for solving the same set of tasks. . . . . . . 68

3.19 t test results for task completion time and number of attempts. 7/8 findings
are statistically significant (df = 33). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.20 Comparison of SQUID vs. SQL in terms of various metrics
(self-reported). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 The SUDOCU architecture. SUDOCU combines SQUID+ and
SKETCHREFINE in a novel way to summarize documents by example.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Topics of Wiki pages of 50 states (extracted using topic modeling), their
intuitive meaning, and top related words with associated weights. . . . . . . . 78

xvi



4.3 The SUDOCU interface: 1� the user selects a document for manual
summarization, 2� the user selects sentences from the document to
construct an example summary, 3� the user views the example
summaries, edits them if necessary, and submits them to request for
summarization intent discovery, 4� the user specifies a new document
to summarize and SUDOCU produces a personalized summary of it,
5� PaQL query that captures the summarization intent. . . . . . . . . . . . . . . . . 81

4.4 Intents in SUBSUME vary between mostly objective to mostly
subjective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 A datapoint of SUBSUME. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Statistics of the SUBSUME dataset across 10 different intents. . . . . . . . . . . . . 86

4.7 Average F1 scores over different ROUGE metrics for baseline
techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 ROUGE-L F1 for SBERT in example-driven (EX) and query-based (QB)
settings for each intent. From left to right, intents are ordered from
least subjective to most subjective according to their subjectiveness
score shown in Figure 4.6. The correlation between the subjectiveness
score and the F1 score for SBERT EX and SBERT QB is -0.95 and
-0.78 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Sample of the airlines dataset (details are in Section 5.5.2), showing
departure, arrival, and duration only. The dataset does not report
arrival date, but an arrival time earlier than departure time (e.g., last
row), indicates an overnight flight. All times are in 24 hour format and
in the same time zone. There is some noise in the values. . . . . . . . . . . . . . . 92

5.2 Conformance constraints complement existing data profiling primitives
and provide a mechanism to quantify trust in prediction, with minimal
assumption on the setting. We provide an efficient and scalable
technique to discover conformance constraints. . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Clear and shaded regions depict conformance and non-conformance
zones, respectively. (a) Correlated projections X and Y yield
conformance constraints forming a large conformance zone,
(b) Uncorrelated (orthogonal) projections X ≠ Y and X + Y yield
conformance constraints forming a smaller conformance zone. . . . . . . . . 109

5.4 Learning PCA-based constraints globally results in low quality constraints
when data satisfies strong local constraints. . . . . . . . . . . . . . . . . . . . . . . . . . 116

xvii



5.5 Average constraint violation (in percentage) and MAE (for linear
regression) of four data splits on the airlines dataset. The constraints
were learned on train, excluding the target attribute, delay. . . . . . . . . . . 123

5.6 Constraint violation strongly correlates with the absolute error of delay
prediction of a linear regression model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 (a) As a higher fraction of mobile activity data is mixed with sedentary
activity data, conformance constraints are violated more, and the
classifier’s mean accuracy-drop increases. (b) As more noise is added
during training, conformance constraints get weaker, leading to less
violation and decreased accuracy-drop. (c) CCSYNTH detects the
gradual local drift on the HAR dataset as more people start changing
their activities. In contrast, weighted-PCA (W-PCA) fails to detect
drift in absence of a strong global drift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Inter-person constraint violation heat map. Each person has a very low
self-violation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.9 Inter-activity constraint violation heat map. Mobile activities violate the
constraints of the sedentary activities more. . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.10 In the EVL benchmark, CCSYNTH quantifies drift correctly for all cases,
outperforming other approaches. PCA-SPLL fails to detect drift in a
few cases by discarding all principal components; CD-MKL and
CD-Area are too sensitive to small drift and detect spurious drifts. . . . . . . 128

5.11 Snapshots over time for 4CR dataset with local drift. It reaches maximum
drift from the initial distribution at time step 3 and goes back to the
initial distribution at time step 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.12 User scenario for COCO: 1� upload reference (clean) data, 2� select
relevant attributes and specify the maximum number of attributes
desired within the conformance constraints, 3� discover conformance
constraints, 4� view the discovered constraints along with their
strengths, 5� select a subset of conformance constraints for further
exploration, 6� view the selected conformance constraints, 7� upload
test (unclean) data, 8� view top 15 most violating tuples and select a
tuple for checking its violations, 9� view constraint-wise violations for
the selected tuple, 10� hover on a cell to get suggestion on how to alter
its value to satisfy the conformance constraints. . . . . . . . . . . . . . . . . . . . . . 133

xviii



5.13 Interactive data cleaning: the user edits a cell in-place and views changes
in constraint violation. Changing ArrTime from 605 to 670 for the 7th

tuple reduces its violation against the first constraint, but increases
violation against the 6th constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.14 The EXTUNE interface: 1� upload reference data, 2� learn conformance
constraints, 3� upload test data, 4� select the number of most
non-conforming tuples to preview, 5� tuple-wise attribute-responsibility heat
map, 6� aggregated attribute responsibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.15 Responsibility assignment on attributes for drift on (a) Cardiovascular
disease: trained on patients with no disease and served on patients
with disease, (b) Mobile Prices: trained on cheap mobiles and served
on expensive mobiles and (c) House Prices: trained on house with
price <= 100K and served on house with price >= 300K.
(d) Detection of drift on LED dataset. The dataset drifts every 5
windows (25,000 tuples). At each drift, a certain set of LEDs
malfunction and take responsibility of the drift. . . . . . . . . . . . . . . . . . . . . . . 140

6.1 Adaptive Interventional Debugging workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Few example predicates, conditions used to extract them, and the
corresponding interventions using fault injection. . . . . . . . . . . . . . . . . . . . . 154

6.3 Summary of notations used in Section 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5 (a) An AC-DAG with failure predicate F . (b) Horizontal and vertical
expansion. (c) A symmetric AC-DAG with J junctions where each
junction has B branches and each branch has n predicates. . . . . . . . . . . . . 169

6.6 Theoretical comparison between CPD and GT for the symmetric AC-DAG
of Figure 6.5(c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.7 Results from case studies of real-world applications. SD produces way too
many spurious predicates beyond the correct causal predicates
(columns 3 & 4). SD actually produces even more predicates, but here
we only report the number of fully discriminative predicates. AID and
traditional adaptive group testing (TAGT) both pin-point the correct
causal predicates using interventions, but AID does so with
significantly fewer interventions (columns 5 & 6). . . . . . . . . . . . . . . . . . . . 175

xix



6.8 Number of interventions required in the average and worst case by
traditional adaptive group testing (TAGT) and different variations of
AID with varying MAXt. For average case analysis, total number of
predicates is shown using a grey dotted line. Total number of
predicates is not shown for the worst-case analysis, because the worst
cases vary across approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.1 A list of PVT triplets that we consider in this work, their syntax, and
semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2 A sample dataset Peoplefail with 10 entities. A logistic regression classifier
trained over this dataset discriminates against African Americans
(race = ‘A’) and women (gender = ‘F’) (Example 7.1). . . . . . . . . . . . . 197

7.3 A sample dataset Peoplepass with 9 entities. A logistic regression classifier
trained over this dataset does not discriminate against any specific race
or gender, and, thus, is fair (Example 7.1). . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.4 PVT-attribute graph. The attribute high_expenditure is associated
with two discriminative PVTs. For ease of exposition, we only show
profile within a PVT to denote the entire PVT. . . . . . . . . . . . . . . . . . . . . . . 200

7.5 A list of PVTs that discriminate Peoplepass (Figure 7.3) and Peoplefail
(Figure 7.2) based on the scenario of Example 7.1 . We omit the
violation and transformation functions for ease of exposition. . . . . . . . . . . 200

7.6 Comparison between DATAEXPOSERGT and adaptive group testing on a
toy example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.7 Comparison of number of interventions of DATAEXPOSER with other
baselines. NA denotes that the technique could not identify the cause
of malfunction because assumption A3 did not hold. . . . . . . . . . . . . . . . . . 211

7.8 Comparison of running time of DATAEXPOSER with other baselines. NA
denotes that the technique could not identify the cause of malfunction
because assumption A3 did not hold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.9 Execution time of DATAEXPOSERGRD vs. DATAEXPOSERGT with varying
number of data attributes (left) and discriminative PVTs (right) over
synthetic pipelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.10 Average number of interventions required by two versions of
DATAEXPOSER and three other techniques for varying number of
attributes, discriminative PVTs, size of single conjunctive root causes,
and size of disjunctive root causes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

xx



A.1 SQUID captures complex intents and more expressive queries than prior
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.2 Benchmark queries for the IMDb dataset. J and S denote the number of
joins and selection predicates, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 224

A.3 Benchmark queries for the DBLP dataset. J and S denote the number of
joins and selection predicates, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 224

A.4 First 10 benchmark queries for the Adult dataset. . . . . . . . . . . . . . . . . . . . . . . . 225

A.5 Last 10 benchmark queries for the Adult dataset. . . . . . . . . . . . . . . . . . . . . . . . 226

A.6 Source of datasets and lists used in this work. * denotes the lists that are
used as popularity mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.7 Description of different variations of the IMDb dataset. . . . . . . . . . . . . . . . . . . 228

A.8 Description of the DBLP and the Adult datasets. . . . . . . . . . . . . . . . . . . . . . . . 228

A.9 List of SQUID parameters with description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

A.10 Effect of system parameters on SQUID’s performance for a few
benchmark queries over the IMDb dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 229

A.11 Complete schema of the IMDb database with 8 main relations: movie,
person, genre, language, country, company, role, and
certificate; and 7 connecting relations that associate the main
relations: castinfo, movietogenre, movietolanguage,
distribution, movietocountry, movietocertificate,
and production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A.12 The graphical user interface of SQUID used in our user study. The task
description is at the top. The left panel allows the users to provide
examples with an auto-completion feature. SQUID infers the user’s
intended query from the examples, executes it, and shows the results in
the right panel. We only show the first five results
(alphabetically). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A.13 Domain knowledge of the participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A.14 Demographic and experience details of the interviewees who participated
in our interview study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

xxi



CHAPTER 1

INTRODUCTION

Rapid increase of computational resources and data-sharing platforms has reached an

ever-growing base of users without technical computing expertise, who wish to peruse,

analyze, and understand data. From astronomers and scientists who need to analyze data

to validate their hypotheses, all the way to computational journalists who need to peruse

datasets to validate claims and support their reporting, the broad availability of data has

the potential to fundamentally impact the way domain experts conduct their work. Un-

fortunately, while data is broadly available, access to data systems is seldom unfettered.

Challenges in the use of data systems can stem from various aspects of the systems’ op-

eration: how users interface with the system, how they reason about the system behavior,

whether they trust the system or not, and how they fix the system in the face of system

malfunction.

Existing systems typically cater to users with sound technical computing and program-

ming skills, posing significant hurdles to technical novices, who do not have strong tech-

nical background. Democratization of computational systems demands equal access to

people of different skills and backgrounds [127, 253, 261]. Therefore, the first goal of my

thesis is to design and develop tools and mechanisms that can enhance usability of data

systems.

At the core of all these data systems lies data, which is central to modern systems in a

wide range of domains, including healthcare, transportation, and finance. The core of mod-

ern data-driven systems typically comprises of models learned from large datasets, and

they are usually optimized to target particular data and workloads. While these data-driven
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systems have seen wide adoption and success, their reliability and proper function hinge

on the data’s continued conformance to the systems’ initial settings and assumptions. If

the serving data (on which the system operates) deviates from the profile of the initial data

(on which the system was trained), then system performance degrades and system behavior

becomes unreliable. A mechanism to assess the trustworthiness of a system’s inferences

is paramount, especially for systems that perform safety-critical or high-impact operations.

To achieve this, we need to first obtain data understanding, which can in turn help us detect

when data has deviated to an extent that may compromise the trustworthiness of a system’s

inferences over the deviated data. Beyond achieving trust in data-driven machine learning,

data understanding also helps us in other important tasks such as data-drift quantification

and data cleaning. To this end, the second goal of my thesis is to design data-profiling

primitives that can help users gain data understanding, which in turn helps in other impor-

tant tasks such as achieving trustworthy machine learning, data-drift quantification, data

cleaning, and so on.

When data systems do not behave as expected, we need mechanisms that can explain

to us what is causing such unexpected behavior. Furthermore, application development in

distributed settings brings forth important challenges that also need explanation. For ex-

ample, failures in distributed applications are often triggered by concurrency bugs, such

as interference and coordination issues. Such concurrency bugs are difficult to reproduce;

therefore, the root causes of concurrent program failures are hard to identify, and even

harder to explain. Without succinct explanation of how the root cause eventually triggers

failure, the developer might fail to draw the causal connection from the root cause to the

failure. Furthermore, as data is a central component of data-driven systems, the cause of

system malfunction may reside in the data as well. Therefore, similar to software debug-

ging, we also need to debug the data to identify potential sources of disconnect between

the assumptions about the data and the systems that operate on that data. To this end, the
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third goal of my thesis is to develop explanation frameworks to assist in debugging various

components of data systems, including the data itself.

We now provide a brief overview of the work completed to achieve the three afore-

mentioned goals. We outline our work towards enhancing usability of data systems in Sec-

tion 1.1; our mechanisms to enable data understanding to achieve trusted machine learning,

data-drift quantification, and data cleaning in Section 1.2; and our explanation frameworks

to assist in debugging various components of data systems in Section 1.3.

1.1 Enhancing Usability: Example-Driven Intent Discovery
While using data systems, the traditional setting requires the users to precisely specify

their intended task in a language that the systems understand. For example, a user has to

compose a precise SQL query to retrieve data from a relational database or issue a well-

formed natural language query to extract relevant data from a large document in a question-

answering system. Such rigid mechanisms pose hurdles for nonexperts who lack technical

expertise and are unfamiliar with the details of the data organization. However, a number of

data-centric tasks can be simply expressed by examples. Such a programming-by-example

mechanism significantly enhances usability of these systems for nonexperts [65, 126, 206,

285]. Towards enhancing usability of data systems, we focus on example-driven techniques

to discover user intents. Next, we discuss our contributions in this area.

1.1.1 Querying Relational Databases by Example (SQUID)

Traditional relational data interfaces require precise structured queries over potentially

complex schemas. These rigid data retrieval mechanisms pose hurdles for nonexpert users,

who typically lack programming language expertise and are unfamiliar with the details of

the schema. Existing tools assist in formulating queries through keyword search, query rec-

ommendation, and query auto-completion, but still require some technical expertise. An

alternative method for accessing data is query by example (QBE), where users express their
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data exploration intent simply by providing examples of their intended data and the sys-

tem infers the intended query. However, existing QBE approaches focus on the structural

similarity of the examples and ignore the richer context present in the data. As a result,

they typically produce queries that are too general, and fail to capture the user’s intent

effectively.

To overcome these challenges, we develop SQUID [94, 95] a system that performs

semantic-similarity-aware query intent discovery from user-provided example tuples.

SQUID is an end-to-end system that automatically formulates select-project-join queries

with optional group-by aggregation and intersection operators—a much larger class than

what prior QBE techniques support—from user-provided examples, in an open-world set-

ting. To express the problem of query intent discovery, we use a probabilistic abduction

model that infers a query as the most likely explanation of the provided examples. To

expedite query intent discovery, we introduce the notion of an abduction-ready database,

which precomputes semantic properties and related statistics, allowing SQUID to achieve

real-time performance.

Our extensive empirical evaluation on three real-world datasets, including user intent

case studies, demonstrates that SQUID is efficient and effective, and outperforms machine

learning methods, as well as the state of the art in the related query reverse engineering

problem. To understand how effective SQUID is for real users over real-world data explo-

ration tasks, we conducted comparative user studies contrasting SQUID with traditional

SQL querying [93]. The user studies demonstrate that users with varying expertise are

significantly more effective and efficient with SQUID than SQL. We find that SQUID

eliminates the barriers in studying the database schema, formalizing task semantics, and

writing syntactically correct SQL queries, and, thus, substantially alleviates the need for

technical expertise in data exploration.
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1.1.2 Summarizing Documents by Example (SUDOCU)

As a use case of by-example interaction beyond relational data domain, we apply the

mechanism for example-driven user intent discovery to the area of text document summa-

rization. Text document summarization refers to the task of producing a brief representation

of a document for easy human consumption. Automatic text document summarization is

a key natural language processing task. Existing text summarization techniques mostly

focus on generic summarization, but users often require personalized summarization that

targets their specific preferences and needs. However, precisely expressing preferences is

challenging, and current methods are often ambiguous, outside the user’s control, or re-

quire costly training data. We propose a novel and effective way to express summarization

intent (preferences) via examples: the user provides a few example summaries for a small

number of documents in a collection, and the system summarizes the rest. We develop SU-

DOCU, an example-based personalized DOCUment SUmmarization system [91]. Through

a simple interface, SUDOCU allows the users to provide example summaries, learns the

summarization intent from the examples, and produces summaries for new documents that

reflect the user’s summarization intent. SUDOCU further explains the captured summariza-

tion intent in the form of a package query, an extension of a traditional SQL query that

handles complex constraints and preferences over answer sets. SUDOCU combines topic

modeling, semantic similarity discovery, and in-database optimization in a novel way to

achieve example-driven document summarization.

1.2 Data Understanding: Conformance Constraints
The reliability of inferences made by data-driven systems hinges on the data’s con-

tinued conformance to the systems’ initial settings and assumptions about the data. Data

profiling refers to the task of extracting technical metadata that captures these assumptions

about the data. Such metadata is also known as profiles and has numerous applications

such as data understanding, validation, integration, and cleaning. While a number of data
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profiling primitives exist in the literature, most of them are limited to categorical attributes.

A few techniques consider numerical attributes; but, they either focus on simple relation-

ships involving a pair of attributes (e.g., correlations) or convert the continuous seman-

tics of numerical attributes to a discrete semantics, which results in information loss. To

capture more complex relationships involving the numerical attributes, we design a new

data-profiling primitive called conformance constraints, which can model linear arithmetic

relationships involving multiple numerical attributes (called projections). Existing data

profiling primitives such as functional dependencies and denial constraints cannot model

such relationships. Beyond data understanding, there are a number of important applica-

tions of conformance constraints. In this work, we focus on a few of them: trusted machine

learning, data-drift quantification, and data cleaning. Furthermore, we develop an explana-

tion framework that can explain causes of tuple non-conformance guided by conformance

constraints.

The reliability of inferences made by data-driven systems hinges on the data’s contin-

ued conformance to the systems’ initial settings and assumptions. When serving data (on

which we want to apply inference) deviates from the profile of the initial training data, the

outcome of inference becomes unreliable. Conformance constraints are tailored towards

quantifying the degree of non-conformance, which can effectively characterize if inference

over that tuple is untrustworthy. Our key finding is that projections that incur low variance

on a dataset construct effective conformance constraints. This principle yields the sur-

prising result that low-variance components of a principal component analysis, which are

usually discarded for dimensionality reduction, generate stronger conformance constraints

than the high-variance components. Based on this result, we provide a highly scalable and

efficient technique—linear in data size and cubic in the number of attributes—for discov-

ering conformance constraints for a dataset [100, 101]. To measure the degree of a tuple’s

non-conformance with respect to a dataset, we propose a quantitative semantics that cap-

tures how much a tuple violates the conformance constraints of that dataset. We demon-
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strate the value of conformance constraints on two applications: trusted machine learning

and data drift. We empirically show that conformance constraints offer mechanisms to

(1) reliably detect tuples on which the inference of a machine-learned model should not be

trusted, and (2) quantify data drift more accurately than the state of the art.

To allow interactive discovery and exploration of COnformance COnstraints for under-

standing trends involving the numerical attributes of a dataset, we develop COCO [98], with

a particular focus on the application of data cleaning. COCO enables the user to guide con-

formance constraint discovery according to their preferences. The user can examine to what

extent a new, possibly dirty, dataset satisfies or violates the discovered conformance con-

straints. Further, COCO provides useful suggestions for cleaning dirty data tuples, where

the user can interactively alter cell values, and verify by checking change in conformance

constraint violation due to the alteration. In summary, COCO can help in understanding

trends in the data and assist the users in interactive data cleaning, using conformance con-

straints.

In data-driven systems, we often encounter tuples on which the predictions of a machine-

learned model are untrustworthy. A key cause of such untrustworthiness is non-confor-

mance of a new tuple with respect to the training dataset. To check conformance, we can

use conformance constraints, which capture a set of implicit constraints that all tuples of

a dataset satisfy: a test tuple is non-conforming if it violates the conformance constraints.

Conformance constraints model complex relationships among multiple attributes; but do

not provide interpretable explanations of non-conformance. To EXplaining causes of TUple

Non-conformancE, we develop EXTUNE [99]. Based on the principles of causality, EX-

TUNE assigns responsibility to the attributes for causing non-conformance. The key idea is

to observe change in constraint violation under intervention on attribute-values. EXTUNE

produces a ranked list of the test tuples based on their degree of non-conformance and

visualizes tuple-level attribute responsibility for non-conformance through heat maps. EX-

TUNE further visualizes attribute responsibility, aggregated over the test tuples. Through
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real-world case studies, we show how EXTUNE can explain causes of tuple non-conformance

and assist the users to make careful decisions towards achieving trusted machine learning.

1.3 Explanation Frameworks for Debugging Data Systems
When systems do not behave as expected, even expert users struggle to understand

the causes of such unexpected behavior. They wonder why a system crashes intermittently,

why an ML model fails for certain datasets while passes for others, whether there is a causal

relationship between a pair of anomalous events, and so on. Explanation frameworks facil-

itate such understanding. Next, we discuss our two contributions in building explanation

frameworks for (1) tracing issues within components and behaviors of data systems and

(2) tracing issues related to the data itself.

1.3.1 Causality-Guided Adaptive Interventional Debugging (AID)

Runtime nondeterminism is a fact of life in modern database applications. Previous

research has shown that nondeterminism can cause applications to intermittently crash, be-

come unresponsive, or experience data corruption. We propose Adaptive Interventional

Debugging (AID) for debugging such intermittent failures [96, 97]. AID combines ex-

isting statistical debugging, causal analysis, fault injection, and group testing techniques

in a novel way to (1) pinpoint the root cause of an application’s intermittent failure and

(2) generate an explanation of how the root cause triggers the failure. AID works by first

identifying a set of runtime behaviors (called predicates) that are strongly correlated to the

failure. It then utilizes temporal properties of the predicates to (over)-approximate their

causal relationships. Finally, it uses fault injection to execute a sequence of interventions

on the predicates and discover their true causal relationships. This enables AID to identify

the true root cause and its causal relationship to the failure. We theoretically analyze how

fast AID can converge to the identification. We evaluate AID with six real-world applica-

tions that intermittently fail under specific inputs. In each case, AID was able to identify
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the root cause and explain how the root cause triggered the failure, much faster than group

testing and more precisely than statistical debugging. We also evaluate AID with many

synthetically generated applications with known root causes and confirm that the benefits

also hold for them.

1.3.2 Exposing Disconnect between Data and Systems (DATAEXPOSER)

As data is a central component of many modern systems, the cause of a system mal-

function may reside in the data, and, specifically, particular properties of the data. For

example, a health-monitoring system that is designed under the assumption that weight

is reported in imperial units (lbs) will malfunction when encountering weight reported in

metric units (kilograms). Similar to software debugging, which aims to find bugs in the

mechanism (source code or runtime conditions), our goal is to debug the data to identify

potential sources of disconnect between the assumptions about the data and the systems

that operate on that data. Specifically, we seek which properties of the data cause a data-

driven system to malfunction. We propose DATAEXPOSER [112], a framework to identify

data properties, called profiles, that are the root causes of performance degradation, or fail-

ure, of a system that operates on the data. Such identification is necessary to repair the

system and resolve the disconnect between data and system. Our technique is based on

causal reasoning through interventions: when a system malfunctions for a dataset, DATA-

EXPOSER alters the data profiles and observes changes in the system’s behavior due to the

alteration. Unlike statistical observational analysis that reports mere correlations, DATA-

EXPOSER reports causally verified root causes—in terms of data profiles—of the system

malfunction. We empirically evaluate DATAEXPOSER on three real-world and several syn-

thetic data-driven systems that fail on datasets due to a diverse set of reasons. In all cases,

DATAEXPOSER identifies the root causes precisely while requiring orders of magnitude

fewer interventions than prior techniques.
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1.4 Organization
To familiarize the reader with the prior work, Chapter 2 provides a literature survey

pertinent to the work presented in this thesis. The remaining of the thesis is organized in

three parts.

Part I, which contains Chapters 3 and 4, describes the systems involving example-driven

user intent discovery. Chapter 3 describes the example-driven query intent discovery frame-

work SQUID and presents our comparative user studies contrasting SQUID against tradi-

tional SQL querying. Chapter 4 describes the example-driven document summarization

system SUDOCU along with the subjective summarization dataset SUBSUME.

Part II presents the data profiling primitive conformance constraints, including their ap-

plications. Chapter 5 provides the discovery algorithm for conformance constraints along

with discussion on two application areas: trusted machine learning and data-drift quantifi-

cation. It also includes discussion on a tool COCO that focuses on the application of data

cleaning, and another tool EXTUNE that explains the causes of tuple non-conformance,

guided by conformance constraints.

Part III, which contains Chapters 6 and 7, presents two explanation frameworks to assist

in debugging various components of data systems. Chapter 6 describes AID that explains

how a root cause triggers an intermittent failure in concurrent systems. Chapter 7 describes

a framework that exposes which properties of a dataset cause a data-driven system to mal-

function.

Finally, we conclude the thesis in Chapter 8 summarizing the work presented and high-

light a few directions towards future work.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we provide an overview of the related literature. We start by provid-

ing a literature review on enhancing usability of data systems and contrast with those our

proposed approaches (Section 2.1). Then we proceed to discuss existing literature on data

profiling techniques and prior work that address the problem of trusted machine learning,

data-drift quantification, data cleaning, and explaining data anomalies (Section 2.2). Fi-

nally, we review the literature related to our work on explanation frameworks to assist in

debugging data systems (Section 2.3).

2.1 Enhancing System Usability
In this section, we provide an overview of the existing programming-by-example (PBE)

and query-by-example (QBE) approaches, discuss alternative mechanisms that also aid

users in data exploration, give a brief overview of other closely related work (e.g., query

reverse engineering (QRE), set expansion, machine learning etc.), highlight prior user stud-

ies over other PBE approaches, and, finally, review the literature on text document summa-

rization.

2.1.1 Programming by Example (PBE)

PBE is based on the intuitive premise that users who may lack or have low technical

skills, but have expertise in a particular domain, can more easily express their computa-

tional desire by providing examples than by writing programs under strict language speci-

fications. This is in contrast with traditional program synthesis [163, 271], which requires
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a high-level formal specification (e.g., first-order logic) of the desired program. Example-

driven program synthesis has been effectively used for a variety of tasks, such as code syn-

thesis for data scientists [77]; data wrangling [125], integration [157], extraction [31, 198],

transformation [124, 135], and filtering [326]; data structure transformation [104]; text

processing [339] and normalization [186]; querying relational databases [294], and so on.

Many PBE approaches have been developed in the literature to aid novices or semi-

experts in a variety of data-management tasks. The focus of PBE is to not only solve the

task, but also provide the mechanism that can solve the task. To this end, all PBE tools

learn from the user examples and synthesize programs that can produce the desired results.

To help data scientists write complex code for data wrangling and data transformation,

WREX [77] proposes an example-driven program synthesis approach. To enable integra-

tion of web data with spreadsheets, WebRelate [157] facilitates joining semi-structured web

data with relational data in spreadsheets using input-output examples. FlashRelate [31]

and FlashExtract [198] enable extraction of relational data from semi-structured spread-

sheets, text files, and web pages, using examples. Data-transformation-by-example ap-

proaches [124, 135] led to the development of the FlashFill [106] feature in Microsoft

Excel, which can learn the user’s data transformation intent only from a few examples.

Live programming [285] helps novice programmers to understand their code, where they

can manipulate the input by directly editing the code and manipulate the output by provid-

ing examples of the desired output. Beyond computational tasks, PBE tools also support

creative tasks such as music creation by example [109], where a software takes a song as

an example and allows the user to interactively mix the AI-generated music.

2.1.2 Query by Example (QBE)

QBE was an early effort to assist users without SQL expertise in formulating SQL

queries [352]. Existing QBE systems [260, 294] identify relevant relations and joins in sit-

uations where the user lacks schema understanding, but are limited to project-join queries.
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These systems focus on the common structure of the example tuples, and do not try to learn

the common semantics as SQUID does. QPlain [72] uses user-provided provenance of the

example tuples to learn the join paths and improve intent inference. However, this assumes

that the user understands the schema, content, and domain to provide these provenance

explanations, which is often unrealistic for nonexperts.

2.1.3 Set Expansion

Set expansion is a problem corresponding to QBE in Knowledge Graphs [324, 331,

347]. SPARQLByE [73], built on top of a SPARQL QRE system [14], allows query-

ing RDF datasets by annotated (positive/negative) example tuples. In semantic knowl-

edge graphs, systems address the problem of entity set expansion using maximal-aspect-

based entity model, semantic-feature-based graph query, and entity co-occurrence informa-

tion [133, 160, 207, 232]. These approaches exploit the semantic context of the example

tuples, but they cannot learn new semantic properties, such as aggregates involving nu-

meric values, that are not explicitly stored in the knowledge graph, and they cannot express

complex semantic properties without exploding the graph size.

2.1.4 Interactive Approaches

Interactive approaches rely on relevance feedback on system-generated tuples to im-

prove query inference and result delivery [2, 44, 74, 117, 203]. Such systems typically

expect a large number of interactions, and are often not suitable for nonexperts who may

not be sufficiently familiar with the data to provide effective feedback.

2.1.5 Query Reverse Engineering (QRE)

QRE [27, 328] is a special case of QBE, which assumes that the provided examples

comprise the complete output of the intended query. Because of this closed-world as-

sumption, QRE systems can build data classification models on denormalized tables [312],

labeling the provided tuples as positive examples and the rest as negative. Such methods
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are not suitable for our setting, because we operate with few examples, under an open-

world assumption. While few QRE approaches [175] relax the closed world assumption

(known as the superset QRE problem) they are also limited to PJ queries similar to the exist-

ing QBE approaches. Most QRE methods are limited to narrow classes of queries, such as

PJ [175, 345], aggregation without joins [307], or top-k queries [250]. REGAL+ [308] han-

dles SPJA queries but only considers the schema of the example tuples to derive the joins

and ignores other semantics. A few QRE methods target expressive SPJ queries [322, 346],

but they only work for very small databases (< 100 cells), and do not scale to the datasets

used in our evaluation. Moreover, the user needs to specify the data in their entirety, thus,

expecting complete schema knowledge, while SCYTHE [322] also expects hints from the

user towards precise discovery of the constants of the query predicates.

2.1.6 Alternative Approaches

Alternative approaches exist, beyond by-example methods, to aid novice users explore

relational databases. Keyword-based search [8, 149, 344] allows accessing relational data

without knowledge of the schema and SQL syntax, but does not facilitate search by exam-

ples. Other notable systems that aim to assist novice users in data exploration and complex

query formulation are: QueRIE, a query recommendation based on collaborative filter-

ing [83], SnipSuggest, a context-aware SQL autocompletion system [184], SQL-Sugg, a

keyword-based query suggestion system [87], YmalDB, a “you-may-also-like”-style data

exploration system [78], and SnapToQuery, an exploratory query specification assistance

tool [165]. These approaches focus on assisting users in query formulation, but assume

that the users have sufficient knowledge about the schema and the data. VIDA [199],

ShapeSearch [298], and Zenvisage [297] are visual query systems that allow visual data

exploration, but they require the user to be aware of the trend within the output. Some

approaches exploit user interaction to assist users in query formulation and result deliv-

ery [2, 44, 74, 117, 203]. There, the user has to provide relevance feedback on system-

14



generated tuples. However, such highly interactive approaches are not suitable for data

exploration as users often lack knowledge about the system-provided tuples, and, thus, fail

to provide correct feedback reflecting their query intent. Moreover, such systems often re-

quire a large number of user interactions. User-provided examples and interactions appear

in other problem settings, such as learning schema mappings [45, 266, 287]. The query

likelihood model in IR [222] resembles our technique, but does not exploit the similarity

of the input entities.

2.1.7 Machine Learning

Machine learning methods can model QBE settings as classification problems, and re-

lational machine learning targets relational settings in particular [119]. However, while the

provided examples serve as positive labels, QBE settings do not provide explicit negative

examples. Semi-supervised statistical relational learning techniques [334] can learn from

unlabeled and labeled data, but require unbiased sample of negative examples. There is no

straightforward way to obtain such a sample in our problem setting without significant user

effort.

Our problem setting is better handled by one-class classification [182, 221], more

specifically, Positive and Unlabeled (PU) learning [34, 35, 84, 210, 237, 340], which learns

from positive examples and unlabeled data in a semi-supervised setting [55]. Most PU-

learning methods assume denormalized data, but relational PU-leaning methods do exist.

However, all PU-learning methods rely on one or more strong assumptions [35] (e.g., all

unlabeled entities are negative [244], examples are selected completely at random [33, 84],

positive and negative entities are naturally separable [210, 302, 340], similar entities are

likely from the same class [183]). These assumptions create a poor fit for our problem

setting where the example set is very small, it may exhibit user biases, real-time response

is required, and intents may involve complex semantic similarity.
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2.1.8 User Study of PBE Approaches

Drosos et al. [77] present a comparative user study contrasting WREX against manual

programming. The study results indicate that data scientists are more effective and effi-

cient at data wrangling with WREX over manual programming. Mayer et al. [226] presents

comparative study between two user interaction models—program navigation and conver-

sational clarification—that can help resolve the ambiguities in the examples in by-example

interaction models. Lee et al. [200] presents an online user study on how PBE systems help

the users solve complex tasks. They identify seven types of mistakes commonly made by

the users while using PBE systems, and also suggest an actionable feedback mechanism

based on unsuccessful examples. Santolucito et al. [284] studied the impact of PBE on

real-world users over a tool for shell scripting by example. Their study results indicate that

while the users are quicker to solve the task using the PBE tool, they trust the traditional

approach more. However, none of these studies focus on QBE in particular, which is a

PBE system tailored towards data exploration over relational databases. The performance

of a QBE tool is affected by additional factors, such as the subjectivity of the data explo-

ration task and the domain knowledge of the user. Moreover, traditional data access and

exploration methods pose hurdles not only to novices, but to expert users as well. These

factors indicate the need for a new study that targets QBE systems in particular and are the

motivation behind our comparative user studies involving SQUID.

2.1.9 Personalized Document Summarization

Document summarization is a well-studied problem in the area of natural language

processing. Beyond generic document summarization, a special class of problem is intent-

specific document summarization. Our focus is personalized, intent-specific document

summarization. In query-based summarization, users specify their intent in the form of

an unstructured query: typically, a natural language question. Some approaches use hints

that represent user interest. Such hints take different forms, such as user-provided anno-
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tations [238], vision-based eye-tracking [336], user history and collaborative social influ-

ences [273], and so on. Early approaches to sentence selection would score each sentence

based on some criteria and return the top-k sentences as a summary. This would often lead

to the inclusion of redundant sentences. To tackle the issue of redundancy, later work [130]

followed an ad hoc iterative greedy approach, leading to suboptimal summaries. While

some approaches try to iteratively refine the summary quality [11], they are mostly based

on heuristic approaches, e.g., A* search, that still do not guarantee optimality. Lin and

Bilmes [209] provide an integer-programming formulation with constraints and objectives

involving general sentence score, diversity, and summary length, but with no connection to

the user-provided examples. Also, because of the combinatorially large number of possible

summaries, the formulation in [209] cannot generally scale to large dataset sizes.

2.1.10 Dataset for Subjective Document Summarization

Several datasets exist for generic summarization tasks, including the CNN/Daily Mail

dataset [242] which contains 300,000 news article-summary pairs, Webis-TLDR-17, which

contains three million document-summary pairs extracted from Reddit forums [321], Multi-

News dataset, which is a multi-document summarization dataset containing over 50,000

articles-summary pairs [85], and the Gigaword [280] and X-Sum [243] datasets, both of

which contain single-sentence summaries of news articles.

ScisummNet [338] is a manually annotated corpus for scientific papers on computa-

tional linguistics to generate summaries that include the articles’ impacts on the research

community. TalkSumm [202] is for scientific paper summarization based on conference

talks. However, it requires additional information (corresponding video of the paper pre-

sentation) and does not consider personalization, where different audience might want dif-

ferent summaries of the same paper. In general, none of the above datasets are suitable for

the task of subjective summarization, which is our focus.
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A task close to ours is query or topic-based extractive summarization. Suitable datasets

include DUC 2004, DUC 2005, and DUC 2006, which contain query-based multi-document

summaries [82]. Webis-Snippet-20 is another dataset of 10 million web pages together with

their query-based, abstractive snippets [57]. In these datasets, each document (or set of

documents) has exactly one associated summary that corresponds to a single query. In con-

trast, SUBSUME contains multiple summaries of each document corresponding to different

intents. Furthermore, each document, intent pair is summarized by multiple individuals.

Frermann et al. [108], in the context of “aspect-based” summarization, provide a dataset

having multiple topic-focused summaries for each document. The dataset is synthetic,

however, and does not involve human annotators. To the best of our knowledge, SUBSUME

is the first human-generated dataset for subjective, extractive document summarization,

where interpretation of intents vary across individuals.

2.2 Data Understanding: Conformance Constraints
We first discuss existing data profiling primitives and why they fall short in model-

ing arithmetic relationships involving numerical data attributes, which we use to solve the

problem of trusted machine learning. We proceed to discuss other approaches that also

target the problem of trusted machine learning and few other related work that address

similar problems. We also discuss prior work that address the similar application areas of

conformance constraints that we consider.

2.2.1 Data Profiling

There is extensive literature on data-profiling primitives [1] that model relationships

among data attributes, such as unique column combinations [136], functional dependen-

cies (FD) [251, 349] and their variants (metric [187], conditional [90], soft [155], ap-

proximate [150, 190], relaxed [53], etc.), differential dependencies [299], order dependen-

cies [197, 305], inclusion dependencies [223, 252], denial constraints [42, 61, 215, 258],
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and statistical constraints [337]. However, none of them focus on learning approximate

arithmetic relationships that involve multiple numerical attributes in a noisy setting, which

is the focus of our work. Soft FDs [155] model correlation and generalize traditional

FDs by allowing uncertainty, but are limited in modeling relationships between only a

pair of attributes. Metric FDs [187] allow small variations in the data, but the existing

work focuses on verification only and not discovery of metric FDs. Some variants of

FDs [53, 150, 187, 190] consider noisy setting, but they require the allowable noise pa-

rameters to be explicitly specified by the user. However, determining the right settings

for these parameters is nontrivial. Most existing approaches treat constraint violation as

Boolean, and do not measure the degree of violation. In contrast, we do not require any ex-

plicit noise parameter and provide a way to quantify the degree of violation of conformance

constraints.

2.2.2 Trusted AI

The issue of trust, resilience, and interpretability of artificial intelligence (AI) systems

has been a theme of increasing interest recently [162, 286, 319], particularly for high-stake

and safety-critical data-driven AI systems [311, 320]. A standard way to decide whether

to trust a classifier or not, is to use the classifier-produced confidence score. However,

as a prior work [164] argues, this is not always effective since the classifier’s confidence

scores are not well-calibrated. Moreover, unlike classifiers, regressors lack a natural way to

produce such confidence scores. While some recent techniques [71, 138, 164, 289] aim at

validating the inferences made by machine-learned models on unseen tuples, they usually

require knowledge of the inference task, access to the model, and/or expected cases of data

shift, which we do not. Furthermore, they usually require costly hyper-parameter tuning

and do not generate closed-form data profiles like conformance constraints. To evaluate

model performance, regression diagnostics check if the assumptions made by the model
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during training are still valid for the serving data. However, they require knowledge of the

ground-truths for the serving data, which is often unavailable.

2.2.3 Data Drift

Prior work on data drift, change detection, and covariate shift [7, 50, 66, 68, 76, 86,

143, 146, 153, 180, 185, 292, 300] relies on modeling data distribution. However, data

distribution does not capture constraints, which is the primary focus of our work. Instead

of detecting drift globally, only a handful of work model local concept-drift [314] or drift

for imbalanced data [323]. Few data-drift detection mechanisms rely on availability of

classification accuracy [39, 111, 114, 281] or classification “blindspots” [293]. Some of

these work focus on adapting change in data, i.e., learning in an environment where change

in data is expected [39, 115, 248, 303, 341]. Such adaptive techniques are useful to obtain

better performance for specific tasks; however, their goal is orthogonal to ours.

2.2.4 Data Cleaning

Integrity constraints and functional dependencies have long been used for error detec-

tion and data cleaning [43, 88, 89]. Holistic data cleaning [62] provides a unified framework

to allow different types of user-provided constraints for data cleaning. Instead of relying

on user-provided rules, a practical idea is to automatically discover them from clean data.

ANMAT [264] exploits automatically discovered pattern functional dependencies for error

detection, but it is limited to text attributes. In summary, none of the existing efforts in

data cleaning consider automatically generated constraints involving linear arithmetic ex-

pressions over numerical attributes, which is the primary focus of conformance-constraint-

driven data cleaning.

2.2.5 Explaining Outliers

Our explanation tool EXTUNE is similar to outlier-detection approaches [188] that de-

fine outliers as the ones that deviate from a generating mechanism such as local correla-
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tions. Pattern-based outlier detection mechanisms [264] exploit patterns, similar to ours, to

detect outliers, but they do not explain outliers. Scorpion [332] explains outliers through

common explanation, but does not consider relationships among attributes. In general, no

prior work on explaining outliers [233, 234, 332] addresses the question: “which attributes

or attribute relationships are responsible for non-conformance?” Data drift and covariate

shift [268] detection has connection to non-conformance detection. However, their tech-

niques are based on multivariate distribution modeling, without emphasizing low-variance

dimensions, and provide poor interpretability.

2.3 Explanation Frameworks for Debugging
We now provide an overview of prior art related to our explanation frameworks to assist

in debugging various components of data systems.

2.3.1 Causal Inference

Causal inference has been long applied for root-cause analysis of program failures [18,

56, 128]. Attariyan et al. [16, 17] observe causality within application components through

runtime control and data flow; but only report a list of root causes ordered by the likelihood

of being faulty, without providing further causal connection between root causes and per-

formance anomalies. Beyond statistical association (e.g., correlation) between root cause

and failure, few techniques [19, 20, 105, 295] apply statistical causal inference on obser-

vational data towards software fault localization. However, observational data collected

from program execution logs is often limited in capturing certain scenarios, and hence, ob-

servational study is ill-equipped to identify the intermediate explanation predicates. This

is because observational data is not generated by randomized controlled experiments, and

therefore, may not satisfy conditional exchangeability (data can be treated as if they came

from a randomized experiment [161]) and positivity (all possible combinations of values

for the variables are observed in the data), which are two key requirements for applying
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causal inference on observational data [295]. While observational studies are extremely

useful in many settings, AID’s problem setting permits interventional studies, which offer

increased reliability and accuracy.

Causal inference techniques are also used software testing [107, 121, 144, 169, 343].

However, they use a white-box strategy or are application-specific. Causal relational learn-

ing [282] infers causal relationships in relational data, but it does not seek mismatches be-

tween the data and the systems. Our work DATAEXPOSER shares similarity with BugEx [278],

which generates test cases to isolate root causes. However, it assumes complete knowledge

of the program and data-flow paths.

2.3.2 Explanation-centric Approaches

Explanation-centric approaches are relevant to AID as they also aim at generating in-

formative, yet minimal, explanations of certain incidents, such as data errors [325], query

results [24, 60], and binary outcomes [118]. Some work find causes of errors in data gener-

ation processes [325], while others discover relationships among attributes [24, 118], and

across datasets [60]. These, however, do not focus on interventions. Viska [123] allows the

users to perform intervention on system parameters to understand the underlying causes for

performance differences across different systems. None of these systems are applicable for

finding causally connected paths that explain intermittent failures due to concurrency bugs.

ExceLint [29] exploits the spatial structure of spreadsheets to look for erroneous formulas.

Unlikely interventional efforts, these approaches operate on observational data, and do not

generate additional test cases.

Machine learning interpreters [276, 277] perturb testing data to learn a surrogate for

models. Their goal is not to find mismatch between data and models. Debugging methods

for ML pipelines are similar to data explanation [48, 51], where training data may cause

model’s underperformance. Varma et al. [318] and Kulesza et al. [192] discuss principled

ways to find reasons of malfunctions. Wu et al. [333] allow users to complain about outputs
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of SQL queries, and present data points whose removal resolves the complaints. Schelter

et al. [289] validate when a model fails on certain datasets, but assume knowledge of the

mechanism that corrupts the data. We aim to find discriminative predicates (profiles) among

program executions (datasets) without any such knowledge.

2.3.3 Statistical Debugging

Statistical debugging approaches [59, 167, 179, 179, 205, 212, 310, 350] employ statis-

tical diagnosis to rank program predicates based on their likelihood of being the root causes

of program failures. However, all statistical debugging approaches suffer from the issue of

not separating correlated predicates from the causal ones, and fail to provide contextual

information regarding how the root causes lead to program failures.

2.3.4 Interventional Debugging

Despite using interventional approach to blame runtime conditions of a program for

causing failure, AID [96] is limited to software bugs and does not intervene on datasets.

BugDoc [216] finds parameter settings in a black-box pipeline as root causes of pipeline

failure; but it only reports whether a dataset is a root cause and does not explain why a

dataset causes the failure. CADET [158] uses causal inference to derive root causes of non-

functional faults for hardware platforms focused on performance issues. Capuchin [283]

casts fairness in machine learning as a database repair problem and adds or removes rows

in the training data to simulate a fair world; but it does not aim to find cause of unfairness.

2.3.5 Data Debugging

Porting concepts of debugging from software to data has gained attention in data man-

agement community [47, 240]. Dagger [274, 275] provides data debugging primitives for

white-box interactions with data-driven pipelines. CheckCell [30] ranks data cells that un-

usually affect output of a given target. However, it is not meant for large datasets where

single cells are unlikely to causes malfunction. Moreover, CheckCell cannot expose combi-
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nation of root causes. DATAEXPOSER is general-purpose, application-agnostic, and inter-

ventional, providing causally verified issues that cause mismatch between data and system.

2.3.6 Group Testing

Group testing [5, 21, 25, 79, 151, 178, 204] has been applied for fault diagnosis in prior

literature [351]. Specifically, adaptive group testing is related to both AID and DATAEX-

POSER’s intervention algorithms. However, none of the existing work considers the sce-

nario where a group test might reveal additional information and thus offers an inefficient

solution for causal path discovery.

2.3.7 Extracting Predicates

To encode runtime events, AID uses predicates that are extracted from execution traces

of the application. Ball et al. [26] provide algorithms for efficiently tracing execution with

minimal instrumentation. While the authors had a different goal (i.e., path profiling) than

ours, the traces can be used to extract AID predicates.

2.3.8 Fault Injection

Fault injection techniques [12, 134, 176, 224] intervene application runtime behavior

with the goal to test if an application can handle the injected faults. In fault injection

techniques, faults to be injected are chosen based on whether they can occur in practice.

In contrast, AID intervenes with the goal of verifying (presence or absence of) causal

relationship among runtime predicates, and faults are chosen based on if they can alter

selected predicates.

2.3.9 Control-flow Graph

Control flow graph-based techniques [58, 166] aim at identifying bug signature for se-

quential programs using discriminative subgraphs within the program’s control flow graph;
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or generating faulty control flow paths that link many bug predictors. But these approaches

do not consider causal connection among these bug predictors and program failure.

2.3.10 Differential Slicing

Differential slicing [170] aims towards discovering causal path of execution differences

but requires complete program execution trace generated by execution indexing [335]. Dual

slicing [327] is another program slicing-based technique to discover statement level causal

paths for concurrent program failures. However, this approach does not consider compound

predicates that capture certain runtime conditions observed in concurrent programs. More-

over, program slicing-based approaches cannot deal with a set of executions, instead they

only consider two executions—one successful and one failed.

We now proceed to present the work accomplished in this thesis that build on and enrich

the literature.
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PART I: ENHANCING USABILITY:
EXAMPLE-DRIVEN INTENT

DISCOVERY



CHAPTER 3

QUERYING RELATIONAL DATABASES BY EXAMPLE:
SEMANTIC-SIMILARITY-AWARE QUERY INTENT DISCOVERY

(SQUID)

Like many computational systems, traditional database technology was not designed

with the group of nonexpert users in mind, and, hence, poses hurdles to them. Tradi-

tional query interfaces allow data retrieval through well-structured queries, and to write

such queries, one needs expertise in the query language (typically SQL) and knowledge

of the potentially complex database schema. Unfortunately, nonexpert users typically lack

both. Programming by example (PBE) has been explored as a method to bridge the us-

ability gap of computational systems that typically require precise programs from users via

example-based interactions. Under the PBE paradigm, instead of writing a precise program

to specify their intent, users only need to provide a few examples of the result (i.e., program

output) they desire [65, 126, 206, 285].

PBE has also been explored in the context of retrieving and exploring relational data,

which led to the development of query by example (QBE) systems [72, 260, 294]. QBE

offers an alternative data retrieval mechanism, where users specify their intent by providing

example tuples for their query output [239]. Unfortunately, traditional QBE systems [72,

260, 294] for relational databases make a strong and oversimplified assumption in modeling

user intent: they implicitly treat the structural similarity and data content of the example

tuples as the only factors specifying query intent. As a result, they consider all queries

that contain the provided example tuples in their result set as equally likely to represent

the desired intent. This ignores the richer context in the data that can help identify the

intended query more accurately. While more nuanced QBE systems exist, they typically
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academics

id name
100 Thomas Cormen
101 Dan Suciu
102 Jiawei Han
103 Sam Madden
104 James Kurose
105 Joseph Hellerstein

research

aid interest
100 algorithms
101 data management
102 data mining
103 data management
103 distributed systems
104 computer networks
105 data management
105 distributed systems

Figure 3.1: Excerpt of two relations of the CS Academics database. Dan Suciu and
Sam Madden (in bold), both have research interests in data management.

place additional requirements or significant restrictions over the supported class of queries

(see Appendix A.1).

Example 3.1. In Figure 3.1, the relations academics and research store information

about CS researchers and their research interests. Given the user-provided set of examples

{Dan Suciu, Sam Madden}, a human can posit that the user is likely looking for

researchers in the area of data management. However, a QBE system that looks for

queries only based on the structural similarity of the examples produces Q1 to capture the

query intent, which is too general:

Q1: SELECT name FROM academics

In fact, the QBE system will generate the same generic query Q1 for any set of names

from the relation academics. Even though the intended semantic context is present in

the data (by associating academics with research interest information using the relation

research), existing QBE systems fail to capture it. A more specific query that better

represents the semantic similarity among the example tuples is Q2:

Q2: SELECT name FROM academics, research

WHERE research.aid = academics.id AND

research.interest = ‘data management’
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Example 3.1 shows how reasoning about the semantic similarity of the example tu-

ples can guide the discovery of the correct query structure (join of the academics and

research tables), as well as the discovery of the likely intent (research interest in data

management).

We can often capture semantic similarity through direct attributes of the example tuples.

These are attributes associated with a tuple within the same relation, or through simple key-

foreign key joins (such as research interest in Example 3.1). Direct attributes capture intent

that is explicit, precisely specified by the particular attribute values. However, sometimes

query intent is more vague, and is not expressible by explicit semantic similarity alone. In

such cases, the semantic similarity of the example tuples is implicit, which can be captured

through deeper associations with other entities in the data (e.g., genre and number of movies

an actor appears in).

Example 3.2. The IMDb dataset contains a wealth of information related to the film and

entertainment industry. We query the IMDb dataset (Figure 3.2) with a traditional QBE

system (e.g., [294]), using two different sets of examples:

ET1 = {Arnold Schwarzenegger, Sylvester Stallone, Dwayne Johnson}

ET2 = {Eddie Murphy, Jim Carrey, Robin Williams}

ET1 and ET2 contain the names of three actors from two public lists of “physically strong”

actors [259] and “funny” actors [110], respectively. While ET1 and ET2 represent dif-

ferent query intents (“strong” actors and “funny” actors, respectively), a standard QBE

system produces the same generic query for both:

Q3: SELECT person.name FROM person

Explicit semantic similarity cannot capture these different intents, as there is no attribute

that explicitly characterizes an actor as “strong” or “funny”. Nevertheless, the database

encodes these associations implicitly, in the number and genre of movies an actor appears

in (“strong” actors frequently appear in action movies, and “funny” actors in comedies).
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Figure 3.2: Partial schema of the IMDb database. The schema contains two entity re-
lations: movie and person; and a semantic property relation: genre. The relations
castinfo and movietogenre associate entities and semantic properties.

Standard QBE systems typically produce queries that are too general, and, thus, fail to

capture nuanced query intents, such as the ones in Examples 3.1 and 3.2. Some prior ap-

proaches attempt to refine the queries based on additional external information, such as ex-

ternal ontologies [207], provenance information of the example tuples [72], and user feed-

back on multiple (typically a large number of) system-generated examples [44, 74, 203].

Other work relies on a closed-world assumption—where a tuple not specified as an exam-

ple output is assumed to be excluded from the query result—to produce more expressive

queries [203, 322, 346], and, thus, requires complete examples of input databases and

output results. Providing such external information is typically complex and tedious for

nonexpert users.

In contrast with prior approaches, in this thesis, we propose a method and present an

end-to-end system for discovering query intent effectively and efficiently, in an open-world

setting, without the need for any additional external information beyond the initial set of

example tuples. While Figure A.1 provides a summary exposition of prior work, and con-

trasts with our contributions. SQUID, our semantic-similarity-aware query intent discovery

framework, relies on two key insights: (1) It exploits the information and associations al-

ready present in the data to derive the explicit and implicit similarities among the provided

examples. (2) It identifies the significant semantic similarities among them using abductive

reasoning, a logical inference mechanism that aims to derive a query as the simplest and

most likely explanation of the observation (example tuples). We proceed to explain how

SQUID uses these insights to handle the challenging scenario of Example 3.2 next.
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Example 3.3. We query the IMDb dataset with SQUID, using the example tuples of ET2

(Example 3.2). SQUID discovers the following semantic similarities among the examples:

(1) all are Male, (2) all are American, and (3) all appeared in more than 40 Comedy

movies. Out of these properties, Male and American are very common in the IMDb

database. In contrast, a very small fraction of persons in the dataset are associated with

such a high number of Comedy movies; this means that it is unlikely for this similarity

to be coincidental, as opposed to the other two. Based on abductive reasoning, SQUID

selects the third semantic similarity as the best explanation of the observed example tuples,

and produces the query:

Q4: SELECT person.name

FROM person, castinfo, movietogenre, genre

WHERE person.id = castinfo.person_id AND

castinfo.movie_id = movietogenre.movie_id AND

movietogenre.genre_id = genre.id AND

genre.name = ‘Comedy’

GROUP BY person.id

HAVING count(*) >= 40

We make the following contributions:

• We design SQUID: an end-to-end system that automatically formulates select-project-

join queries with optional group-by aggregation and intersection operators (SPJAI)

based on few user-provided example tuples (Section 3.1). SQUID does not require

the users to have any knowledge of the database schema or the query language. Un-

like existing approaches, SQUID does not require any additional information from

the user, beyond the example tuples.

• SQUID infers semantic similarities of the examples and models query intent using a

collection of basic and derived semantic property filters (Section 3.2). While some
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prior work explored the use of semantic similarity in knowledge graphs [160, 232,

347], they do not directly apply to the relational domain, as they do not model im-

plicit semantic similarities derived from aggregating properties of affiliated entities

(e.g., number of comedy movies an actor appears in).

• We express the problem of query intent discovery using a probabilistic abduction

model (3.3). This model allows SQUID to identify the semantic property filters that

represent the most likely intent, given the examples.

• SQUID achieves real-time performance through an offline strategy that precomputes

semantic properties and related statistics to construct an abduction-ready database

(Section 3.4). During the online phase, SQUID consults the abduction-ready database

to derive relevant semantic property filters, based on the provided examples, and ap-

plies abduction to select the optimal set of filters towards query intent discovery

(Section 3.5).

• Our empirical evaluation includes three real-world datasets, 41 queries covering a

broad range of complex intents and structures, and three case studies (Section 3.6).

We further compare SQUID with TALOS [312], a state-of-the-art query reverse en-

gineering system that supports very expressive queries, but in a closed-world setting.

We show that SQUID is more accurate at capturing intents and infers better queries,

often reducing the number of predicates by orders of magnitude. We also empirically

show that SQUID outperforms a semi-supervised positive and unlabeled learning

system [84].

• We present results of two comparative user studies—a controlled experiment study

and an interview study—contrasting SQUID with traditional SQL querying (Sec-

tion 3.7). Our analysis of the controlled experiment study shows that participants

were significantly more effective (achieved more accurate results) and efficient (re-

quired less time and fewer attempts) over a diverse set of data-exploration tasks us-
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ing SQUID compared to SQL. Qualitative feedback from the interviewees confirms

that SQUID eliminates SQL challenges and assists the users in effective data ex-

ploration. While our results validate some findings of prior studies over other PBE

approaches [284], we contribute new empirical insights gained from our studies that

indicate that even a limited level of domain expertise (knowledge of a small subset

of the desired data) can substantially help overcome the lack of technical expertise

(knowledge of SQL and schema) in data exploration.

3.1 SQUID Overview
In this section, we first discuss the challenges in example-driven query intent discovery

and highlight the shortcomings of existing approaches. We then formalize the problem of

query intent discovery using a probabilistic model and describe how SQUID infers the most

likely query intent using abductive reasoning. Finally, we present the system architecture

for SQUID, and provide an overview of our approach.

3.1.1 The Query Intent Discovery Problem

SQUID aims to address three major challenges that hinder existing QBE systems:

Large search space. Identifying the intended query, given a set of examples, can involve

a huge search space of potential candidate queries. Aside from enumerating the candidate

queries, validating them is expensive, as it requires executing the queries over potentially

very large data. Existing approaches limit their search space in three ways: (1) They of-

ten focus on project-join (PJ) queries only. Unfortunately, ignoring selections severely

limits the applicability of these solutions. (2) They assume that the user provides a large

number of examples or interactions, which is often unreasonable in practice. (3) They

make a closed-world assumption, thus needing complete sets of input data and output re-

sults. In contrast, SQUID focuses on a much larger and more expressive class of queries,
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select-project-join queries with optional group-by aggregation and intersection operators

(SPJAI)1, and is effective in the open-world setting with very few examples.

Distinguishing candidate queries. In most cases, a set of example tuples does not uniquely

identify the target query, i.e., there are multiple valid queries that contain the example

tuples in their results. Most existing QBE systems do not distinguish among the valid

queries [294] or only rank them according to the degree of input containment, when the

example tuples are not fully contained by the query output [260]. In contrast, SQUID ex-

ploits the semantic context of the example tuples and ranks the valid queries based on a

probabilistic abduction model of query intent.

Complex intent. A user’s information need is often more complex than what is explicitly

encoded in the database schema (e.g., Example 3.2). Existing QBE solutions focus on the

query structure, and, thus, are ill-equipped to capture nuanced intents. While SQUID still

produces a structured query in the end, its objectives focus on capturing the semantic sim-

ilarity of the examples, both explicit and implicit. SQUID thus draws a contrast between

the traditional query-by-example problem, where the query is assumed to be the hidden

mechanism behind the provided examples, and the query intent discovery problem that we

focus on in this work.

We proceed to formalize the problem of query intent discovery. We use D to denote a

database, and Q(D) to denote the set of tuples in the result of query Q operating on D. We

aim to discover an SPJAI query Q that contains E within its result set and maximizes the

query posterior, i.e., the conditional probability Pr(Q | E).

Definition 3.1 (Query Intent Discovery). For a database D and a user-provided example

tuple set E, the query intent discovery problem is to find an SPJAI query Q such that:

(1) E ™ Q(D), and (2) Q = argmaxq Pr(q | E).

1SQUID considers queries with key-foreign key joins, and conjunctive selection predicates of the form
Èattribute OP constantÍ, where OP œ {=, Ø, Æ}.
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3.1.2 Abductive Reasoning

SQUID solves the query intent discovery problem (Definition 3.1) using abduction.

Abduction or abductive reasoning [15, 37, 174, 230] refers to the method of inference that

finds the best explanation (query intent) of an often incomplete observation (example tu-

ples). Unlike deduction, in abduction, the premises do not guarantee the conclusion. A

deductive approach would produce all possible queries that contain the example tuples in

their results, guaranteeing that the intended query is one of them. However, the set of

valid queries can be extremely large, growing exponentially with the number of properties

and the size of the data domain. Hence, we model query intent discovery as an abduction

problem and apply abductive inference to discover the most likely query intent. For exam-

ple, given two possible candidate queries, Q and QÕ, we infer Q as the intended query if

Pr(Q | E) > Pr(QÕ
| E).

Example 3.4. In the scenario of Example 3.1, SQUID identifies that the two example

tuples share the semantic context interest = ‘data management’. While Q1 and

Q2 both contain the examples tuples in their result set, the probability that two tuples

drawn randomly from the output of Q1 would display the identified semantic context is

low ((3
7)2

¥ 0.18 in the data excerpt). In contrast, the probability that two tuples drawn

randomly from the output of Q2 would display the same semantic context is high (1.0).

Assuming equal priors for Q1 and Q2, from Bayes’ rule: Pr(Q2 | E) > Pr(Q1 | E).

3.1.3 Solution Sketch

At the core of SQUID is an abduction-ready database, –DB (Figure 3.3). The –DB

serves two purposes: (1) it increases SQUID’s efficiency by storing precomputed associa-

tions and statistics, and (2) it simplifies the query model by reducing the extended family

of SPJAI queries on the original database to equivalent SPJ queries on the –DB.

Example 3.5. The IMDb database has, among others, relations person and genre (Fig-

ure 3.2). SQUID’s –DB stores a derived semantic property that associates the two en-
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Figure 3.3: SQUID’s operation includes an offline module, which constructs an abduction-
ready database (–DB) and precomputes statistics of semantic properties. SQUID’s query
intent discovery module interacts with the –DB to identify the semantic context of the
user-provided example tuples and abduces the most likely query intent.

tity types in a new relation, persontogenre(person.id, genre.id, count),

which stores the number of movies of each genre each person appeared in. SQUID derives

this relation through joins with castinfo and movietogenre, followed by aggrega-

tion (Figure 3.4). Then, the SPJAI query Q4 (Example 3.3) is equivalent to the simpler SPJ

query Q5 on the –DB:

Q5: SELECT person.name

FROM person, persontogenre, genre

WHERE person.id = persontogenre.person_id AND

persontogenre.genre_id = genre.id AND

genre.name = ‘Comedy’ AND persontogenre.count >= 40

By incorporating aggregations in precomputed, derived relations, SQUID can reduce

SPJAI queries on the original data to SPJ queries on the –DB. SQUID starts by inferring a

PJ query, Qú, on the –DB as a query template; it then augments Qú with selection predi-

cates, driven by the semantic similarity of the examples.

Organization. Section 3.2 formalizes SQUID’s model of query intent as a combination

of the base query Qú and a set of semantic property filters. Then, Section 3.3 analyzes the

probabilistic abduction model that SQUID uses to solve the query intent discovery problem
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(aggregated 
association between 
person and genre)

castinfoperson

Jim Carrey

Ewan McGregor

Lauren Holly

movie

Bruce Almighty

Dumb and Dumber

I Love You Phillip Morris

genre

Comedy

Fantasy

Drama

persontogenre

person genre count

Jim Carrey Comedy 3
Jim Carrey Fantasy 1
Jim Carrey Drama 2
Ewan McGregor Comedy 2
Ewan McGregor Drama 1
Lauren Holly Comedy 1

person

Jim Carrey

Ewan McGregor

Lauren Holly

genre

Comedy

Fantasy

Drama

Figure 3.4: A genre value (e.g., genre=Comedy) is a basic semantic property of a
movie (through the movietogenre relation). A person is associated with movie en-
tities (through the castinfo relation); aggregates of basic semantic properties of movies
are derived semantic properties of person, e.g., the number of comedy movies a person
appeared in. The –DB stores the derived property in the new relation persontogenre.
(For ease of exposition, we depict attributes genre and person instead of genre.id
and person.id.)

(Definition 3.1). After the formal models, we describe the system components of SQUID.

Section 3.4 describes the offline module, which is responsible for making the database

abduction-ready, by precomputing semantic properties and statistics in derived relations.

Section 3.5 describes the query intent discovery module, which abduces the most likely

intent as an SPJ query on the –DB.

3.2 Modeling Query Intent
SQUID’s core task is to infer the proper SPJ query on the –DB. We model an SPJ query

as a pair of a base query and a set of semantic property filters: QÏ=(Qú, Ï). The base query

Qú is a project-join query that captures the structural aspect of the example tuples. SQUID

can handle examples with multiple attributes, but, for ease of exposition, we focus on ex-

ample tuples that contain a single attribute of a single entity (name of person).
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Notation Description

p = ÈA, V, ◊Í Semantic property defined by attribute A, value V , and association
strength ◊

„p or „ Semantic property filter for p
� = {„1, „2, . . . } Set of minimal valid filters
QÏ = (Qú, Ï) SPJ query with semantic property filters Ï ™ � applied on base query

Qú

x = (p, |E|) Semantic context of E for p
X = {x1, x2, . . . } Set of semantic contexts

Figure 3.5: Summary of notations.

In contrast to existing approaches that derive PJ queries from example tuples, the base

query in SQUID does not need to be minimal with respect to the number of joins: while

a base query on a single relation with projection on the appropriate attribute (e.g., Q1 in

Example 3.1) would capture the structure of the examples, the semantic context may rely

on other relations (e.g., research, as in Q2 of Example 3.1). Thus, SQUID considers

any number of joins among –DB relations for the base query, but limits these to key-

foreign-key joins. We discuss a simple method for deriving the base query in Section 3.5.2.

SQUID’s core challenge is to infer Ï, which denotes a set of semantic property filters that

are added as conjunctive selection predicates to Qú. The base query and semantic property

filters for Q2 of Example 3.1 are:

Qú = SELECT name FROM academics, research

WHERE research.aid = academics.id

Ï = { research.interest = ‘data management’}

3.2.1 Semantic Properties and Filters

Semantic properties encode characteristics of an entity. We distinguish semantic prop-

erties into two types. (1) A basic semantic property is affiliated with an entity directly. In

the IMDb schema of Figure 3.2, “gender = Male” is a basic semantic property of a

person. (2) A derived semantic property of an entity is an aggregate over a basic seman-
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Sample database

id name gender age

1 Tom Cruise Male 50
2 Clint Eastwood Male 90
3 Tom Hanks Male 60
4 Julia Roberts Female 50
5 Emma Stone Female 29
6 Julianne Moore Female 60

Example tuples

Column 1

Tom Cruise
Clint Eastwood

Figure 3.6: Sample database (left) with example tuples (right).

tic property of an associated entity. In Example 3.5, the number of movies of a particular

genre that a person appeared in is a derived semantic property for person. We represent

a semantic property p of an entity from a relation R as a triple p = ÈA, V, ◊Í. In this nota-

tion, V denotes a value or a value range for attribute A associated with entities in R.2 The

association strength parameter ◊ quantifies how strongly an entity is associated with the

property. It corresponds to a threshold on derived semantic properties (e.g., the number of

comedies an actor appeared in); it is not defined for basic properties (◊ = ‹).

A semantic property filter „p is a structured language representation of the semantic

property p. In the data of Figure 3.6, the filters „Ègender,Male,‹Í and „Èage,[50,90],‹Í repre-

sent two basic semantic properties on gender and age, respectively. Expressed in re-

lational algebra, filters on basic semantic properties map to standard selection predicates,

e.g., ‡gender=Male(person) and ‡50ÆageÆ90(person). For derived properties, filters spec-

ify conditions on the association across different entities. In Example 3.5, for person

entities, the filter „Ègenre,Comedy,30Í denotes the property of a person being associated with

at least 30 movies with the basic property “genre = Comedy”. In relational algebra,

filters on derived properties map to selection predicates over derived relations in the –DB,

e.g., ‡genre=Comedy·countØ30(persontogenre).

2SQUID can support disjunction for categorical attributes (e.g., “gender = Male” OR “gender
= Female”), so V could be a set of values. However, for ease of exposition we keep our examples limited
to properties without disjunction.
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3.2.2 Filters and Example Tuples

To construct QÏ, SQUID needs to infer the proper set of semantic property filters given

a set of example tuples. Since all example tuples should be in the result of QÏ, Ï cannot

contain filters that the example tuples do not satisfy. Thus, we only consider valid filters

that map to selection predicates that all example tuples satisfy.

Definition 3.2 (Filter validity). Given a database D, an example tuple set E, and a base

query Qú, a filter „ is valid if Q{„}(D) ´ E, where Q{„} = (Qú, {„}).

Figure 3.6 shows a set of example tuples over the relation person. Given the base

query Qú = SELECT name FROM person, the filters „Ègender,Male,‹Í and „Èage,[50,90],‹Í

on relation person are valid, because all of the example entities of Figure 3.6 are Male

and fall in the age range [50, 90].

Lemma 3.1. (Validity of conjunctive filters). The conjunction („1 · „2 · . . . ) of a set of

filters Õ = {„1, „2, . . . } is valid, i.e., QÕ(D) ´ E, if and only if ’„i œ Õ „i is valid.

Relaxing a filter (loosening its conditions) preserves validity. For example, if „Èage,[50,90],‹Í

is valid, then „Èage,[40,120],‹Í is also valid. Among all valid filters, SQUID focuses on mini-

mal valid filters, which have the tightest bounds. Bounds can be derived in other ways, e.g.,

informed by the result cardinality. However, we found the choice of the tightest bounds to

work well in practice.

Definition 3.3 (Filter minimality). A basic semantic property filter „ÈA,V,‹Í is minimal if

it is valid, and ’V Õ
µV „ÈA,V Õ,‹Í is invalid. A derived semantic property filter „ÈA,V,◊Í is

minimal if it is valid, and ’‘ > 0 „ÈA,V,◊+‘Í is invalid.

In the example of Figure 3.6, „Èage,[50,90],‹Í is a minimal filter and „Èage,[40,90],‹Í is not.

3.3 Probabilistic Abduction Model
We now revisit the problem of query intent discovery (Definition 3.1), and recast it

based on our model of query intent (Section 3.2). Specifically, Definition 3.1 aims to dis-
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cover an SPJAI query Q, which is then reduced to an equivalent SPJ query QÏ on the –DB

(as in Example 3.5). SQUID’s task is to find the query QÏ that maximizes the posterior

probability Pr(QÏ
| E), for a given set E of example tuples. In this section, we analyze

the probabilistic model to compute this posterior, and break it down to three components.

3.3.1 Notations and Preliminaries

Semantic context x. Observing a semantic property in a set of 10 examples is more sig-

nificant than observing the same property in a set of 2 examples. We denote this distinction

with the semantic context x = (p, |E|), which encodes the size of the set |E|, where the

semantic property p is observed. We denote with X = {x1, x2, . . . } the set of semantic

contexts exhibited by the set of example tuples E.

Candidate SPJ query Q'. Let � = {„1, „2, . . . } be the set of minimal valid filters, from

hereon simply referred to as filters, where „i encodes the semantic context xi. We omit

ÈA, V, ◊Í in the filter notation when the context in clear. Our goal is to identify the subset

of filters in � that best captures the query intent. A set of filters Ï ™ � defines a candidate

query QÏ = (Qú, Ï), and QÏ(D) ´ E (from Lemma 3.1).

Filter event Â�. A filter „ œ � may or may not appear in a candidate query QÏ. With slight

abuse of notation, we denote the filter’s presence („ œ Ï) with „ and its absence („ ”œ Ï)

with „̄. We use Â„ to represent the occurrence event of „ in QÏ.

Thus: Â„ =

Y
___]

___[

„ if „ œ Ï

„̄ if „ ”œ Ï

3.3.2 Modeling Query Posterior

We first analyze the probabilistic model for a fixed base query Qú and then generalize

the model. We use Prú(a) as a shorthand for Pr(a | Qú). We model the query posterior

Prú(QÏ
| E), using Bayes’ rule:
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Prú(QÏ
| E) = Prú(E | QÏ) · Prú(QÏ)

Prú(E)

By definition, Prú(X | E) = 1; therefore:

Prú(QÏ
| E) = Prú(E, X | QÏ) · Prú(QÏ)

Prú(E) = Prú(E | X , QÏ)Prú(X | QÏ) · Prú(QÏ)
Prú(E)

Since Prú(X | E) = 1 and applying Bayes’ rule on the prior Prú(E), we get:

Prú(QÏ
| E) = Prú(E | X , QÏ)Prú(X | QÏ) · Prú(QÏ)

Prú(E | X ) · Prú(X )

Finally, E is conditionally independent of QÏ given the semantic context X , i.e., Prú(E |

X , QÏ)=Prú(E | X ). Thus:

Prú(QÏ
| E) = Prú(X | QÏ) · Prú(QÏ)

Prú(X ) (3.1)

Equation 3.1 models the query posterior in terms of three components: (1) the semantic

context prior Prú(X ), (2) the query prior Prú(QÏ), and (3) the semantic context posterior

Prú(X | QÏ). We proceed to analyze these components.

3.3.2.1 Semantic Context Prior

The semantic context prior Prú(X ) denotes the probability that any set of of example

tuples of size |E| exhibits the semantic contexts X . This probability is not easy to compute

analytically, as it involves computing a marginal over a potentially infinite set of candidate

queries. In this work, we model the semantic context prior as proportional to the selectivity

Â(�) of � = {„1, „2, . . . }, where „i œ � is a filter that encodes context xi œ X :

Prú(X ) Ã Â(�) (3.2)

Selectivity  (�). Selectivity of filter „ denotes the portion of tuples from the result of

the base query Qú that satisfy „, i.e., Â(„) = |Q{„}(D)|
|Qú(D)| . Similarly, for a set of filters �,
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Â(�) = |Q�(D)|
|Qú(D)| . Intuitively, a selectivity value close to 1 means that the filter is not very

selective and most tuples satisfy the filter; selectivity value close to 0 denotes that the filter

is highly selective and rejects most of the tuples. For example, in Figure 3.6, „Ègender,Male,‹Í

is more selective than „Èage,[50,90],‹Í, with selectivities 1
2 and 5

6 , respectively. Selectivity

captures the rarity of a semantic context: uncommon contexts are present in fewer tuples,

and, thus, appear in the output of fewer queries. Intuitively, a rare context has lower prior

probability of being observed, which supports the assumption of Equation 3.2.

3.3.2.2 Query Prior

The query prior Prú(QÏ) denotes the probability that QÏ is the intended query, prior to

observing the example tuples. We model the query prior as the joint probability of all filter

events Â„, where „ œ �. By further assuming filter independence,3 we reduce the query

prior to a product of probabilities of filter events:

Prú(QÏ) = Prú(
u

„œ�
Â„) = r

„œ� Prú( Â„) (3.3)

The filter event prior Prú( Â„) denotes the prior probability that filter „ is included in (if

Â„ = „), or excluded from (if Â„ = „̄), the intended query. We compute Prú( Â„) for each

filter as follows:

Prú(„) = fl · ”(„) · –(„) · ⁄(„) and Prú(„̄) = 1 ≠ Prú(„)

Here, fl is a base prior parameter, common across all filters, and represents the default value

for the prior. The other factors (”, –, and ⁄) reduce the prior, depending on characteristics

of each filter. We describe these parameters next. (More discussion on the guidelines on

how to choose the parameters are in Section 3.6.7 and Appendix A.4).

3Reasoning about database queries commonly assumes independence across selection predicates, which
filters represent, although it may not hold in general.
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Domain selectivity impact �(�). Intuitively, a filter that covers a large range of values

in an attribute’s domain is unlikely to be part of the intended query. For example, if a user

is interested in actors of a certain age group, that age group is more likely to be narrow

(„Èage,[41,45],‹Í) than broad („Èage,[41,90],‹Í). We penalize broad filters with the parameter

” œ (0, 1]. The value ”(„) is 1 for filters that do not exceed a predefined ratio in the

coverage of their domain, and decreases for filters that exceed this threshold. We use the

notion of domain coverage of a filter „ÈA,V,◊Í to denote the fraction of values of A’s domain

that V covers. For example, for attribute age, suppose that the domain consists of values

in the range [1, 100], then the filter „Èage,[41,90],‹Í has 50% domain coverage and the filter

„Èage,[41,45],‹Í has 5% domain coverage. We use ÷ > 0 to specify a threshold on domain

coverage: any domain coverage lower than ÷ does not reduce the domain selectivity impact

”. Once the coverage exceeds ÷, then ” decreases as domain coverage increases. We use

another parameter “ Ø 0 that states how strongly we want to penalize a filter for having

large domain coverage. The value of “ = 0 implies that we do not penalize at all, i.e., all

filters will have ”(„) = 1. As “ increases, we reduce ” more for larger domain coverage.

Thus: ”(„ÈA,V,◊Í) = 1
max(1, domainCoverage(V )

÷
)
“

Association strength impact ↵(�). Intuitively, a derived filter with low association

strength is unlikely to appear in the intended query, as the filter denotes a weak association

with the relevant entities. For example, „Ègenre,Comedy,1Í is less likely than „Ègenre,Comedy,30Í to

represent a query intent. We use –(„) œ {0, 1} to characterize whether the filter „ should

be considered as significant or not, based on the value of its association strength. For a

derived filter „ÈA,V,◊Í with ◊ as its association strength, if ◊ is lower than a threshold ·–, we

mark the filter „ as insignificant, and set –(„) = 0. For all other filters, including basic

filters, we set –(„) = 1.

Outlier impact �(�). While –(„) characterizes the impact of association strength on a

filter individually, ⁄(„) characterizes its impact in consideration with other derived filters
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Case A
„1 „Ègenre, Comedy, 30Í
„2 „Ègenre, SciFi, 25Í
„3 „Ègenre, Drama, 3Í
„4 „Ègenre, Action, 2Í
„5 „Ègenre, Thriller, 1Í

Case B
„1 „Ègenre, Comedy, 12Í
„2 „Ègenre, SciFi, 10Í
„3 „Ègenre, Drama, 10Í
„4 „Ègenre, Action, 9Í
„5 „Ègenre, Thriller, 9Í

Figure 3.7: Top two filters of Case A are interesting. No filter is interesting in Case B.

over the same attribute. Figure 3.7 demonstrates two cases of derived filters on the same

attribute (genre), corresponding to two different sets of example tuples. In Case A, „1 and

„2 have higher association strengths, and, thus are more significant than the other filters of

the same family. Intuitively, this corresponds to the intent to retrieve actors who appeared

in mostly Comedy and SciFi movies. In contrast, Case B does not have filters that stand

out, as all have similar association strengths: The actors in this example set are not strongly

associated with particular genres, and, thus, intuitively, this family of filters is not relevant

to the query intent.

For a derived filter „ÈA,V,◊Í, we model its outlier impact ⁄(„) œ {0, 1} using the skew-

ness of the distribution of the association strengths (◊ values) within the family of derived

filters that share the same attribute A, but with different values for V and ◊. Our assumption

is that highly skewed, heavy-tailed distributions (Case A) are likely to contain the signifi-

cant (intended) filters as outliers („1 and „2). We set ⁄(„) = 1 for a derived filter „ whose

association strength is an “outlier” in the association strength distribution of all filters of the

same family. All other derived filters that have inlier ◊ values get ⁄(„) = 0. For example,

the values 30 and 25 are outliers among the values {30, 25, 3, 2, 1}. Therefore, in Case A,

we consider the two filters „1 and „2 as significant (i.e., ⁄(„1) = ⁄(„2) = 1) and the rest

(„3, „4, and „5) as insignificant (i.e., ⁄(„3) = ⁄(„4) = ⁄(„5) = 0). For basic filters, we set

⁄(„) = 1, as no two basic filters share the same attribute. To compute the outlier impact of

a filter „ÈA,V,◊Í, we use the skewness of the association strength distribution �A that consists
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of the ◊ values for all derived filters involving attribute A. For a skewed distribution, we

consider a value to be an outlier if is more than k standard deviation larger than the mean.

3.3.2.3 Semantic Context Posterior

The semantic context posterior Prú(X | QÏ) is the probability that a set of example

tuples of size |E|, sampled from the output of a particular query QÏ, exhibits the set of

semantic contexts X :

Prú(X | QÏ) = Prú(x1, x2, ..., xn | QÏ)

Two semantic contexts xi, xj œ X are conditionally independent, given QÏ. Therefore:

Prú(X | QÏ) = rn
i=1 Prú(xi | QÏ) = rn

i=1 Prú(xi | Â„1, Â„2, . . . )

Recall that „i encodes the semantic context xi (Section 3.3.1). We assume that xi is condi-

tionally independent of any Â„j, i ”= j, given Â„i (this always holds for Â„i = „i):

Prú(X | QÏ) = rn
i=1 Prú(xi | Â„i) (3.4)

For each xi, we compute Prú(xi | Â„i) based on the state of the filter event ( Â„i = „i or

Â„i = „̄i):

Pr⇤(xi | �i): By definition, all tuples in Q{„i}(D) exhibit the property of xi. Hence,

Prú(xi | „i) = 1.

Pr⇤(xi | �̄i): This is the probability that a set of |E| tuples drawn uniformly at random

from Qú(D) („i is not applied to the base query) exhibits the context xi. The portion of

tuples in Qú(D) that exhibit the property of xi is the selectivity Â(„i). Therefore, Prú(xi |

„̄i) ¥ Â(„i)|E|.
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Using Equations (3.1)–(3.4), we derive the final form of the query posterior (where K

is a normalization constant):

Prú(QÏ
| E) = K

Â(�)
Ÿ

„iœ�

1
Prú( Â„i) · Prú(xi | Â„i)

2

= K

Â(�)
Ÿ

„iœÏ

3
Prú(„i) · Prú(xi | „i)

4 Ÿ

„i ”œÏ

3
Prú(„̄i) · Prú(xi | „̄i)

4
(3.5)

Generalization. So far, our analysis focused on a fixed base query. Given an SPJ query

QÏ, the underlying base query Qú is deterministic, i.e., Pr(Qú
| QÏ) = 1. Hence:

Pr(QÏ
| E) = Pr(QÏ, Qú

| E)

= Pr(QÏ
| Qú, E) · Pr(Qú

| E)

= Prú(QÏ
| E) · Pr(Qú

| E)

We assume Pr(Qú
| E) to be equal for all valid base queries, where Qú(D) ´ E. Then we

use Prú(QÏ
| E) to find the query Q that maximizes the query posterior Pr(Q | E).

3.4 Offline Abduction Preparation
In this section, we discuss system considerations to perform query intent discovery ef-

ficiently. SQUID employs an offline module that performs several precomputation steps

to make the database abduction-ready. The abduction-ready database (–DB) augments the

original database with derived relations that store associations across entities and precom-

putes semantic property statistics. Deriving this information is relatively straightforward;

the contributions of this section lie in the design of the –DB, the information it maintains,

and its role in supporting efficient query intent discovery. We describe the three major

functions of the –DB.
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3.4.1 Entity Lookup

SQUID’s goal is to discover query intent based on the user-provided examples. To do

that, it first needs to determine which entities in the database correspond to the examples.

SQUID uses a global inverted column index [294], built over all text attributes, to perform

fast lookups, matching the provided examples to database entities.

3.4.2 Semantic Property Discovery

To reason about intent, SQUID first needs to determine what makes the examples

similar. SQUID looks for semantic properties within entity relations (e.g., gender ap-

pears in table person), other relations (e.g., genre appears in a separate table joining

with movie through a key-foreign-key constraint), and other entities, (e.g., the number of

movies of a particular genre that a person has appeared in). The –DB precomputes

and stores such derived relations (e.g., persontogenre), as these frequently involve

several joins and aggregations and performing them at runtime is prohibitive. E.g., SQUID

computes the persontogenre relation (Figure 3.4), and stores it in the –DB, using Q6:

Q6: CREATE TABLE persontogenre as

(SELECT person_id, genre_id, count(*) AS count

FROM castinfo, movietogenre

WHERE castinfo.movie_id = movietogenre.movie_id

GROUP BY person_id, genre_id)

For the –DB construction, SQUID only relies on very basic information to understand

the data organization: (1) the database schema, including the specification of primary- and

foreign-key constraints, and (2) additional meta-data, which can be provided once by a

database administrator, that specify which tables describe entities (e.g., person, movie),

and which tables and attributes describe direct properties of entities (e.g., genre, age).

SQUID then automatically discovers fact tables, which associate entities and properties,

by exploiting the key-foreign-key relationships. SQUID also automatically discovers de-
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rived properties up to a certain predefined depth, using paths in the schema graph that

connect entities to properties. Since the number of possible values for semantic proper-

ties is typically very small and remains constant as entities grow, the –DB grows linearly

with the data size. In our implementation, we restrict the derived property discovery to the

depth of two fact tables (e.g., SQUID derives persontogenre through castinfo and

movietogenre). SQUID can support deeper associations, but those are rare in practice.

SQUID assumes that different entity types appear in different relations, which is the case in

many commonly used schema types, such as star, galaxy, and fact-constellation schemas.

SQUID can perform inference in a denormalized setting, but would not be able to produce

and reason about derived properties in those cases.

3.4.3 Smart Selectivity Computation

For basic filters involving categorical values, SQUID stores the selectivity for each

value. However, for numeric ranges, the number of possible filters can grow quadratically

with the number of possible values. SQUID avoids wasted computation and space by only

precomputing selectivities Â(„ÈA,[minVA
,v],‹Í) for all v œ VA, where VA is the set of values

of attribute A in the corresponding relation, and minVA
is the minimum value in VA. The

–DB can derive the selectivity of a filter with any value range as:

Â(„ÈA,(l,h],‹Í) = Â(„ÈA,[minVA
,h],‹Í) ≠ Â(„ÈA,[minVA

,l],‹Í)

In case of derived semantic properties, SQUID precomputes selectivities Â(„ÈA,v,◊Í) for all

v œ VA, ◊ œ �A,v, where �A,v is the set of values of association strength for the property

“A = v”.

3.5 Query Intent Discovery
During normal operation, SQUID receives example tuples from a user, consults the

–DB, and infers the most likely query intent (Definition 3.1). In this section, we describe
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how SQUID resolves ambiguity in the provided examples, how it derives their semantic

context, and how it finally abduces the intended query.

3.5.1 Entity and Context Discovery

SQUID’s probabilistic abduction model (Section 3.3) relies on the set of semantic con-

texts X and determines which of these contexts are intended vs coincidental, by the in-

clusion or exclusion of the corresponding filters in the inferred query. To derive the set of

semantic contexts from the examples, SQUID first needs to identify the entities in the –DB

that correspond to the provided examples.

3.5.1.1 Entity Disambiguation

User-provided examples are not complete tuples, but often single-column values that

correspond to an entity. As a result, there may be ambiguity that SQUID needs to resolve.

For example, suppose the user provides the examples: {Titanic, Pulp Fiction,

The Matrix}. SQUID consults the precomputed inverted column index to identify the

attributes (movie.title) that contain all the example values, and classifies the corre-

sponding entity (movie) as a potential match. However, while the dataset contains unique

entries for Pulp Fiction (1994) and The Matrix (1999), there are 4 possible

mappings for Titanic: (1) a 1915 Italian film, (2) a 1943 German film, (3) a 1953 film

by Jean Negulesco, and (4) the 1997 blockbuster film by James Cameron.

The key insight for resolving such ambiguities is that the provided examples are more

likely to be alike. SQUID selects the entity mappings that maximize the semantic sim-

ilarities across the examples. Therefore, based on the year and country information, it

determines that Titanic corresponds to the 1997 film, as it is most similar to the other

two (unambiguous) entities. In case of derived properties, e.g., nationality of actors appear-

ing in a film, SQUID aims to increase the association strength (e.g., the number of such

actors). Since the number of examples are typically small, SQUID can determine the right

mappings by considering all combinations.
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3.5.1.2 Semantic Context Discovery

Once SQUID identifies the right entities, it then explores all the semantic properties

stored in the –DB that match these entities (e.g., year, genre, etc.). Since the –DB pre-

computes and stores the derived properties, SQUID can produce all the relevant properties

using queries with at most one join. For each property, SQUID produces semantic contexts

as follows:

Basic property on categorical attribute. If all examples in E contain value v for the

property of attribute A, SQUID produces the semantic context (ÈA, v, ‹Í, |E|). For ex-

ample, a user provides three movies: Dunkirk, Logan, and Taken. The attribute

genre corresponds to a basic property for movies, and all these movies share the val-

ues, Action and Thriller, for this property. SQUID generates two semantic contexts:

(Ègenre, Action, ‹Í, 3) and (Ègenre, Thriller, ‹Í, 3).

Basic property on numerical attribute. If vmin and vmax are the minimum and maxi-

mum values, respectively, that the examples in E demonstrate for the property of attribute

A, SQUID creates a semantic context on the range [vmin, vmax]: (ÈA, [vmin, vmax], ‹Í, |E|).

For example, if E contains three persons with ages 45, 50, and 52, SQUID will produce

the context (Èage, [45, 52], ‹Í, 3).

Derived property. If all examples in E contain value v for the derived property of at-

tribute A, SQUID produces the context (ÈA, v, ◊minÍ, |E|), where ◊min is the minimum as-

sociation strength for the value v among all examples. For example, if E contains two per-

sons who appeared in 3 and 5 Comedymovies, SQUID will produce (Ègenre, Comedy, 3Í, 2).

3.5.2 Query Abduction

SQUID starts abduction by constructing a base query that captures the structure of the

example tuples. Once it identifies the entity and attribute that matches the examples (e.g.,

person.name), it forms the minimal PJ query (e.g., SELECT name FROM person).
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Algorithm 1: QueryAbduction (E, Qú, �)
Input: set of entities E, base query Qú, set of minimal valid filters �
Output: QÏ such that Prú(QÏ

| E) is maximized
1 X = {x1, x2, ...} // semantic contexts in E
2 Ï = ÿ

3 foreach „i œ � do
4 include„i

= Prú(„i)Prú(xi | „i) // from Equation (3.5)
5 exclude„i

= Prú(„̄i)Prú(xi | „̄i) // from Equation (3.5)
6 if include„i

> exclude„i
then

7 Ï = Ï fi {„i}

8 return QÏ

It then iterates through the discovered semantic contexts and appends the corresponding

relations to the FROM clause and the appropriate key-foreign-key join conditions in the

WHERE clause. Since the –DB precomputes and stores the derived relations, each semantic

context will add at most one relation to the query.

The number of candidate base queries is typically very small. For each base query Qú,

SQUID abduces the best set of filters Ï ™ � to construct SPJ query QÏ, by augmenting the

WHERE clause of Qú with the corresponding selection predicates. SQUID also removes

from QÏ any joins that are not relevant to the selected filters Ï. While the number of

candidate SPJ queries grows exponentially in the number of minimum valid filters (2|�|),

we prove that we can make decisions on including or excluding each filter independently.

Algorithm 1 iterates over the set of minimal valid filters � and decides to include a filter

only if its addition to the query increases the query posterior (lines 6-7). Our abduction

algorithm has O(|�|) time complexity and is guaranteed to produce the query QÏ that

maximizes the query posterior.

Theorem 3.1. Given a base query Qú, a set of examples E, and a set of minimal valid filters

�, Algorithm 1 returns the query QÏ, where Ï ™ �, such that Prú(QÏ
| E) is maximized.

(Proof is in Appendix A.2)
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3.6 Experiments
We now present an extensive experimental evaluation of SQUID over three real-world

datasets, with a total of 41 benchmark queries of varying complexities. Our evaluation

shows that SQUID is scalable and effective, even with a small number of example tuples.

Our evaluation extends to qualitative case studies over real-world, user-generated examples,

which demonstrate that SQUID succeeds in inferring the query intent of real-world users.

We further demonstrate that when used as a query reverse engineering system in a closed-

world setting, SQUID outperforms the state of the art. Finally, we show that SQUID is

superior to semi-supervised PU-learning in terms of both efficiency and effectiveness.

3.6.1 Experimental Setup

We implemented SQUID in Java and all experiments were run on a 12x2.66 GHz ma-

chine with 16GB RAM running CentOS 6.9 with PostgreSQL 9.6.6.

3.6.1.1 Datasets and Benchmark Queries

Our evaluation includes three real-world datasets and a total of 41 benchmark queries,

designed to cover a broad range of intents and query structures. selection predicates (S)—

and the result set cardinality. We summarize the datasets and benchmark queries below.

IMDb (633 MB): The IMDb dataset [156] is a well-known source of movie and enter-

tainment facts and contains information regarding over 10 million personalities, along with

their demographic information; and about 6 million movies and TV series, along with their

genre, language, country, certificate, production company, cast and crew, etc. We stored the

IMDb dataset using a schema that contains 15 relations. We designed a set of 16 bench-

mark queries (Figure A.2) ranging the number of joins (1 to 8 relations), the number of

selection predicates (0 to 7), and the result cardinality (12 to 2512 tuples).

DBLP (22 MB): We used a subset of the DBLP data [6], with 14 relations, and 16 years

(2000–2015) of top 81 conference publications. We designed 5 queries (Figure A.3) rang-
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ing the number of joins (3 to 8 relations), the number of selection predicates (2 to 4), and

the result cardinality (15 to 468 tuples).

Adult (4 MB): This is a single-relation dataset containing census data of people and their

income brackets. We generated 20 queries (Figure A.4 and A.5), randomizing the attributes

and predicate values, ranging the number of selection predicates (2 to 7) and the result

cardinality (8 to 1404 tuples).

We collected the datasets from various sources and we provide them in Figure A.6. We

provide the detailed description of the datasets in Figures A.7 and A.8. We mention the

cardinalities of the large relations for providing a sense of the data size and associations

among relations. For the scalability experiment, we generated 3 versions of the IMDb

database (details are in Appendix A.3).

3.6.1.2 Case Study Data

We retrieved several public lists (sources are listed in Figure A.6) with human-generated

examples, and identified the corresponding intent. For example, a user-created list of “115

funniest actors” reveals a query intent (funny actors), and provides us with real user exam-

ples (the names in the list). We used this method to design 3 case studies: funny actors

(IMDb), 2000s Sci-Fi movies (IMDb), and prolific database researchers (DBLP).

3.6.1.3 Metrics

We report query discovery time as a metric of efficiency. We measure effectiveness

using precision, recall, and f-score. If Q is the intended query, and QÕ is the query inferred

by SQUID, precision is computed as QÕ(D)flQ(D)
QÕ(D) and recall as QÕ(D)flQ(D)

Q(D) ; f-score is their

harmonic mean. We also report the total number of predicates in the produced queries and

compare them with the actual intended queries.
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Figure 3.8: Average abduction time over the benchmark queries in (a) IMDb (b) DBLP
and (c) 4 versions of the IMDb dataset.

3.6.1.4 Comparisons

To the best of our knowledge, existing QBE techniques do not produce SPJ queries

without (1) a large number of examples, or (2) additional information, such as provenance.

For this reason, we cannot meaningfully compare SQUID with those approaches. Remov-

ing the open-world requirement, SQUID is most similar to the QRE system TALOS [312]

with respect to expressiveness and capabilities (Figure A.1). We compare the two systems

for query reverse engineering tasks in Section 3.6.5. We also compare SQUID against

PU-learning methods [84] in Section 3.6.6.

3.6.2 Scalability

In our first set of experiments, we examine the scalability of SQUID against increas-

ing number of examples and varied dataset sizes. Figures 3.8(a) and 3.8(b) display the

abduction time for the IMDb and DBLP datasets, respectively, as the number of provided

examples increases, averaged over all benchmark queries in each dataset. Since SQUID

retrieves semantic properties and computes context for each example, the runtime increases

linearly with the number of examples, which is what we observe.

Figure 3.8(c) extends this experiment to datasets of varied sizes. We generate three

alternative versions of the IMDb dataset: (1) sm-IMDb (75 MB), a downsized version that

keeps 10% of the original data; (2) bs-IMDb (1330 MB), doubles the entities of the origi-
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Figure 3.9: SQUID achieves high accuracy with few examples (typically ≥ 5) in most
benchmark queries.

nal dataset and creates associations among the duplicate entities (person and movie) by

replicating their original associations; (3) bd-IMDb (1926 MB), is the same as bs-IMDb

but also introduces associations between the original entities and the duplicates, creating

denser connections. SQUID’s runtime increases for all datasets with the number of ex-

amples, and, predictably, larger datasets face longer abduction times. Query abduction

involves point queries to retrieve semantic properties of the entities, using B-tree indexes.

As the data size increases, the runtime of these queries grows logarithmically. SQUID is

slower on bd-IMDb than on bs-IMDb: both datasets include the same entities, but bd-IMDb

has denser associations, which results in additional derived semantic properties.
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3.6.3 Abduction Accuracy

Intuitively, with a larger number of examples, abduction accuracy should increase:

SQUID has access to more samples of the query output, and can more easily distinguish

coincidental from intended similarities. Figure 3.9 confirms this intuition, and precision,

recall, and f-score increase, often very quickly, with the number of examples for most of

our benchmark queries. We discuss here a few particular queries.

IQ4 & IQ11: These queries include a statistically common property (USA movies), and

SQUID needs more examples to confirm that the property is indeed intended, not coinci-

dental; hence, the precision converges more slowly.

IQ6: In many movies where Clint Eastwood was a director, he was also an actor. SQUID

needs to observe sufficient examples to discover that the property role:Actor is not

intended, so recall converges more slowly.

IQ10: SQUID performs poorly for this query. The query looks for actors appearing in

more than 10 Russian movies that were released after 2010. While SQUID discovers the

derived properties “more than 10 Russian movies” and “more than 10 movies released

after 2010”, it cannot compound the two into “more than 10 Russian movies released after

2010”. This query is simply outside of SQUID’s search space, and SQUID produces a

query with more general predicates than intended, which is why precision drops.

IQ3: The query is looking for actresses who are Canadian and were born after 1970.

SQUID successfully discovers the properties gender:Female, country:Canada,

and birth year Ø 1970; however, it fails to capture the property of “being an ac-

tress”, corresponding to having appeared in at least 1 film. The reason is that SQUID is

programmed to ignore weak associations (a person associated with only 1 movie). This

behavior can be fixed by adjusting the association strength parameter to allow for weaker

associations.

57



IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 IQ11 IQ12 IQ13 IQ14 IQ15 IQ16
Benchmark Queries

10�3

10�1

101

T
im

e
(s

)

Actual SQuID

(a) IMDb

DQ1 DQ2 DQ3 DQ4 DQ5
Benchmark Queries

10�3

10�2

10�1

100

T
im

e
(s

)
Actual SQuID

(b) DBLP

Figure 3.10: SQUID rarely produces queries that are slower than the original with respect
to query runtime.

3.6.3.1 Execution Time

While the accuracy results demonstrate that the abduced queries are semantically close

to the intended queries, SQUID could be deriving a query that is semantically close, but

more complex and costly to compute. In Figures 3.10(a) and 3.10(b) we graph the average

runtime of the abduced queries and the actual benchmark queries. We observe that in most

cases the abduced queries and the corresponding benchmarks are similar in execution time.

Frequently, the abduced queries are faster because they take advantage of the precomputed

relations in the –DB. In few cases (IQ1, IQ5, and IQ7) SQUID discovered additional

properties that, while not specified by the original query, are inherent in all intended enti-

ties. For example, in IQ5, all movies with Tom Cruise and Nicole Kidman are also

English language movies and released between 1990 and 2014.
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3.6.3.2 Effect of Entity Disambiguation

Finally, we found that entity disambiguation never hurts abduction accuracy, and may

significantly improve it. Figure 3.11 displays the impact of disambiguation for five IMDb

benchmark queries, where disambiguation significantly improves the f-score.

3.6.4 Qualitative Case Studies

We now present qualitative results on the performance of SQUID, through a simulated

user study. We designed 3 case studies, by constructing queries and examples from human-

generated, publicly available lists.

Funny actors (IMDb). We created a list of names of 211 “funny actors”, collected from

human-created public lists and Google Knowledge Graph (sources are in Figure A.6), and

used these names as examples of the query intent “funny actors.” Figure 3.12(a) demon-

strates the accuracy of the abduced query over a varying number of examples. Each data

point is an average across 10 different random samples of example sets of the correspond-

ing size. For this experiment, we tuned SQUID to normalize the association strength,

which means that the relevant predicate would consider the fraction of movies in an actor’s

portfolio classified as comedies, rather than the absolute number.

59



10 20 30
# Examples

(a)

0.0

0.5

1.0

A
cc

u
ra

cy
M

et
ri

c

Precision Recall F-score

10 20 30
# Examples

(b)

0.0

0.5

1.0

10 20 30
# Examples

(c)

0.0

0.5

1.0

Figure 3.12: Precision, recall, and f-score for (a) Funny actors (b) 2000s Sci-Fi movies (c)
Prolific DB researchers.

2000s Sci-Fi movies (IMDb). We used a user-created list of 165 Sci-Fi movies released

in 2000s as examples of the query intent “2000s Sci-Fi movies”. Figure 3.12(b) displays

the accuracy of the abduced query, averaged across 10 runs for each example set size.

Prolific database researchers (DBLP). We collected a list of database researchers who

served as chairs, group leaders, or program committee members in SIGMOD 2011–2015

and selected the top 30 most prolific. Figure 3.12(c) displays the accuracy of the abduced

query averaged, across 10 runs for each example set size.

Analysis In our case studies there is no (reasonable) SQL query that models the intent

well and produces an output that exactly matches our lists. Public lists have biases, such

as not including less well-known entities even if these match the intent. To counter this

bias, we use popularity masks (derived from public lists) to filter the examples and the

abduced query outputs. In our prolific researchers use case, some well-known and prolific

researchers may happen to not serve in service roles frequently, or their commitments may

be in venues we did not sample. Therefore, it is not possible to achieve high precision, as

the data is bound to contain and retrieve entities that do not appear on the lists, even if the

query is a good match for the intent. For this reason, our precision numbers in the case

studies are low. However our recall rises quickly with enough examples, which indicates

that the abduced queries converge to the correct intent.
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3.6.5 Query Reverse Engineering

We present an experimental comparison of SQUID with TALOS [312], a state-of-the-

art query reverse engineering (QRE) system. We picked TALOS because other related

methods either focus on more restricted query classes [175, 345] or do not scale to data sizes

large enough for this evaluation [322, 346] (Figure A.1). Unlike SQUID, QRE systems

operate in a closed-world setting, assuming that the provided examples comprise the entire

query output. In the closed-world setting, SQUID is handicapped against a dedicated QRE

system, as it does not take advantage of the closed-world constraint.

For this evaluation under the QRE setting, we use the IMDb and DBLP datasets, as well

as the Adult dataset, on which TALOS was shown to perform well [312]. For each dataset,

we provided the entire output of the benchmark queries as input to SQUID and TALOS.

Since there is no need to drop coincidental filters for query reverse engineering, we set the

parameters so that SQUID behaves optimistically (e.g., high filter prior, low association

strength threshold, etc.). We adopt the notion of instance equivalent query (IEQ) from the

QRE literature [312] to express that two queries produce the same set of results on a par-

ticular database instance. A QRE task is successful if the system discovers an IEQ of the

original query (f-score=1). For the IMDb dataset, SQUID was able to successfully reverse

engineer 11 out of 16 benchmark queries. Additionally, in 4 cases where exact IEQs were

not abduced, SQUID queries generated output with Ø 0.98 f-score. SQUID failed only for

IQ10, which is a query that falls outside the supported query family, as discussed in Sec-

tion 3.6.3. For the DBLP and Adult datasets, SQUID successfully reverse-engineered all

benchmark queries. We compare SQUID to TALOS on three metrics: number of predicates

(including join and selection predicates), query discovery time, and f-score.

Adult. Both SQUID and TALOS achieved perfect f-score on the 20 benchmark queries.

Figure 3.13 compares the systems in terms of the number of predicates in the queries they

produce (top) and query discovery time (bottom). SQUID almost always produces simpler

queries, close in the number of predicates to the original query, while TALOS queries
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Figure 3.13: Both systems achieve perfect f-score on the Adult dataset (not shown).
SQUID produces significantly smaller queries, often by orders of magnitude, and is of-
ten much faster.

contain more than 100 predicates in 20% of the cases. SQUID is faster than TALOS when

the input cardinality is low (≥100 tuples), and becomes slower for the largest input sizes

(> 700 tuples). SQUID was not designed as a QRE system, and in practice, users rarely

provide large example sets. SQUID’s focus is on inferring simple queries that model the

intent, rather than cover all examples with potentially complex and lengthy queries.

IMDb. Figure 3.14(a) compares the two systems on the 16 IMDb queries. SQUID gener-

ally produced better queries: in all cases, our abduced queries where significantly smaller,

and our f-score is higher for most queries. SQUID was also faster than TALOS for most of

the benchmark queries. We now delve deeper into some particular cases.

For IQ1 (cast of Pulp Fiction), TALOS produces a query with f-score = 0.7.

We attempted to provide guidance to TALOS through a system parameter that specifies

which attributes to include in the selection predicates (which would give it an unfair ad-

vantage). TALOS first performs a full join among the participating relations (person and

castinfo) and then performs classification on the denormalized table (with attributes

person, movie, role). TALOS gives all rows referring to a cast member of Pulp Fiction

a positive label (based on the examples), regardless of the movie that row refers to, and then
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Figure 3.14: SQUID produces queries with significantly fewer predicates than TALOS
and is more accurate on both IMDb and DBLP. SQUID is almost always faster on IMDb,
but TALOS is faster on DBLP.

builds a decision tree based on these incorrect labels. This is a limitation of TALOS, which

SQUID overcomes by looking at the semantic similarities of the examples, rather than

treating them simply as labels.

SQUID took more time than TALOS in IQ4, IQ7, and IQ15. The result sets of IQ4

and IQ15 are large (> 1000), so this is expected. IQ7 retrieves all movie genres, and,
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thus, does not require any selection predicate. As a decision tree approach, TALOS has the

advantage here, as it stops at the root and does not need to traverse the tree. In contrast,

SQUID retrieves all semantic properties of the example tuples only to discover that either

there is nothing common among them, or the property is not significant. While SQUID

takes longer, it still abduces the correct query. These are not representative of QBE scenar-

ios, as users are unlikely to provide large number of example tuples or have very general

intents (PJ queries without selection).

DBLP. Figure 3.14(b) compares the two systems on the DBLP dataset. Here, SQUID

successfully reverse engineered all five benchmark queries, but TALOS failed to reverse

engineer two of them. TALOS also produced very complex queries, with 100 or more

predicates for four of the cases. In contrast, SQUID’s abductions were orders of magnitude

smaller, on par with the original query. On this dataset, SQUID was slower than TALOS,

but not by a lot.

3.6.6 Comparison with Learning Methods

Query intent discovery can be seen as a one-class classification problem, where the task

is to identify the tuples that satisfy the desired intent. Positive and Unlabeled (PU) learn-

ing addresses this problem by learning a classifier from positive examples and unlabeled

data in a semi-supervised setting. We compare SQUID against an established PU-learning

method [84] on 20 benchmark queries over Adult. The setting of this experiment conforms

with the technique’s requirements [84]: the dataset comprises of a single relation and the

examples are chosen uniformly at random from the positive data.

Figure 3.15 (a) compares the accuracy of SQUID and PU-learning using two different

estimators, decision tree (DT) and random forest (RF). We observe that PU-learning needs

a large fraction (> 70%) of the query result to achieve f-score comparable to SQUID.

PU-learning favors precision over recall, and the latter drops significantly when the num-

ber of examples is low. In contrast, SQUID achieves robust performance, even with few
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Figure 3.15: (a) PU-learning needs a large fraction (> 70%) of the query results (positive
data) as examples to achieve accuracy comparable to SQUID. (b) The total required time
for training and prediction in PU-learning increases linearly with the data size. In contrast,
abduction time for SQUID increases logarithmically.

examples, because it can encode problem-specific assumptions (e.g., that there exists an

underlying SQL query that models the intent, that some filters are more likely than other

filters, etc.); this cannot be done in straightforward ways for machine learning methods.

To evaluate scalability, we replicated the Adult dataset, with a scale factor up to 10x.

Figure 3.15 (b) shows that PU-learning becomes significantly slower than SQUID as the

data size increases, whereas SQUID’s runtime performance remains largely unchanged.

This is due to the fact that, SQUID does not directly operate on the data outside of the

examples (unlabeled data); rather, it relies on the –DB, which contains a highly compressed

summary of the semantic property statistics (e.g., filter selectivities) of the data. In contrast,

PU-learning builds a new classifier over all of the data for each query intent discovery task.

3.6.7 SQUID Parameters

We further empirically evaluate how the parameters of SQUID contribute to its per-

formance and found that SQUID does not depend heavily on the parameter values and its

dependency on the parameters diminishes as the number of examples increases (details are

in Appendix A.4).
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3.7 Comparative User Studies
In this section, we present findings from our comparative user studies over SQUID

and the traditional SQL-based mechanism. We conducted two comparative user studies:

(1) a controlled experiment study involving 35 participants, and (2) an interview study

involving 7 interviewees to gain a richer understanding of users’ issues and preferences.

All participants and interviewees had varying levels of SQL expertise and experience, but

were required to have at least basic SQL skills. Our studies focused on the task of data

exploration over the IMDb dataset, and explored how SQUID compares against the tradi-

tional SQL querying mechanism, over four objective and subjective data exploration tasks.

Specifically, our study aimed to identify the most critical issues users face when interacting

with the traditional SQL querying mechanism, to what extent a QBE system like SQUID

can alleviate these challenges, how effective SQUID is over a variety of data exploration

tasks, and what the possible pain points of SQUID are. Details of the study design are in

Appendix A.5.

3.7.1 Quantitative Results From Controlled Experiment

We now present the quantitative results of the controlled experiment study, summariz-

ing our findings.

SQUID is generally more effective than SQL in generating accurate results. To

quantitatively measure the quality of the results produced by both SQUID and SQL, we

checked them against the ground-truth results (discussed in Section A.5.4.1). We used

three widely used correctness metrics to quantify the result quality: precision, recall, and

F1 score. On average, we found SQUID to be more effective in generating accurate results

than SQL (Figure 3.16). For all four tasks, on average across participants, results obtained

with SQUID achieved significantly higher precision than the results obtained with SQL.

SQUID achieved higher recall than SQL for the two objective tasks (Disney and Marvel).

While SQUID’s recall for the subjective tasks (Funny and Strong) was lower than SQL,
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(a) SQUID achieves higher
precision than SQL.

(b) SQUID achieves higher re-
call than SQL in two tasks.

(c) SQUID achieves higher F1
score than SQL for all tasks.

Figure 3.16: SQUID vs. SQL in terms of average precision, recall, and F1 score.

Precision Recall F1 Score

Task p-value t p-value t p-value t

Disney 0.004 3.0781 0.0389 2.1457 0.151 1.468
Marvel 0.1047 1.6669 0.0588 1.9554 0.7195 0.3621
Funny 0.0001 4.3845 0.0042 -3.0751 0.0 8.6225
Strong 0.011 2.6935 0.1751 -1.3859 0.0 6.4942

Figure 3.17: t test results for precision, recall, and F1 score. Out of 12 findings, 7 are
statistically significant. In all cases, df = 33.

note that SQL’s precision for those tasks was close to 0. This is simply because the SQL

queries the participants wrote for those tasks were very imprecise and returned a very large

number of results (e.g., all actors in the database). While such general queries can hap-

pen to contain a large portion of the correct results (hence the high recall), they contain an

extremely large number of irrelevant results making them poorly suited for this retrieval

task. In terms of F1 score, SQUID always achieved higher values than SQL implying its

effectiveness over SQL for generating more accurate results. The result of t-tests for these

findings are shown in Figure 3.17. Out of the 12 findings, 7 are statistically significant with

a p-value less than 0.05.

Participants were more efficient with SQUID than SQL. SQUID helped the par-

ticipants solve the tasks more quickly (Figure 3.18(a)) and with fewer attempts (Figure 3.18(b))

than SQL. On average, the participants were able to solve the tasks using SQUID about 200
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(a) Time required to solve each task. (b) Number of attempts required to solve
each task.

Figure 3.18: Comparison of SQL vs. SQUID in terms of effort (average time required and
average number of attempts) for solving the same set of tasks.

Task completion time #Attempts

Task p-value t p-value t

Disney 0.0014 -3.5 0.0 -4.7578
Marvel 0.0146 -2.5767 0.0008 -3.6985
Funny 0.0008 -3.7105 0.0007 -3.7441
Strong 0.0132 -2.6206 0.0595 -1.9518

Figure 3.19: t test results for task completion time and number of attempts. 7/8 findings
are statistically significant (df = 33).

seconds faster than when using SQL. Participants were also able to solve the tasks with

about 4 fewer attempts while using SQUID compared to SQL. The results of t-test of these

findings, shown in Figure 3.19, signify that most are statistically significant with a p-value

less than 0.05.

Participants generally found SQUID easier to use and more satisfying, but still pre-

ferred SQL. Figures 3.20(a) and 3.20(b) show self-reported overall satisfaction with the

results produced by SQUID and SQL, respectively. Generally, participants found the re-

sults produced by SQUID more satisfying than the results produced by SQL. Out of the 35

participants, 23 were somewhat or very satisfied with SQUID. In contrast, 18 reported that
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(a) Satisfaction with SQUID results (b) Accuracy of SQL results

(c) Usability (d) Preference

Figure 3.20: Comparison of SQUID vs. SQL in terms of various metrics (self-reported).

the results produced by SQL were somewhat or very accurate. However, we found that the

self-reported satisfaction does not correlate with the actual correctness of the results (mea-

sured in terms of precision, recall, and F1 score), and in fact, the participants generally

did better with SQUID than SQL, although they did not always realize it. Figure 3.20(c)

shows self-reported overall evaluation comparing SQUID and SQL in terms of ease of use.

Out of the 35 participants, 19 reported that SQUID was easier, 6 reported that they had the

same level of difficulty, and 10 reported that SQL was easier.

However, despite reporting that SQUID was easier to use and the results were more

satisfying, the participants were still leaning towards SQL as a preferred mechanism for

data exploration. Figure 3.20(d) shows self-reported overall preference between SQUID

and SQL, where 11 reported that they would prefer SQUID while 19 reported that they

would prefer SQL. Five participants reported no preference.
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3.7.2 Qualitative Results from Interview Study

We now report the key findings from our interview study. More details are in Ap-

pendix A.6.

• Studying the schema is challenging, even for SQL experts.

• SQL requires stricter syntax, which makes writing queries difficult.

• SQL requires parameter tuning for subjective tasks; SQUID alleviates this.

• SQUID produces precise results, which is preferred for data exploration.

• SQUID’s interactivity helps users to enrich examples.

• Domain familiarity is crucial to evaluate the results, for both SQUID and SQL.

3.7.3 Limitations and Suggestions for Extension

Our study results indicate that SQUID effectively helped users with various levels of

SQL familiarity perform their tasks faster and more efficiently. Additional work is needed

to study the impact of QBE systems further. While our goal was to draw a comparison

between traditional SQL querying and QBE systems, additional studies might investigate

how complete novices (users with no SQL expertise) use QBE systems. Furthermore, one

can expand the list of tasks to better tease apart the impact of using QBE systems for various

task types. From the interviewees’ feedback, we extracted a few suggestions to improve

the user experience of QBE systems:

Exposing internal mechanism for explainability. SQUID can explain how the SQL

queries were synthesized from the user examples by exposing the particular semantic simi-

larities that the system discovers across the examples, and its confidence in each similarity

being intended. This can also guide users in revising their examples to emphasize border-

line semantic similarities that SQUID missed, or diversify examples to avoid coincidental

similarities among the examples.
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Tuple suggestions to enrich examples. A few interviewees reported that it would be

helpful if SQUID could suggest a few tuples that the user may consider adding to the

examples. Such a tuple-suggestion mechanism will help the users supply additional diver-

sified examples, in case the users lack domain knowledge.

Interaction with the results for feedback. Another idea is to allow the users to interact

with the results produced by QBE systems: the user will accept or reject a few result tuples

which will act as feedback to the system. This will help QBE systems learn the user intent

better.

Extensive user study. In general, more extensive user studies are needed to evaluate all

these additional features and determine whether they contribute positively to the users’ trust

and satisfaction in QBE systems.

3.8 Summary and Future Work
In this chapter, we focused on the problem of query intent discovery from a set of

example tuples. We presented SQUID, a system that performs query intent discovery ef-

fectively and efficiently, even with few examples in most cases. The insights of our work

rely on exploiting the rich information present in the data to discover similarities among

the provided examples, and distinguish between those that are coincidental and those that

are intended. Our contributions include a probabilistic abduction model and the design

of an abduction-ready database, which allow SQUID to capture both explicit and implicit

semantic contexts. Our work includes an extensive experimental evaluation of the effective-

ness and efficiency of our framework over three real-world datasets, case studies based on

real user-generated examples and abstract intents, and comparison with the state-of-the-art

query reverse engineering technique and with PU-learning. Our empirical results highlight

the flexibility of our method, as it is extremely effective in a broad range of scenarios.
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Our comparative user studies found that database users, with varied levels of prior SQL

expertise, are significantly more effective and efficient at a variety of data exploration tasks

with SQUID over the traditional SQL querying mechanism that requires database schema

understanding and manual programming. Our results indicate that SQUID eliminates the

barriers of familiarizing oneself with the database schema, formally expressing the seman-

tics of an intended task, and writing syntactically correct SQL queries. The key takeaway

of this work is that in a programming-by-example tool like SQUID, even a limited level of

domain expertise (knowledge of a subset of the desired data) can substantially help over-

come the lack of technical expertise (knowledge of SQL and schema) in data exploration

and retrieval. This indicates that programming by example can lead to the democratiza-

tion of complex computational systems and make these systems accessible to novice users

while aiding expert users as well. Our studies validate some prior results over other PBE

approaches but also contribute new empirical insights and suggest future directions for

QBE systems to further increase system explainability and user trust.

Beyond the ones extracted from the user study, there are several possible improvements

and research directions that can stem from our work, including smarter semantic context

inference using log data, example recommendation to diversify the examples (which will

improve abduction), techniques for adjusting the depth of association discovery, on-the-fly

–DB construction, and efficient –DB maintenance for dynamic datasets.
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CHAPTER 4

SUMMARIZING DOCUMENTS BY EXAMPLE (SUDOCU)1

To investigate the effectiveness of by-example interactions beyond relational databases,

we explored the area of text document summarization by example. Document collections,

such as Wikipedia, contain a wealth of information that can assist in many tasks. Yet, find-

ing the right information quickly and easily is still a big challenge, despite all the advances

in search engine technology, natural language processing, and machine learning. Consider

the following scenario:

Example 4.1 (Trip planning). Arnob wants to plan visits to interesting places around the

USA. She wants to know interesting locations and typical weather conditions for each state,

but finding this information on the Web for 50 states is tedious and time-consuming. She

knows that Wikipedia contains all the information she needs, but each page is large and full

of facts that are not relevant to her intent (e.g., demographics, law, etc.). Arnob can man-

ually extract relevant summaries of at most 3 pages, by selecting a small set of sentences

that correspond to her specific information needs (interesting places and weather). But to

thoroughly research her options, she needs an automated way to do this for the remaining

47 states.

Surprisingly, today’s technology cannot help Arnob! A search engine, like Google, is

good at finding which web pages are likely to contain relevant information, but it would

require many queries and Arnob would need to be very thoughtful about search keywords

in order to collect the relevant information for all 50 states.

1The work for SUDOCU was done in collaboration with Ph.D. students Matteo Brucato and Nishant
Yadav, and M.S. students Oscar Youngquist and Julian Killingback.
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Arnob tried to use Natural Language Processing (NLP) and Machine Learning (ML)

techniques and found that text summarization tools may be helpful. However, most text

summarization tools are “generic”: they produce summaries that are not tailored for her

personal preferences and specific information needs. The summaries she obtained from

these tools did not cover all important aspects of her task, but rather provided general infor-

mation about the state’s politics, law, education, etc. Arnob found that some summarization

tools can be tailored with a user intent, and require a natural language question to express

it. She picked a question answering system, like Alexa, and issued the following ques-

tion: “What are some interesting places in Massachusetts and how extreme is the weather

there?” Unfortunately, the system could not understand what Arnob meant by “interest-

ing places”—since interestingness is a very personal concept—and returned her sentences

about places of general interest: MIT, Harvard Square, and Boston Library.

Arnob is interested in natural sites: parks, lakes, mountains, seas, etc. While particular

preferences may be hard to express precisely with a query, it is easy for Arnob to identify

relevant sentences within a document. For example, Arnob selected the following sentences

from Utah’s Wikipedia page as most relevant to her needs:

Example 4.2 (Personalized summary of Utah). The state of Utah relies heavily on income

from tourists and travelers visiting the state’s parks and ski resorts. Today, Utah State

Parks manages 43 parks and several undeveloped areas totaling over 95, 000 acres of land

and more than 1, 000, 000 acres of water. With five national parks (Arches, Bryce Canyon,

Canyonlands, Capitol Reef, and Zion), Utah has the third most national parks of any state

after Alaska and California. Temperatures dropping below 0 hould be expected on occa-

sion in most areas of the state most years.

She would like to extract something similar to the summary of Example 4.2 for each of

the 50 states. Luckily, she can now use SUDOCU, a personalized DOCUment SUmmarization

system, that enables users to specify their summarization intent by a few example sum-

maries and produces personalized summaries for new documents. SUDOCU is an instance
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of a query-by-example system [94], tailored for text document summarization. The key

motivation of SUDOCU is that asking a user to provide examples of their desired answers,

rather than vague questions, is a more effective way to learn the true intent, especially

for a complex summarization intent involving multiple topics, e.g., interesting places and

weather.

In this work, we consider extractive summarization [348], which involves selecting

the set of sentences from a text document that best summarizes its information content.

In many real-world applications, generic summaries [145], which are not focused on any

specific topic, are insufficient, especially when users require summaries that are tailored to

their specific information needs, i.e., their intent. Existing approaches for such applications

rely on query-based summarization [67], where the sentences included in the summary are

conditioned on a specific intent expressed as a query.

We posit that query-based summarization works best for objective or unambiguous in-

tents, i.e., when there exists only one possible correct summary for a given query. For

example, suppose that a user wants to summarize the Wikipedia page for the state of Cali-

fornia. If they want to gather information about the weather, the intent is very objective and

one can expect there would only be one correct summary. In this case, the user can easily

issue a query such as “What is California weather like?”

However, queries are not always the best way to communicate subjective intents. For

example, suppose that the user now issues the query “Which places are interesting to visit?”

There are many ways to interpret what makes a place “interesting”, which makes the query

ambiguous, and, thus, the correct answer (summary) is very subjective. For example, one

user may prefer natural places while another may prefer museums. In a query-based sys-

tem, the user would need to devise very long and complex queries to clarify their subjective

intent, but still may fail to communicate the intent effectively.

An alternative way to express a summarization intent is via user-constructed example

summaries. Example-driven summarization seems especially well suited for expressing
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subjective intents, as it is often easier to construct an example summary than it is to write

a complex query. The summarization system can infer the user intent from the example

summaries, and then summarize unseen documents based on the inferred intent.

We present SUDOCU [92], an end-to-end system that achieves example-driven person-

alized document summarization, that allows subjective summarization. The key idea is to

view summarization as a combinatorial optimization problem where we want to extract an

optimal set of sentences to form the summary, subject to the constraint that the summary’s

overall topic coverage should be close to that of the examples. We model topics of the

documents using a standard LDA approach [41], adapt our prior work for example-driven

semantic similarity discovery [94] to create the constraints, and solve the resulting integer

linear program using our prior techniques for scalable package queries [49].

We proceed to discuss how SUDOCU contrasts with prior art (Section 4.1) and provide

a solution sketch (Section 4.2)

4.1 Contrast with Prior Art
In query-based summarization, users specify their intent in the form of an unstructured

query, typically, a natural language question. For example, the question “What are some

interesting places?” is very subjective, as different people consider different places as

interesting. For a nature enthusiast, parks, lakes, oceans, and mountains are interesting;

for an art enthusiast, museums, concerts, and plays are interesting. SUDOCU allows the

user to provide precise and concrete examples of the type of summaries they want, and

does not require large training data. A possible way to adapt query-based summarization

for example-driven summarization is to infer the underlying natural-language query from

the example summaries, and then use an existing tool. However, computers understand

structured queries with clear semantics, which can easily be constructed from examples,

much better than natural language queries, so an example-based approach is both simpler

and more accurate.
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Preprocessing

Wikipedia pages
(source text)

Beautiful Soup
(text parsing)

Gensim
(topic modeling)

PostgreSQL
(relational DB)

SuDocu

User interface
(example summary 

collection)

SQuID+ [5]
(summarization 
intent discovery)

SketchRefine [4]
(efficient PaQL

execution engine)

PAQL

Summaries
(summarization 

output)

Figure 4.1: The SUDOCU architecture. SUDOCU combines SQUID+ and SKETCHREFINE
in a novel way to summarize documents by example.

A shortcoming of the foregoing sentence-selection approaches is that they consider can-

didate sentences in isolation, rather than trying to select a set of sentences that collectively

form a good summary. The problem of selecting the best set of sentences can be formu-

lated as an integer program. Our formulation can capture the summarization intent from

the example summaries using constraints on how much each topic should be “covered” by

the summary; roughly speaking, the coverage should resemble that of the user-provided

examples. Also, because of the combinatorially large number of possible summaries, the

formulation in [209] cannot generally scale to large dataset sizes. We use the SKETCHRE-

FINE algorithm [49] to scale the resulting integer linear program to very large datasets.

4.2 SUDOCU Algorithms
Figure 4.3 provides a screenshot of the SUDOCU interface. We now provide the de-

sign and implementation details of SUDOCU. Figure 4.1 depicts SUDOCU’s end-to-end

pipeline. SUDOCU pre-processes a corpus of documents by extracting all the sentences,

automatically identifying all the topics, and assigning topic scores to each sentence. After

77



ID Topic Top related words and their associated weights

1 politics (governor, 0.015), (election, 0.013), (vote, 0.011), (democratic, 0.011),
(majority, 0.009), (presidential, 0.008)

2 legislature (century, 0.012), (passed, 0.011), (legislature, 0.010), (constitution, 0.009),
(created, 0.007), (law, 0.006), (political, 0.006)

3 urbanization (population, 0.077), (largest, 0.052), (city, 0.029), (percent, 0.019),
(metropolitan, 0.012), (capital, 0.011), (people, 0.011)

4 economy (major, 0.027), (economy, 0.018), (largest, 0.013), (industry, 0.013), (bil-
lion, 0.011), (production, 0.011), (oil, 0.009)

5 demography (american, 0.029), (people, 0.021), (native, 0.018), (french, 0.015), (cen-
tury, 0.015), (settlers, 0.012), (tribes, 0.010)

6 climate (climate, 0.017), (feet, 0.011), (temperature, 0.010), (rail, 0.010), (forests,
0.009), (summer, 0.009), (winter, 0.009)

7 location (north, 0.035), (west, 0.033), (south, 0.030), (east, 0.029), (southern,
0.022), (eastern, 0.020), (region, 0.020)

8 taxes (tax, 0.056), (income, 0.030), (rate, 0.029), (ranked, 0.021), (nation,
0.021), (sales, 0.017), (average, 0.015), (capita, 0.014)

9 education (government, 0.039), (school, 0.029), (county, 0.025), (public, 0.025),
(federal, 0.023), (schools, 0.022), (law, 0.016)

10 general (national, 0.007), (major, 0.006), (popular, 0.005), (system, 0.004),
(founded, 0.004), (home, 0.004), (construction, 0.004)

Figure 4.2: Topics of Wiki pages of 50 states (extracted using topic modeling), their intu-
itive meaning, and top related words with associated weights.

preprocessing, the user can interact with SUDOCU’s interface and issue example summaries

to specify their intent. We first describe how we model the user intent, and then discuss

preprocessing, summarization intent discovery, and summary generation.

4.2.1 Modeling Personalized Extractive Summaries

Following prior work on text summarization [209], we model the personalized summa-

rization as an optimization problem. Given the example summaries, we define the optimal

summary as the one that maximizes a user-defined merit score (discussed later) such that

the topic-coverage of the summary is similar to that of the example summaries. In SU-

DOCU, we construct a linear constraint on topic-coverage for each topic, allowing scalable

solution methods.
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We express the optimization problem as a package query [49]. A package (summary)

is a collection of tuples (sentences) from a relation (document) that (a) individually satisfy

base predicates (traditional SQL selection predicates), and (b) collectively satisfy global

predicates (package-specific predicates). A package query comprises base and global pred-

icates that define the set of feasible packages and an objective function that defines a pref-

erence ranking among them. The Package Query Language (PaQL) is a simple extension

to SQL that allows for the easy specification of global constraints and objectives.

4.2.2 Preprocessing

Preprocessing involves two steps: parsing the documents for extracting sentences, and

topic modeling.

Sentence extraction. The first step of SUDOCU involves extracting sentences from doc-

uments. We use Beautiful Soup [32], a library for extracting content from HTML pages.

We then identify all of the topics in the extracted sentences.

Topic modeling. We use Latent Dirichlet Allocation (LDA) topic model [41], in which

a learned (latent) topic is represented as a set of weights assigned to the words in the

vocabulary, and a sentence is viewed as a set of weights assigned to the topics. (Sentences

here play the role of documents in [41].) The weight of a word (resp., topic) represents its

relative importance to the topic (resp., sentence). For our implementation, we used Gensim,

a standard NLP library that offers LDA-based topic modeling. Figure 4.2 shows the topics

learned from the Wikipedia pages of 50 US states. In general, we can plug in any topic

modeling technique into SUDOCU.

The LDA topic weight of a sentence scores the relevance of a particular sentence to a

particular topic. For example, the first sentence from the Example Summary 4.2, “The state

of Utah relies heavily on income from tourists and travelers visiting the state’s parks and

ski resorts”, would score high on “economy” and low on “education”. Once sentences are
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encoded into the topic space, a sentence s (within document d) and its merit and topic-wise

scores form a tuple of the form Èd, s, m_score, s.T1, s.T2, . . . , s.TmÍ, where m_score is

the merit score of s (see below) and s.Tj denotes the score of s against topic Tj . We store

these tuples into a PostgreSQL database.

4.2.3 Summarization Intent Discovery

To discover the summarization intent from example summaries, we extend the example-

driven semantic similarity discovery approach of SQUID [94]; we call our extension SQUID+.

Whereas SQUID synthesizes SQL selection queries to retrieve tuples that are similar to

user-specified example tuples, SQUID+ synthesizes package queries to retrieve summaries

(i.e., sets of tuples) that are similar to the user-specified example summaries. SQUID

would treat a single sentence as an example tuple; in contrast, SQUID+ considers a set of

sentences (summary) as an example package. Further, it aims to retrieve the summary with

the highest utility (maximizing total m_score) among these similar summaries.

To discover similarities among example summaries, we compute the topic-wise aggre-

gate score for each example summary by summing the topic-wise scores of its sentences.

That is, the score of example Ei against topic Tj is Ei.Tj = q
sœEi

s.Tj . Now we spec-

ify the global topic-coverage predicate for Tj , given a set of examples {E1, E2, . . . }, as

follows:

SUM(Tj) BETWEEN min
i

Ei.Tj AND max
i

Ei.Tj

Thus the aggregate score for each topic Tj in the summary must lie between the min-

imum and maximum aggregate scores in the examples; i.e., viewing each Ei as a point in

topic space, the summary must lie within the bounding hyperrectangle of the examples.

One can further fine-tune the above constraint bounds: e.g., if most examples scored very

high against a topic and only a few scored low, increase the minimum score threshold for

that topic. In general, SUDOCU can accept any package constraint derivation mechanism

and is not limited to SQUID+.
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Utah

Submit Summary

S�Doc�
In 1957, Utah created the Utah State Parks Commission with four parks. Today, Utah State Parks manages 43 
parks and several undeveloped areas totaling over 95,000 acres of land and more than 1,000,000 acres of water. 
Utah's state parks are scattered throughout Utah, from Bear Lake State Park at the Utah/Idaho border to Edge of 
the Cedars State Park Museum deep in the Four Corners region and everywhere in between. Utah State Parks is 
also home to the state's off highway vehicle office, state boating office and the trails program.[33]

Sentences (120):

Example Summaries

Summarize

Arizona MontanaUtah

Explanation (PaQL)

Massachusetts

It borders on the Atlantic Ocean to the east, the states of Connecticut 
and Rhode Island to the south, New Hampshire and Vermont to the north, 
and New York to the west. The large coastal plain of the Atlantic Ocean in 
the eastern section of the state contains Greater Boston, along with most 
of the state's population, as well as the distinctive Cape Cod peninsula. 
Along the western border of Western Massachusetts lies the highest 
elevated part of the state, the Berkshires. Most of Massachusetts has a 
humid continental, with cold winters and warm summers. The climate of 
Boston is quite representative for the commonwealth, characterized by 
summer highs of around 81 °F (27 °C) and winter highs of 35 °F (2 °C), 
and is quite wet. Frosts are frequent all winter, even in coastal areas due 
to prevailing inland winds.

SELECT PACKAGE(*)
FROM state_sentences
WHERE state = 'Massachusetts'
SUCH THAT
  SUM(topic_1)  BETWEEN 0.06 AND 0.45 AND
  SUM(topic_2)  BETWEEN 0.24 AND 0.79 AND
  SUM(topic_3)  BETWEEN 0.41 AND 0.84 AND
  SUM(topic_4)  BETWEEN 0.83 AND 1.85 AND
  SUM(topic_5)  BETWEEN 0.95 AND 1.29 AND
  SUM(topic_6)  BETWEEN 2.64 AND 3.20 AND
  SUM(topic_7)  BETWEEN 2.14 AND 4.72 AND
  SUM(topic_8)  BETWEEN 0.07 AND 0.43 AND
  SUM(topic_9)  BETWEEN 0.07 AND 0.41 AND
  SUM(topic_10) BETWEEN 0.58 AND 0.84
MAXIMIZE
  SUM(m_score)

topic_6: climate, temperature, summer, winter, ...

Generated SummariesSummary Input

The state of Utah relies heavily on 
income from tourists and travelers 
visiting the state's  parks and ski resorts. 
Today, Utah State Parks  manages 43 
parks and several undeveloped areas 
totaling over 95,000 acres of land and 
more than 1,000,000 acres of water. 
With five national parks (Arches, Bryce 
Canyon, Canyonlands, Capitol Reef, and 
Zion), Utah has  the third most national 
parks of any state after  Alaska and 
California. Temperatures dropping below 
0 °F (−18 °C) should be expected on 
occasion in most areas of the state most 
years.

Arizona is well known for its desert Basin 
and Range region in the state's southern 
portions, which is rich in a landscape of 
xerophyte plants such as the cactus. The 
canyon is one of the Seven Natural 
Wonders of the World and is largely 
contained in the Grand Canyon National  
Park—one of the first national parks in 
the  United States. Extremely cold 
temperatures are not unknown; cold air 
systems from the northern states and 
Canada occasionally push into the state, 
bringing temperatures below 0 °F (−18 
°C) to the state's northern parts.

The Rocky Mountain Front is a significant feature 
in the state's north-central portion, and isolated 
island ranges that interrupt the prairie landscape 
common in the central and eastern parts of the 
state. It contains the state's highest point, 
Granite Peak, 12,799 feet high. Farther east, 
areas such as Makoshika State Park near 
Glendive and Medicine Rocks State Park near 
Ekalaka contain some of the most scenic 
badlands regions in the state. The coldest 
temperature on record for Montana is also the 
coldest temperature for the contiguous United 
States. On January 20, 1954, −70 °F or −56.7 °C 
was recorded at a gold mining camp near Rogers 
Pass. Temperatures vary greatly on cold nights.

1

2

3

4

5

Figure 4.3: The SUDOCU interface: 1� the user selects a document for manual summariza-
tion, 2� the user selects sentences from the document to construct an example summary,
3� the user views the example summaries, edits them if necessary, and submits them to

request for summarization intent discovery, 4� the user specifies a new document to sum-
marize and SUDOCU produces a personalized summary of it, 5� PaQL query that captures
the summarization intent.

From the set of “feasible” summaries that satisfy the topic constraints, we want to select

the “best” one. More precisely, we aggregate a per-sentence, user-defined “merit” score

over the sentences in a summary to obtain the summary’s merit score; we then seek the

feasible summary having the highest merit score. Different definitions of merit are possible.

If, e.g., the merit score of every sentence is ≠1, then maximizing the merit is equivalent to

finding the shortest feasible summary. In our implementation, the merit score m_score(s)

of a sentence s = (w1, . . . , wJ) comprising J words (with stop words excluded) is defined

as m_score(s) = qJ
j=1 F (wj), where F (w) is the normalized frequency of word w in the

corpus. Thus the more “important” (high corpus-frequency) words that a sentence contains,

the higher its merit score.

The complete PaQL query is formulated as in Figure 4.3. Each tuple of the input

relation corresponds to a sentence, and the attributes comprise the sentence and document

IDs, along with the merit and topic-wise scores. The objective function to be maximized is

the summary merit score SUM(m_score), and the WHERE clause ensures that only sentences

from the document of interest are considered.
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4.2.4 Efficient Summary Generation

Once the PaQL formulation of a package query is completed, the last step is to execute

it. Package queries are combinatorial in nature, and solving them in general is NP-hard. If

the problem is small enough, we can translate a package query directly into an equivalent

integer linear program that can be solved with off-the-shelf softwares. For each tuple ti

in the input relation, the translation assigns a binary decision variable xi corresponding to

the inclusion/exclusion of ti in the answer package. When there are so many candidate

sentences that the solver either cannot load the problem in main memory or fails to find

a solution, we apply the SKETCHREFINE algorithm [49], a divide-and-conquer approach

that returns a near-optimal solution of the PaQL query having a provable approximation

guarantee. SUDOCU then presents the optimal set of sentences as the summary to the user,

along with the PaQL query that encodes the summarization intent.

4.3 SUBSUME: A Dataset for Subjective Summary Extraction from

Wikipedia Documents
SUDOCU is particularly suitable for the task of subjective summarization that requires

generation of summaries that are tailored to the user intent. Query-based methods approach

this task by expressing the intent as a query, but fall short when query interpretation is user-

dependent, and, thus, subjective. Several datasets exist for summarization with objective

intents, where a single summary for each document can answer an intent. However, no

datasets exist for subjective intents, where the summary of a document can vary across

users having different intents.

Ground-truth data is crucial to rigorous development and comparison of methods for

subjective summarization, but all prior datasets have been oriented toward objective sum-

marization, and contain exactly one summary per document. To evaluate SUDOCU and

compare it with other baselines, we constructed SUBSUME, the first comprehensive and

large-scale, manually curated dataset for the task of SUBjective SUMmary Extraction.

82



Mostly Objective

(I1) How is the weather of the state?
(I2) How is the government structured in this state?
(I3) What is the state’s policy regarding education?
(I4) What are the available modes of transport in this state?

Balanced Subjective/Objective

(I5) What drives the economy in this state?
(I6) What are the major historical events in this state?

Mostly Subjective

(I7) What about this state’s arts and culture attracts you the most?
(I8) Which places seem interesting to you for visiting in this state?
(I9) What are some of the most interesting things about this state?
(I10) What are the main reasons why you would like living in this state?

Figure 4.4: Intents in SUBSUME vary between mostly objective to mostly subjective.

SUBSUME contains 2,200 Èdocument, intent, summaryÍ triplets over 48 Wikipedia pages,

with 10 intents of varying subjectivity, provided by 103 individuals over Mechanical Turk.

We analyze the properties of SUBSUME and use it to evaluate several baselines, including

SUDOCU, for subjective, extractive summarization, indicating room for improvement and

motivating new research for the task of subjective document summarization.

We now describe our data collection process and design choices, and analyze some

statistical properties of the dataset.

4.3.1 Intents

We devised 10 intents with different degrees of subjectiveness, ranging from mostly

objective to mostly subjective, as shown in Figure 4.4.

4.3.2 Documents

As the source documents, we used English Wikipedia pages of 48 U.S. states.2 We

parsed the pages to get text content from paragraph tags, and extracted sentences using

2We removed Nebraska and Wyoming as their pages did not have enough content with respect to the
intents in Figure 4.4.
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Punkt sentence tokenizer from the NLTK library.3 Our corpus includes homogeneous doc-

uments to allow summarization of all documents with respect to all intents. In particular,

we chose the Wikipedia pages for the states in the USA because they are homogeneous and

contain information on wide range of topics.

4.3.3 Interface and Tasks

We collected extractive summaries of the documents using a custom interface on Ama-

zon Mechanical Turk (MTurk). Our interface allowed the workers to search the document

for keywords, click on a sentence to include it to the summary, and remove a sentence from

the summary.

Task. Each MTurk task (HIT) required a worker to extract sentences from 8

documents to best summarize them according to a given intent, resulting in 8

Èdocument, intent, summaryÍ triplets. To generate unique HITs, we partitioned the set of

48 documents into 6 disjoint sets, each containing 8 documents. We then paired each of the

6 sets with each of the 10 intents, resulting in 60 unique HITs. We repeated the above pro-

cedure 5 times to obtain a total of 300 HITs. Out of these 300 HITs, 25 were rejected upon

manual inspection (due to poor-quality summaries). The remaining 275 HITs contained 8

summaries each, resulting in a total of 2,200 Èdocument, intent, summaryÍ triplets. We

allowed workers to participate in multiple HITs as long as they were not identical: either

the document-set or the intent was different.

4.3.4 Dataset

We now proceed to discuss the collected data. We start by presenting the data format

with example summaries, and then provide analysis of the data collected.

3https://www.nltk.org/_modules/nltk/tokenize/punkt.html
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Intent: Which places seem interesting to you for visiting in this state?
Summary of Colorado: The northwestern corner of Colorado [. . . ] contains part of the
noted Dinosaur National Monument, which not only is a paleontological area, but is also
a scenic area of rocky hills, canyons, arid desert, and streambeds [. . . ] There are also
a number of established film festivals in Colorado, including Aspen Shortsfest, Boulder
International Film Festival, Castle Rock Film Festival [. . . ] The state’s diverse geography
and majestic mountains attract millions of tourists every year [. . . ] Colorado is home to 4
national parks, 8 national monuments, 2 national recreation areas, 2 national historic sites,
3 national historic trails [. . . ].
Interpretation: Things I would like to do includes nature spots I would like for outdoor
recreation, cities for touring and special events.
Strategy: I looked for the capitol, any other interesting cities, nature, sports, cultural expe-
riences and special events native to the state.
Keywords: tourism, national park, Denver, Mesa

Figure 4.5: A datapoint of SUBSUME.

Data format. We provide SUBSUME in a format to support both query-based and example-

driven approaches, as described earlier. The result of each completed HIT gives us the fol-

lowing information and contributes to 8 data points in SUBSUME: (1) the intent text (one of

I1–I10 in Figure 4.4), (2) one summary for each of the 8 documents in the HIT, (3) interpre-

tation of the intent by the worker, (4) description of summarization strategy followed by the

worker, (5) the keywords typed in the search box by the worker while selecting sentences,

(6) time-stamps indicating when each sentence was added to the summary, (7) percent-

age of the document the worker viewed, and (8) optional demographic information of the

worker. A datapoint, containing one of the 8 summaries within a HIT result, is shown in

Figure 4.5; we omit (6)–(8) for brevity.

Dataset analysis. Figure 4.6 shows statistics of the dataset grouped by intents. We

quantify the subjectiveness of an intent as follows: Let Si,d be the set of summaries con-

structed by all different workers for an intent i and document d. We first compute pair-wise

ROUGE-L F1 scores (normalized between 0 and 100) for all pairs of summaries from Si,d.

We define Simi,d as the average of these scores, measuring the similarity of all pairs of
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Statistic I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

# Summaries 240 216 232 240 232 224 192 200 208 216
Avg. # sentences per summary 11.4 12.7 8.6 10.5 10.8 13.7 11.3 9.3 13.4 11.2
Avg. # words per summary 314.8 285.8 227.2 278.6 288.9 380.1 319.5 274.6 375.1 304.6
Subjectiveness Score 22.7 34.2 35.0 35.6 47.4 58.7 55.7 56.9 74.3 73.2

Figure 4.6: Statistics of the SUBSUME dataset across 10 different intents.

Metric Example-Driven (EX) Query-Based (QB)
KEYWORD TEXTRANK SBERT SUDOCU KEYWORD TEXTRANK SBERT

ROUGE-1 31.20 25.30 51.17 33.28 30.50 25.06 41.73
ROUGE-2 7.88 12.59 34.21 16.25 10.09 7.89 21.91
ROUGE-L 17.09 15.57 38.35 21.02 17.18 13.24 28.035

Figure 4.7: Average F1 scores over different ROUGE metrics for baseline techniques.

summaries for document d and intent i. We define the subjectiveness score (inverse of sim-

ilarity) for intent i using the following formula:

Subji = 100 ≠

q
d Simi,dq

d 1

The higher the subjectiveness score for a given intent, the lower the similarity among sum-

maries for that intent, thus indicating higher subjectiveness. Our classification of intents in

Figure 4.4 aligns well with this subjectiveness score, as shown in Figure 4.6. For instance,

“How is the weather of the state?” (I1) scores the lowest (22.7) and “What are some of the

most interesting things about this state?” (I9) scores the highest (74.3).

4.3.5 Experiments

In this section, we present evaluation of a few baseline summarization techniques over

the SUBSUME dataset in two settings: query-based (QB) and example-driven (EX). Re-

call that for every (user, intent) pair, SUBSUME consists of summaries of 8 documents

chosen uniformly at random from a pool of 48 documents. In the query-based setting, the

baselines summarize the documents using only the query (intent text), and we evaluate on

all 8 documents. In the example-driven setting, we use summaries of 5 documents, chosen
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at random from the 8 summaries, as example summaries to learn the user’s intent. We

then evaluate the technique in terms of the generated summaries, according to the inferred

intent, for the remaining 3 documents.

In both settings, we first compute average performance on test documents for each

(user, intent) pair and then average across all such pairs in the dataset. For each (user, intent)

pair, we get either 8 (QB) or 3 (EX) summaries. We report F1 scores of the ROUGE-1,

ROUGE-2, and ROUGE-L metrics [208] for all of the baselines in Figure 4.7.

4.3.5.1 Baselines

We implement the following unsupervised baselines, which summarize a new test doc-

ument based on either the query text (QB) or the example summaries of other documents

(EX), other than SUDOCU. For all baselines, we pre-processed the text within the docu-

ments by removing all stop-words and converting all characters to lower case; except for

SBERT, which does not require stop-words to be removed. For these experiments, we

set the value of k = 10 for the Keyword-based and SBERT-embeddings-based methods.

Additionally, for the Keyword-based approach, we set the cut-off threshold to the average

keyword-coverage score of all the sentences in the document. Lastly, the number of latent

topics extracted by LDA for SUDOCU was limited to 10.

KEYWORD extracts keywords from the example summaries or query text (intent). Each

sentence in the test document is scored based on the number of keywords contained in it

followed by shortlisting sentences with score greater than a threshold (tk). The summary is

constructed using the top-k sentences from this candidate set ranked based on their TF-IDF

scores.

TEXTRANK is an unsupervised, ranking-based, extractive summarization approach [235].

We modify it to use increased relative frequencies in its TF-IDF embeddings for keywords

that appear in the user-provided example summaries or query text.
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Figure 4.8: ROUGE-L F1 for SBERT in example-driven (EX) and query-based (QB)
settings for each intent. From left to right, intents are ordered from least subjective to most
subjective according to their subjectiveness score shown in Figure 4.6. The correlation
between the subjectiveness score and the F1 score for SBERT EX and SBERT QB is -0.95
and -0.78 respectively.

SBERT embeds example summaries or query text and sentences in test documents using

SBERT [272]. It scores each sentence based on its cosine similarity with average embed-

ding of the example summaries or the query text and computes a summary using top-k

high-scoring sentences in the document.

4.3.5.2 Results

Figure 4.7 shows the performance of each baseline averaged over all (user, intent)

pairs. Example-driven baselines consistently outperform their query-based counterparts

with SBERT being the top performing method. This demonstrates effectiveness of example-

driven approaches for subjective summarization over query-based approaches.

Figure 4.8 shows the average ROUGE-L F1-score SBERT achieves for each intent

for both example-driven (EX) and query-based (QB) settings. For all intents, SBERT-
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EX outperforms SBERT-QB. As we go from intents with low subjectiveness scores to

intents with high subjectiveness scores, performance of SBERT decreases for both EX

and QB. This shows how the summarization task becomes challenging with increase in

subjectiveness of the intents, and indicates room for significant improvement for the task

of subjective document summarization.

4.4 Summary and Future Work
In this chapter, we presented SUDOCU, a tool for personalized, subjective, and extrac-

tive text document summarization by example. We also presented a dataset SUBSUME for

subjective summarization. Empirical evaluation suggests that SUDOCU, with its current

form, does not outperform state of the art techniques for subjective summarization over the

SUBSUME dataset. However, there is large room for improvement within different com-

ponents of SUDOCU, and a direction for future work is to explore different variations of

SUDOCU, such as fine tuning the bounds of topic constraints to model example similarities

better and exploring other objective functions.
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PART II: DATA UNDERSTANDING:
CONFORMANCE CONSTRAINTS



CHAPTER 5

CONFORMANCE CONSTRAINTS AND THEIR APPLICATIONS

A machine-learned model typically works best if the serving dataset follows the profile

of the dataset the model was trained on; when it doesn’t, the model’s inference can be unre-

liable. One can profile a dataset in many ways, such as by modeling the data distribution of

the dataset, or by finding the (implicit) constraints that the dataset satisfies. Distribution-

oriented approaches learn data likelihood (e.g., joint or conditional distribution) from the

training data, and can be used to check if the serving data is unlikely. An unlikely tuple does

not necessarily imply that the model would fail for it. The problem with the distribution-

oriented approaches is that they tend to overfit, and thus are overly conservative towards

unseen tuples, leading them to report many such false positives.

We argue that certain constraints offer a more effective and robust mechanism to quan-

tify trust of a model’s inference on a serving tuple. The reason is that learning systems

implicitly exploit such constraints during model training, and build models that assume that

the constraints will continue to hold for serving data. For example, when there exist high

correlations among attributes in the training data, learning systems will likely reduce the

weights assigned to redundant attributes that can be deduced from others, or eliminate them

altogether through dimensionality reduction. If the serving data preserves the same corre-

lations, such operations are inconsequential; otherwise, we may observe model failure.

We characterize datasets with a new data-profiling primitive, conformance constraints,

and we present a mechanism to identify strong conformance constraints, whose violation

indicates unreliable inference. Conformance constraints specify constraints over arithmetic

relationships involving multiple numerical attributes of a dataset. We argue that a tuple’s
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Departure Departure Time Arrival Time Duration (min)
Date [DT] [AT] [DUR]

t1 May 2 14:30 18:20 230
t2 July 22 09:05 12:15 195
t3 June 6 10:20 12:20 115
t4 May 19 11:10 13:05 117
t5 April 7 22:30 06:10 458

Figure 5.1: Sample of the airlines dataset (details are in Section 5.5.2), showing departure,
arrival, and duration only. The dataset does not report arrival date, but an arrival time earlier
than departure time (e.g., last row), indicates an overnight flight. All times are in 24 hour
format and in the same time zone. There is some noise in the values.

conformance to the conformance constraints is more critical for accurate inference than its

conformance to the training data distribution. This is because any violation of conformance

constraints is likely to result in a catastrophic failure of a learned model that is built upon the

assumption that the conformance constraints will always hold. Thus, we can use a tuple’s

deviation from the conformance constraints as a proxy for the trust on a learned model’s

inference for that tuple. We proceed to describe a real-world example of conformance

constraints, drawn from our case-study evaluation on trusted machine learning (TML).

Example 5.1. We used a dataset with flight information that includes data on departure

and arrival times, flight duration, etc. (Fig. 5.1) to train a linear regression model to predict

flight delays. The model was trained on a subset of the data that happened to include only

daytime flights (such as the first four tuples). In an empirical evaluation of the regression

accuracy, we found that the mean absolute error of the regression output more than quadru-

ples for overnight flights (such as the last tuple t5), compared to daytime flights. The reason

is that tuples representing overnight flights deviate from the profile of the training data that

only contained daytime flights. Specifically, daytime flights satisfy the conformance con-

straint that “arrival time is later than departure time and their difference is very close to the

flight duration”, which does not hold for overnight flights. Note that this constraint is just

based on the covariates (predictors) and does not involve the target attribute delay. Criti-

cally, although this conformance constraint is unaware of the regression task, it was still a
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good proxy of the regressor’s performance. In contrast, approaches that model data likeli-

hood may report long daytime flights as unlikely, since all flights in the training data (t1–t4)

were also short flights, resulting in false alarms, as the model works very well for most day-

time flights, regardless of the duration (i.e., for both short and long daytime flights).

Example 5.1 demonstrates that when training data has coincidental relationships (e.g.,

the one between AT , DT , and DUR for daytime flights), then ML models may implicitly

assume them as invariants. Conformance constraints can capture such data invariants and

flag non-conforming tuples (overnight flights) during serving.

Conformance constraints. Conformance constraints complement the existing data pro-

filing literature, as the existing constraint models, such as functional dependencies and

denial constraints, cannot model arithmetic relationships. For example, the conformance

constraint of Example 5.1 is: ≠‘1 Æ AT ≠ DT ≠ DUR Æ ‘2, where ‘1 and ‘2 are small

values. Conformance constraints can capture complex linear dependencies across attributes

within a noisy dataset. For example, if the flight departure and arrival data reported the

hours and the minutes across separate attributes, the constraint would be on a different

arithmetic expression: (60 ·arrHour+arrMin)≠(60 ·depHour+depMin)≠duration.

The core component of a conformance constraint is the arithmetic expression, called

projection, which is obtained by a linear combination of the numerical attributes. There

is an unbounded number of projections that we can use to form arbitrary conformance

constraints. For example, for the projection AT , we can find a broad range [‘3, ‘4], such

that all training tuples in Example 5.1 satisfy the conformance constraint ‘3 Æ AT Æ ‘4.

However, this constraint is too inclusive and a learned model is unlikely to exploit such

a weak constraint. In contrast, the projection AT ≠ DT ≠ DUR leads to a stronger

conformance constraint with a narrow range as its bounds, which is selectively permissible,

and thus more effective.

93



Challenges and solution sketch. The principal challenge is to discover an effective set

of conformance constraints that are likely to affect a model’s inference implicitly. We first

characterize “good” projections (that construct effective constraints) and then propose a

method to discover them. We establish through theoretical analysis two important results:

(1) A projection is good over a dataset if it is almost constant (i.e., has low variance) for

all tuples in that dataset. (2) A set of projections, collectively, is good if the projections

have small pair-wise correlations. We show that low variance components of a principal

component analysis (PCA) on a dataset yield such a set of projections. Note that this is dif-

ferent from—and in fact completely opposite to—the traditional approaches (e.g., [263])

that perform multidimensional analysis based on the high-variance principal components,

after reducing dimensionality using PCA.

Scope. Figure 5.2 summarizes prior work on related problems, but the scope of our set-

ting differs significantly. Specifically, we can detect if a serving tuple is non-conforming

with respect to the training dataset only based on its predictor attributes, and require no

knowledge of the ground truth. This setting is essential in many practical applications

when we observe extreme verification latency [69], where ground truths for serving tu-

ples are not immediately available. For example, consider a self-driving car that is using

a trained controller to generate actions based on readings of velocity, relative positions of

obstacles, and their velocities. In this case, we need to determine, only based on the sensor

readings (predictors), when the driver should be alerted to take over vehicle control.

Furthermore, we do not assume access to the model, i.e., model’s predictions on a given

tuple. This setting is also necessary for (1) safety-critical applications, where the goal is

to alert the user as early as possible, without waiting for the availability of the prediction,

(2) auditing and privacy-preserving applications where the prediction cannot be shared, and

(3) when we are unaware of the detailed functionality of the system due to privacy concerns

or lack of jurisdiction, but only have some meta-information such as the system trains some

linear model over the training data.
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Legend constraints violation setting technique TML
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Figure 5.2: Conformance constraints complement existing data profiling primitives and
provide a mechanism to quantify trust in prediction, with minimal assumption on the set-
ting. We provide an efficient and scalable technique to discover conformance constraints.

We focus on identifying tuple-level non-conformance as opposed to dataset-level non-

conformance that usually requires observing entire data’s distribution. However, our tuple-

level approach trivially extends (by aggregation) to the entire dataset.

Contrast with prior art. We now discuss where conformance constraints fit with respect

to the existing literature on data profiling and literature on modeling trust in data-driven

inferences (Figure 5.2).

Data profiling techniques. Conformance constraints fall under the umbrella of data pro-

filing, which refers to the task of extracting technical metadata about a given dataset [1].

A key task in data profiling is to learn relationships among attributes. Functional depen-

dencies (FD) [251] and their variants only capture if a relationship exists between two sets

of attributes, but do not provide a closed-form (parametric) expression of the relationship.
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Using the FD {AT, DT} æ {DUR} to model the constraint of Example 5.1 suffers from

several limitations. First, since the data is noisy, in the traditional setting, no FD would

be learned. Metric FDs [187] allow small variations in the data, but the users are required

to supply appropriate distance metrics and thresholds. For example, if the attribute time

is split across two separate attributes (hour and minute), the distance metric is nontriv-

ial and involves multiple attributes: it needs to encode that Èhour = 4, min = 59Í and

Èhour = 5, min = 1Í are similar, while Èhour = 4, min = 1Í and Èhour = 5, min = 59Í

are not. In contrast, projections of conformance constraints can model the composite at-

tribute: 60 · hour + minute. We also automatically discover the coefficients (60 and 1) for

such a composite attribute.

Denial constraints (DC) [42, 61, 215, 258] encapsulate a number of different data-

profiling primitives such as FDs and their variants (e.g, [90]). Exact DCs can adjust to

noisy data by adding predicates until the constraint becomes exact over the entire dataset,

but this can make the constraint extremely large and complex, which might even fail to

provide the desired generalization. For example, a finite DC—whose language is limited

to universally quantified first-order logic—cannot model the constraint of Example 5.1,

which involves an arithmetic expression (addition and multiplication with a constant). Ex-

pressing conformance constraints requires a richer language that includes linear arithmetic

expressions. Pattern functional dependencies [265] move towards addressing this limita-

tion of DCs using regular expressions, but they focus on text attributes. Pattern functional

dependencies (PFD) [265] move towards addressing this limitation of DCs, but they focus

on text attributes: they are regex-based and treat digits as characters. However, modeling

arithmetic relationships of numerical attributes requires interpreting digits as numbers.

To adjust for noise, FDs and DCs either relax the notion of constraint violation or

allow a user-defined fraction of tuples to violate the (strict) constraint [53, 150, 155, 187,

190, 215, 258]. Some approaches [155, 337, 349] use statistical techniques to model other

types of data profiles such as correlations and conditional dependencies. However, they
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require additional parameters such as noise and violation thresholds and distance metrics.

In contrast, conformance constraints do not require any parameter from the user and work

on noisy datasets.

Existing data profiling techniques are not designed to learn what ML models exploit and

they are sensitive to noise in the numerical attributes. Moreover, data constraint discovery

algorithms typically search over an exponential set of candidates, and hence, are not scal-

able: their complexity grows exponentially with the number of attributes or quadratically

with data size. In contrast, our technique for deriving conformance constraints is highly

scalable (linear in data size) and efficient (cubic in the number of attributes). It does not

explicitly explore the candidate space, as PCA—which lies at the core of our technique—

performs the search implicitly by iteratively refining weaker constraints to stronger ones.

Learning techniques. While ordinary least square (OLS)—commonly known as linear

regression—finds the lowest-variance projection, it minimizes observational error on only

the target attribute, and thus does not apply to our setting. Total least square (TLS)—also

known as orthogonal regression—offers a partial solution to our problem as it takes ob-

servational errors on all predictor attributes into account. However, TLS finds only one

projection—the one with the lowest variance—that fits the data tuples best. But there may

exist other projections with slightly higher variances and conformance constraints consider

them all. As we show empirically in Section 5.5.3, constraints derived from multiple pro-

jections, collectively, capture various aspects of the data, and result in an effective data

profile targeted towards certain tasks such as data-drift quantification.

Few work [71, 138] use autoencoder’s [141, 279] input reconstruction error to deter-

mine if a new data point is out-of-distribution. Another mechanism [217] learns data asser-

tions via autoencoders towards effective detection of invalid serving inputs. However, such

an approach is task-specific and needs a specific system (e.g., a deep neural network) to

begin with. We also share similarity with one-class-classification [309], where the training

data contains tuples from only one class. However, conformance constraints differ from
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these approaches as it performs under the additional requirement to generalize the data in

a way that is exploited by a given class of ML models. In general, there is a clear gap

between representation learning (that models data likelihood) [3, 141, 177, 279] and the

(constraint-oriented) data-profiling techniques to address the problem of trusted AI. Our

aim is to bridge this gap by introducing conformance constraints that are more abstract, yet

informative, descriptions of data, tailored towards characterizing trust in ML predictions.

While some recent techniques [71, 138, 164, 289] aim at validating the inferences made

by machine-learned models on unseen tuples, they usually require knowledge of the infer-

ence task and/or access to the model, which we do not. Furthermore, these techniques

usually require costly hyper-parameter tuning and do not generate closed-form data pro-

files like conformance constraints (Figure 5.2).

Contributions. We make the following contributions:

• We ground the motivation of our work with two case studies on trusted machine

learning (TML) and data drift. (Section 5.1)

• We introduce and formalize conformance constraints, a new data profiling primitive

that specify constraints over arithmetic relationships among numerical attributes of

a dataset. We describe a conformance language to express conformance constraints,

and a quantitative semantics to quantify how much a tuple violates the conformance

constraints. In applications of constraint violations, some violations may be more or

less critical than others. To capture that, we consider a notion of constraint impor-

tance, and weigh violations against constraints accordingly. (Section 5.2)

• We formally establish that strong conformance constraints are constructed from pro-

jections with small variance and small mutual correlation on the given dataset. Be-

yond simple linear constraints (e.g., the one in Example 5.1), we derive disjunctive

constraints, which are disjunctions of linear constraints. We achieve this by dividing
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the dataset into disjoint partitions, and learning linear constraints for each partition.

We provide an efficient, scalable, and highly parallelizable algorithm for computing

a set of linear conformance constraints and disjunctions over them. We also analyze

its runtime and memory complexity. (Section 5.3)

• We formalize the notion of unsafe tuples in the context of trusted machine learn-

ing and provide a mechanism to detect unsafe tuples using conformance constraints.

(Section 5.4)

• We empirically analyze the effectiveness of conformance constraints in our two case-

study applications—TML and data-drift quantification. We show that conformance

constraints can reliably predict the trustworthiness of linear models and quantify data

drift precisely, outperforming the state of the art. (Section 5.5)

• We demonstrate two tools COCO and EXTUNE that are built on conformance con-

straints and can help in data understanding and data cleaning, and explaining causes

of tuple non-conformance, respectively.

5.1 Case Studies
Like other data-profiling primitives, conformance constraints have general applicabil-

ity in understanding and describing datasets. But their true power lies in quantifying the

degree of a tuple’s non-conformance with respect to a reference dataset. Within the scope

of this work, we focus on two case studies to motivate our work. We provide an extensive

evaluation over these applications in Section 5.5.

Trusted machine learning (TML) refers to the problem of quantifying trust in the infer-

ence made by a machine-learned model on a new serving tuple [164, 276, 286, 311, 319].

When a model is trained using a dataset, the conformance constraints for that dataset spec-

ify a safety envelope [311] that characterizes the tuples for which the model is expected
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to make trustworthy predictions. If a serving tuple falls outside the safety envelope (vio-

lates the conformance constraints), then the model is likely to produce an untrustworthy

inference. Intuitively, the higher the violation, the lower the trust. Some classifiers pro-

duce a confidence measure along with the class prediction, typically by applying a softmax

function to the raw numeric prediction values. However, such a confidence measure is not

well-calibrated [129, 164], and therefore, cannot be reliably used as a measure of trust in

the prediction. Additionally, a similar mechanism is not available for inferences made by

regression models.

In the context of TML, we formalize the notion of unsafe tuples, on which the predic-

tion may be untrustworthy. We establish that conformance constraints provide a sound and

complete procedure for detecting unsafe tuples, which indicates that the search for confor-

mance constraints should be guided by the class of models considered by the corresponding

learning system (Section 5.4).

Data drift [28, 115, 194, 263] specifies a significant change in a dataset with respect to

a reference dataset, which typically requires that systems be updated and models retrained.

To quantify how much a dataset DÕ drifted from a reference dataset D, our three-step

approach is: (1) compute conformance constraints for D, (2) evaluate the constraints on

all tuples in DÕ and compute their violations (degrees of non-conformance), and (3) finally,

aggregate the tuple-level violations to get a dataset-level violation. If all tuples in DÕ satisfy

the constraints, then we have no evidence of drift. Otherwise, the aggregated violation

serves as the drift quantity.

5.2 Conformance Constraints
In this section, we first provide the general definition of conformance constraints. Then

we propose a language for representing them. Finally, we define quantitative semantics

over conformance constraints, which allows us to quantify their violation.
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Basic notations. Let R(A1, A2, . . . , Am) denote a relation schema where Ai denotes the

ith attribute of R. We use Domi to denote the domain of attribute Ai. Then the set Domm =

Dom1 ◊ · · ·◊Domm specifies the domain of all possible tuples. We use t œ Domm to denote

a tuple in the schema R. A dataset D ™ Domm is a specific instance of the schema R.

For ease of notation, we assume some order of tuples in D and we use ti œ D to refer to

the ith tuple and ti.Aj œ Domj to denote the value of the jth attribute of ti.

5.2.1 Conformance Constraint

A conformance constraint � characterizes a set of allowable or conforming tuples and

is expressed through a conformance language (Section 5.2.2). We write �(t) and ¬�(t) to

denote that t satisfies and violates �, respectively.

Definition 5.1 (Conformance constraint). A conformance constraint for a dataset D ™ Domm

is a formula � : Domm
‘æ {True, False} such that |{t œ D | ¬�(t)}| π |D|.

The set {t œ D | ¬�(t)} denotes atypical tuples in D that do not satisfy the confor-

mance constraint �. In our work, we do not need to know the set of atypical tuples, nor do

we need to purge the atypical tuples from the dataset. Our techniques derive constraints in

ways that ensure there are very few atypical tuples (Section 5.3).

5.2.2 Conformance Language

Projection. A central concept in our conformance language is

projection. Intuitively, a projection is a derived attribute that specifies a “lens” through

which we look at the tuples. More formally, a projection is a function F : Domm
‘æ R

that maps a tuple t œ Domm to a real number F (t) œ R. In our language for confor-

mance constraints, we only consider projections that correspond to linear combinations of

the numerical attributes of a dataset. Specifically, to define a projection, we need a set of

numerical coefficients for all attributes of the dataset and the projection is defined as a sum

over the attributes, weighted by their corresponding coefficients. We extend a projection
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F to a dataset D by defining F (D) to be the sequence of reals obtained by applying F on

each tuple in D individually.

Grammar. Our language for conformance constraints consists of formulas � generated

by the following grammar:

„ := lb Æ F (Ą) Æ ub | ·(„, . . . , „)

ÂA := ‚( (A = c1)⇤ „, (A = c2)⇤ „, . . .)

� := ÂA | ·(ÂA1 , ÂA2 , . . .)

� := „ | �

The language consists of (1) bounded constraints lb Æ F (Ą) Æ ub where F is a projection

on Domm, Ą is the tuple of formal parameters (A1, A2, . . . , Am), and lb, ub œ R are reals;

(2) equality constraints A = c where A is an attribute and c is a constant in A’s domain; and

(3) operators (⇤, ·, and ‚,) that connect the constraints. Intuitively,⇤ is a switch operator

that specifies which constraint „ applies based on the value of the attribute A, · denotes

conjunction, and ‚ denotes disjunction. Formulas generated by „ and � are called simple

constraints and compound constraints, respectively. Note that a formula generated by ÂA

only allows equality constraints on a single attribute, namely A, among all the disjuncts.

Example 5.2. Consider the dataset D consisting of the first four tuples {t1, t2, t3, t4} of

Figure 5.1. A simple constraint for D is:

„1 : ≠5 Æ AT ≠ DT ≠ DUR Æ 5.

Here, the projection F (Ą)=AT≠DT≠DUR, with attribute coefficients È1, ≠1, ≠1Í, lb=≠5,

and ub=5. A compound constraint is:
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Â2 : M = “May”⇤≠2 Æ AT ≠ DT ≠ DUR Æ 0

‚ M = “June”⇤ 0 Æ AT ≠ DT ≠ DUR Æ 5

‚ M = “July”⇤≠5 Æ AT ≠ DT ≠ DUR Æ 0

For ease of exposition, we assume that all times are converted to minutes (e.g., 06:10

= 6◊60+10 = 370) and M denotes the departure month, extracted from Departure

Date.

5.2.3 Quantitative Semantics

Conformance constraints have a natural Boolean semantics: a tuple either satisfies a

constraint or it does not. However, Boolean semantics is of limited use in practice, be-

cause it does not quantify the degree of constraint violation. We interpret conformance

constraints using a quantitative semantics, which quantifies violations, and reacts to noise

more gracefully than Boolean semantics.

The quantitative semantics [[�]](t) is a measure of the violation of � on a tuple t—with

a value of 0 indicating no violation and a value greater than 0 indicating some violation. In

Boolean semantics, if �(t) is True, then [[�]](t) will be 0; and if �(t) is False, then [[�]](t)

will be 1. Formally, [[�]] is a mapping from Domm to [0, 1].

Quantitative semantics of simple constraints. We build upon ‘-insensitive loss [317] to

define the quantitative semantics of simple constraints, where the bounds lb and ub define

the ‘-insensitive zone:

[[lb Æ F (Ą) Æ ub]](t) := ÷(– · max(0, F (t) ≠ ub, lb ≠ F (t)))

[[·(„1, . . . , „K)]](t) := qK
k “k · [[„k]](t)

The quantitative semantics uses the following parameters:
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Scaling factor – œ R+. Projections are unconstrained functions and different projections

can map the same tuple to vastly different values. We use a scaling factor – to standardize

the values computed by a projection F , and to bring the values of different projections to

the same comparable scale. The scaling factor is automatically computed as the inverse of

the standard deviation: 1
‡(F (D)) . We set – to a large positive number when ‡(F (D)) = 0.

Normalization function ÷(.) : R ‘æ [0, 1]. The normalization function maps values in

the range [0, Œ) to the range [0, 1). While any monotone mapping from RØ0 to [0, 1) can

be used, we pick ÷(z) = 1 ≠ e≠z.

Importance factors “k œ R+, qK
k “k=1. The weights “k control the contribution of

each bounded-projection constraint in a conjunctive formula. This allows for prioritizing

constraints that are more significant than others. In our work, we derive the importance

factor of a constraint automatically, based on its projection’s standard deviation over D.

Our technique for deriving (unnormalized) importance factor “k, for bounded-projection

constraint on projection Fk, uses the mapping 1
log(2+‡(Fk(D))) . This mapping correctly trans-

lates our principles for quantifying violation by putting high weight on conformance con-

straints constructed from low-variance projections, and low weight on conformance con-

straints constructed from high-variance projections. While this mapping works extremely

well across a large set of applications (including the ones shown in our experimental re-

sults), our quantitative semantics are not limited to any specific mapping. In fact, the func-

tion to compute importance factors for bounded-projections can be user-defined (but we do

not require it from the user). Specifically, a user can plug in any custom function to derive

the (unnormalized) importance factors. Furthermore, our technique to compute the bounds

lb and ub can also be customized (but we do not require it from the user either). Depend-

ing on the application requirements, one can apply techniques used in machine learning

literature (e.g., cross-validation) to tighten or loosen the conformance constraints by tuning
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these parameters. However, we found our technique—even without any cross-validation—

for deriving these parameters to be very effective in most practical applications.

5.2.3.1 Quantitative Semantics of Compound Constraints

Compound constraints are first simplified into simple constraints, and they get their

meaning from the simplified form. We define a function simp(Â, t) that takes a compound

constraint Â and a tuple t and returns a simple constraint:

simp(‚( (A = c1)⇤ „1, (A = c2)⇤ „2, . . .), t) := „k if t.A = ck

simp(·(ÂA1 , ÂA2 , . . .), t) := ·(simp(ÂA1 , t), simp(ÂA2 , t), . . .)

If the condition in the definition above does not hold for any ck, then simp(Â, t) is undefined

and simp(·(. . . , Â, . . . ), t) is also undefined. If simp(Â, t) is undefined, then [[Â]](t) := 1.

When simp(Â, t) is defined, the quantitative semantics of Â is given by:

[[Â]](t) := [[simp(Â, t)]](t)

Since compound constraints simplify to simple constraints, we mostly focus on simple

constraints. Even there, we pay special attention to bounded-projection constraints („) of

the form lb Æ F (Ą) Æ ub, which lie at the core of simple constraints.

Example 5.3. Consider the constraint „1 from Example 5.2. For t œ D, [[„1]](t) = 0

since „1 is satisfied by all tuples in D. The standard deviation of the projection F over D,

‡(F (D))=‡({0, ≠5, 5, ≠2})=3.6. Now consider the last tuple t5 ”œ D. F (t5) = (370 ≠

1350) ≠ 458 = ≠1438, which is way below the lower bound ≠5 of „1. Now we compute

how much t5 violates „1: [[„1]](t5) = [[≠5 Æ F (Ą) Æ 5]](t5) = ÷(– · max(0, ≠1438 ≠

5, ≠5 + 1438)) = 1 ≠ e≠ 1433
3.6 ¥ 1. Intuitively, this implies that t5 strongly violates „1.
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5.3 Conformance Constraint Synthesis
In this section, we describe our techniques for deriving conformance constraints. We

start with the synthesis of simple constraints (the „ constraints in our language specifica-

tion), followed by compound constraints (the � constraints in our language specification).

Finally, we analyze the time and memory complexity of our algorithm.

5.3.1 Simple Conformance Constraints

Synthesizing simple conformance constraints involves (a) discovering the projections,

and (b) discovering the lower and upper bounds for each projection. We start by discussing

the latter task (b). We then describe a principle for identifying effective projections, based

on which we solve task (a).

5.3.1.1 Synthesizing Bounds for Projections

Fix a projection F and consider the bounded-projection constraint „: lb Æ F (Ą) Æ

ub. Given a dataset D, a trivial choice for the bounds is: lb = min(F (D)) and ub =

max(F (D)). However, this choice is very sensitive to noise: adding a single atypical

tuple to D can produce very different constraints. Instead, we use a more robust choice as

follows:

lb = µ(F (D)) ≠ C · ‡(F (D)), ub = µ(F (D)) + C · ‡(F (D))

Here, µ(F (D)) and ‡(F (D)) denote the mean and standard deviation of the values in

F (D), respectively, and C is some positive constant. With these bounds, [[„]](t) = 0 im-

plies that F (t) is within C ◊‡(F (D)) from the mean µ(F (D)). In our experiments, we set

C = 4, which ensures that in expectation, very few tuples in D will violate the constraint

for many distributions of the values in F (D). Specifically, if F (D) follows a normal distri-

bution, 99.99% of the population is expected to lie within 4 standard deviations from mean.

Note that we make no assumption on the original data distribution of each attribute.
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Setting the bounds lb and ub as C · ‡(F (D))-away from the mean, and the scaling

factor – as 1
‡(F (D)) , guarantees the following property for our quantitative semantics:

Lemma 5.1. Let D be a dataset and let „k be lbk Æ Fk(Ą) Æ ubk for k = 1, 2. Then, for

any tuple t, if |F1(t)≠µ(F1(D))|
‡(F1(D)) Ø

|F2(t)≠µ(F2(D))|
‡(F2(D)) , then [[„1]](t) Ø [[„2]](t).

This means that larger deviation from the mean (proportionally to the standard devia-

tion) results in higher degree of violation under our semantics. The proof follows from the

fact that the normalization function ÷(.) is monotonically increasing, and hence, [[„k]](t) is

a monotonically non-decreasing function of |Fk(t)≠µ(Fk(D))|
‡(Fk(D)) .

5.3.1.2 Principle for Synthesizing Projections

To understand how to derive the projections for effective conformance constraints, we

need to first understand what makes a constraint more effective than others. Primarily, an

effective constraint (1) should not overfit the data, but rather generalize by capturing the

properties of the data, and (2) should not underfit the data, because it would be too per-

missive and fail to identify deviations effectively. Our flexible bounds (Section 5.3.1.1)

serve to avoid overfitting. In this section, we focus on identifying the principles that help

us avoid underfitting. We first describe the key technical ideas for characterizing effective

projections through example and then proceed to formalization.

Example 5.4. Let D be a dataset of three tuples {(1,1.1),(2,1.7),(3,3.2)} with two at-

tributes X and Y . Consider two arbitrary projections: X and Y . For the projection

X: µ(X(D)) = 2 and ‡(X(D)) = 0.8. So bounds for its conformance constraint are:

lb = 2 ≠ 4 ◊ 0.8 = ≠1.2 and ub = 2 + 4 ◊ 0.8 = 5.2. This gives us the conformance con-

straint: ≠1.2 Æ X Æ 5.2. Similarly, for projection Y , we get the conformance constraint:

≠1.6 Æ Y Æ 5.6. Figure 5.3(a) shows the conformance zone (clear region) defined by

these two conformance constraints. The shaded region depicts non-conformance zone. The

conformance zone is large and too permissive: it allows many atypical tuples with respect

to D, such as (0, 4) and (4, 0).
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A natural question arises: are there other projections that can better characterize con-

formance with respect to the tuples in D? The answer is yes and next we show another pair

of projections that shrink the conformance zone significantly.

Example 5.5. In Figure 5.3(b), the clear region is defined by the conformance constraints

≠0.8 Æ X ≠ Y Æ 0.8 and ≠2.8 Æ X + Y Æ 10.8, over projections X ≠ Y and X + Y ,

respectively. The clear region here is indeed much smaller than the one in Figure 5.3(a)

and contains much fewer atypical tuples.

How can we derive projection X ≠ Y from the projections X and Y , given D? Note

that X and Y are highly correlated in D. In Lemma 5.2, we show that two highly cor-

related projections can be linearly combined to construct another projection with lower

standard deviation that generates a stronger constraint. We proceed to formalize stronger

constraint—which defines whether a constraint is more effective than another in quanti-

fying violation—and incongruous tuples—which help us estimate the subset of the data

domain for which a constraint is stronger than the others.

Definition 5.2 (Stronger constraint). A conformance constraint „1 is stronger than another

conformance constraint „2 on a subset H ™ Domm if ’t œ H, [[„1]](t) Ø [[„2]](t).

Given a dataset D ™ Domm and a projection F , for any tuple t, let �F (t) = F (t) ≠

µ(F (D)). For projections F1 and F2, the correlation coefficient flF1,F2 (over D) is defined

as
1

|D|
q

tœD
�F1(t)�F2(t)

‡(F1(D))‡(F2(D)) .

Definition 5.3 (Incongruous tuple). A tuple t is incongruous w.r.t. a projection pairÈF1, F2Í

on D if: �F1(t) · �F2(t) · flF1,F2 < 0.

Informally, an incongruous tuple for a pair of projections does not follow the general

trend of correlation between the projection pair. For example, if F1 and F2 are positively

correlated (flF1,F2 > 0), an incongruous tuple t deviates in opposite ways from the mean

of each projection (�F1(t) · �F2(t) < 0). Our goal is to find projections that yield a

conformance zone with very few incongruous tuples.
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(a) (b)

Figure 5.3: Clear and shaded regions depict conformance and non-conformance zones,
respectively. (a) Correlated projections X and Y yield conformance constraints forming
a large conformance zone, (b) Uncorrelated (orthogonal) projections X ≠ Y and X + Y
yield conformance constraints forming a smaller conformance zone.

Example 5.6. In Example 5.4, X and Y are positively correlated with flX,Y ¥ 1. The

tuple t = (0, 4) is incongruous w.r.t. ÈX, Y Í, because X(t) = 0 < µ(X(D)) = 2,

whereas Y (t) = 4 > µ(Y (D)) = 2. Intuitively, the incongruous tuples do not behave

like the tuples in D when viewed through the projections X and Y . Note that the narrow

conformance zone of Figure 5.3(b) no longer contains the incongruous tuple (0, 4). In fact,

the conformance zone defined by the conformance constraints derived from projections

X ≠ Y and X + Y are free from a vast majority of the incongruous tuples.

We proceed to state Lemma 5.2, which informally says that: any two highly correlated

projections can be linearly combined to construct a new projection to obtain a stronger con-

straint. We write „F to denote the conformance constraint lb Æ F (Ą) Æ ub, synthesized

from F (proof is in Appendix B.1).

Lemma 5.2. Let D be a dataset and F1, F2 be two projections on D s.t. |flF1,F2| Ø
1
2 . Then,

÷—1, —2 œ R s.t. —2
1 + —2

2 = 1 and for the new projection F = —1F1 + —2F2:

(1) ‡(F (D)) < ‡(F1(D)) and ‡(F (D)) < ‡(F2(D)), and
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(2) „F is stronger than both „F1 and „F2 on the set of tuples that are incongruous w.r.t.

ÈF1, F2Í.

We now extend the result to multiple projections in Theorem 5.1 (proof is in Appendix B.2).

Theorem 5.1 (Low Standard Deviation Constraints). Given a dataset D, let

F={F1, . . . , FK} denote a set of projections on D s.t. ÷Fi, FjœF with |flFi,Fj
|Ø

1
2 . Then,

there exist a nonempty subset I™{1, . . . , K} and a projection F= q
kœI —kFk, where —kœR

s.t.

(1) ’k œ I , ‡(F (D)) < ‡(Fk(D)),

(2) ’k œ I , „F is stronger than „Fk
on the subset H , where

H={t | ’kœI(—k�Fk(t)Ø0) ‚ ’kœI(—k�Fk(t)Æ0)}, and

(3) ’k ”œ I , |flF,Fk
| < 1

2 .

The theorem establishes that to detect violations for tuples in H: (1) projections with

low standard deviations define stronger constraints (and, thus, are preferable), and (2) a

set of constraints with highly correlated projections is suboptimal (as they can be linearly

combined to generate stronger constraints). Note that H is a conservative estimate for the

set of tuples where „F is stronger than each „Fk
; there exist tuples outside H for which „F

is stronger.

5.3.1.3 PCA-inspired Projection Derivation

Theorem 5.1 sets the requirements for good projections (see also [194, 225, 315] that

make similar observations in different ways). It indicates that we can start with any arbi-

trary projections and then iteratively improve them. However, we can get the desired set of

best projections in one shot using an algorithm inspired by principal component analysis

(PCA). PCA relies on computing eigenvectors. There exist different algorithms for com-

puting eigenvectors (from the infinite space of possible vectors). The general mechanism
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involves applying numerical approaches to iteratively converge to the eigenvectors (up to

a desired precision) as no analytical solution exists in general. Our algorithm returns pro-

jections that correspond to the principal components of a slightly modified version of the

given dataset. Algorithm 2 details our approach for discovering projections for constructing

conformance constraints:

Line 1 Drop all non-numerical attributes from D to get the numeric dataset DN . This

is necessary because PCA only applies to numerical values. Instead of dropping,

one can also consider embedding techniques to convert non-numerical attributes to

numerical ones.

Line 2 Add a new column to DN that consists of the constant 1, to obtain the modified

dataset DÕ
N := [̨1; DN ], where 1̨ denotes the column vector with 1 everywhere. We

do this transformation to capture the additive constant within principal components,

which ensures that the approach works even for unnormalized data.

Line 3 Compute K eigenvectors of the square matrix DÕ
N

T DÕ
N , where K denotes the num-

ber of columns in DÕ
N . These eigenvectors provide coefficients to construct projec-

tions.

Lines 5–6 Remove the first element (coefficient for the newly added constant column) of

all eigenvectors and normalize them to generate projections. Note that we no longer

need the constant element of the eigenvectors since we can appropriately adjust the

bounds, lb and ub, for each projection by evaluating it on DN .

Line 7 Compute importance factor for each projection. Since projections with smaller

standard deviations are more discerning (stronger), as discussed in Section 5.2.3, we

assign each projection an importance factor (“) that is inversely proportional to its

standard deviation over DN .

Line 8 Return the projections with corresponding normalized importance factors.
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Algorithm 2: Procedure to generate linear projections.
Inputs : A dataset D µ Domm

Output : A set {(F1, “1), . . . , (FK , “K)} of projections and importance factors
1 DN Ω D after dropping non-numerical attributes
2 DÕ

N Ω [̨1; DN ]
3 {w̨1, . . . , w̨K} Ω eigenvectors of DÕ

N
T DÕ

N
4 foreach 1 Æ k Æ K do
5 w̨Õ

k Ω w̨k with first element removed

6 Fk Ω ⁄Ą : ĄT w̨Õ
k

||w̨Õ
k

||
7 “k Ω

1
log(2+‡(Fk(DN )))

8 return {(F1, “1
Z ), . . . , (FK , “K

Z )}, where Z = q
k “k

We now claim in Theorem 5.2 that the projections returned by Algorithm 2 include the

projection with minimum standard deviation and the correlation between any two projec-

tions is 0 (proof is in Appendix B.3). This indicates that we cannot further improve the

projections: they are optimal.

Theorem 5.2 (Correctness of Algorithm 2). Given a numerical dataset D, let F =

{F1, F2, . . . , FK} be the set of linear projections returned by Algorithm 2. Let ‡ú =

minK
k ‡(Fk(D)). Then,

(1) ‡ú
Æ ‡(F (D)) for every possible linear projection F , and

(2) ’Fj, Fk œ F s.t. Fj ”= Fk, flFj ,Fk
= 0.

Using projections F1, . . . , FK , and importance factors “1, . . . , “K , returned by Algo-

rithm 2, we generate the simple (conjunctive) constraint with K conjuncts:
w

k lbk Æ

Fk(Ą) Æ ubk. We compute the bounds lbk and ubk following Section 5.3.1.1 and use

the importance factor “k for the kth conjunct in the quantitative semantics.

Example 5.7. Algorithm 2 finds the projection of the conformance constraint of Exam-

ple 5.1, but in a different form. The actual airlines dataset has an attribute distance (DIS)
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that represents miles travelled by a flight. In our experiments, we found the following con-

formance constraint1 over the dataset of daytime flights:

0.7 ◊ AT ≠ 0.7 ◊ DT ≠ 0.14 ◊ DUR ≠ 0.07 ◊ DIS ¥ 0 (5.1)

This constraint is not quite interpretable by itself, but it is in fact a linear combination of

two expected and interpretable constraints:

AT ≠ DT ≠ DUR ¥ 0 (5.2)

DUR ≠ 0.12 ◊ DIS ¥ 0 (5.3)

Here, (5.2) is the one mentioned in Example 5.1 and (5.3) follows from the fact that average

aircraft speed is about 500 mph implying that it requires 0.12 minutes per mile. 0.7 ◊ (5.2)

+ 0.56 ◊ (5.3) yields:

0.7 ◊ (AT ≠ DT ≠ DUR) + 0.56 ◊ DUR ≠ 0.56 ◊ 0.12 ◊ DIS ¥ 0

=∆ 0.7 ◊ AT ≠ 0.7 ◊ DT ≠ 0.14 ◊ DUR ≠ 0.07 ◊ DIS ¥ 0

Which is exactly the conformance constraint (5.1). Algorithm 2 found the optimal projec-

tion of (5.1), which is a linear combination of the projections of (5.2) and (5.3). The reason

is: there is a correlation between the projections of (5.2) and (5.3) over the dataset (Theo-

rem 5.1). One possible explanation of this correlation is: whenever there is an error in the

reported duration of a tuple, it violates both (5.2) and (5.3). Due to this natural correla-

tion, Algorithm 2 returned the optimal projection of (5.1), that “covers” both projections

of (5.2) or (5.3).

1For ease of exposition, we show conformance constraint of the form ‘1 Æ F (Ą) Æ ‘2 in the form
F (Ą) ¥ 0, where |‘1| ¥ 0 and |‘2| ¥ 0.
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5.3.2 Compound Conformance Constraints

The quality of our PCA-based simple linear constraints relies on how many low vari-

ance linear projections we are able to find on the given dataset. For many datasets, it is

possible we find very few, or even none, such linear projections. In these cases, it is fruitful

to search for compound constraints; we first focus on disjunctive constraints (defined by

ÂA in our language grammar).

Example 5.8. PCA-based approach fails in cases where there exist different piecewise

linear trends within the data. If we apply PCA to learn conformance constraints on the

entire dataset of Figure 5.4(a), it will learn two low-quality constraints, with very high

variance. In contrast, partitioning the dataset into three partitions (Figure 5.4(b)), and then

learning constraints separately on each partition, will result in significant improvement of

the learned constraints.

A disjunctive constraint is a compound constraint of the form
x

k((A = ck)⇤„k), where

each „k is a constraint for a specific partition of D. Finding disjunctive constraints involves

horizontally partitioning the dataset D into smaller disjoint datasets D1, D2, . . . , DL. Our

strategy for partitioning D is to use categorical attributes with a small domain in D; in our

implementation, we use those attributes Aj for which |{t.Aj|t œ D}| Æ 50. If Aj is such an

attribute with values v1, v2, . . . , vL, we partition D into L disjoint datasets D1, D2, . . . , DL,

where Dl = {t œ D|t.Aj = vl}. Let „1, „2, . . . , „L be the L simple conformance con-

straints we learn for D1, D2, . . . , DL using Algorithm 2, respectively. We compute the

following disjunctive conformance constraint for D:

((Aj = v1)⇤ „1) ‚ ((Aj = v2)⇤ „2) ‚ · · · ‚ ((Aj = vL)⇤ „L)

We repeat this process and partition D across multiple attributes and generate a com-

pound disjunctive constraint for each attribute. Finally, we generate a compound conjunc-

tive conformance constraint (�), which is the conjunction of all these compound disjunc-
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tive constraints, as the final conformance constraint for D. Intuitively, the final compound

conformance constraint forms a set of overlapping hyper-boxes around the data tuples.

5.3.3 Complexity Analysis

Runtime Complexity. Computing simple constraints involves two computational steps:

(1) computing XT X , where X is an n ◊ m matrix with n tuples (rows) and m attributes

(columns), which takes O(nm2) time, and (2) computing the eigenvalues and eigenvectors

of an m ◊ m positive definite matrix, which has complexity O(m3) [249]. Once we obtain

the linear projections using the above two steps, we need to compute the mean and vari-

ance of these projections on the original dataset, which takes O(nm2) time. In summary,

the overall procedure is cubic in the number of attributes and linear in the number of tu-

ples. For computing disjunctive constraints, we greedily pick attributes that take at most L

(typically small) distinct values, and then run the above procedure for simple constraints at

most L times. This adds just a constant factor overhead per attribute.

Memory Complexity. The procedure can be implemented in O(m2) space. The key

observation is that XT X can be computed as
qn

i=1 titT
i , where ti is the ith tuple in the

dataset. Thus, XT X can be computed incrementally by loading only one tuple at a time

into memory, computing titT
i , and then adding that to a running sum, which can be stored in

O(m2) space. Note that instead of such an incremental computation, this can also be done

in an embarrassingly parallel way where we horizontally partition the data (row-wise) and

each partition is computed in parallel.Due to such low time and memory complexity, our

approach scales gracefully to large datasets.

5.4 Trusted Machine Learning
In this section, we provide a theoretical justification of why conformance constraints are

effective in identifying tuples for which learned models are likely to make incorrect pre-

dictions. To that end, we define unsafe tuples and show that an “ideal” conformance con-
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Figure 5.4: Learning PCA-based constraints globally results in low quality constraints
when data satisfies strong local constraints.

straint provides a sound and complete mechanism to detect unsafe tuples. In Section 5.3,

we showed that low-variance projections construct strong conformance constraints, which

yield a small conformance zone. We now make a similar argument, but in a slightly differ-

ent way: we show that projections with zero variance give us equality constraints that are

useful for trusted machine learning. We start with an example to provide the intuition.

Example 5.9. Consider the airlines dataset D and assume that all tuples in D satisfy

the equality constraint AT ≠ DT ≠ DUR = 0 (i.e., lb = ub = 0). Note that for

equality constraint, the corresponding projection has zero variance—the lowest possible

variance. Now, suppose that the task is to learn some function f(AT, DT, DUR). If the

above constraint holds for D, then the learning procedure can instead learn the function

g(AT, DT, DUR) = f(DT + DUR, DT, DUR). g will perform just as well as f on D:

in fact, it will produce the same output as f on D. If a new serving tuple t satisfies the con-

straint, then g(t) = f(t), and the prediction will be correct. However, if t does not satisfy

the constraint, then g(t) will likely be significantly different from f(t). Hence, violation of

the conformance constraint is a strong indicator of performance degradation of the learned

prediction model. Note that f need not be a linear function: as long as g is also in the class

of models that the learning procedure is searching over, the above argument holds.
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We proceed to formally define unsafe tuples. We use [D; Y ] to denote the annotated

dataset obtained by appending the target attribute Y to a dataset D, and coDom to denote

Y ’s domain.

Definition 5.4 (Unsafe tuple). Given a class C of functions with signature Domm
‘æ

coDom, and an annotated dataset [D; Y ] µ (Domm
◊ coDom), a tuple t œ Domm is

unsafe w.r.t. C and [D; Y ], if ÷f, g œ C s.t. f(D) = g(D) = Y but f(t) ”= g(t).

Intuitively, t is unsafe if there exist two different predictor functions f and g that agree

on all tuples in D, but disagree on t. Since, we can never be sure whether the learning

procedure learned f or g, we should be cautious about the prediction on t.

Example 5.9 suggests that t can be unsafe when all tuples in D satisfy the equality

conformance constraint f(Ą) ≠ g(Ą) = 0 but t does not. Hence, we can use the following

conformance-constraint-centric approach for trusted machine learning:

1. Learn conformance constraints � for the dataset D.

2. Declare t as unsafe if t does not satisfy �.

The above approach is sound and complete for characterizing unsafe tuples, thanks to

the following proposition.

Proposition 5.1. There exists a conformance constraint � for D s.t. the following statement

is true: “¬�(t) iff t is unsafe w.r.t. C and [D; Y ] for all t œ Domm”.

Proof. We show that the conformance constraint � := ’f, g œ C : f(D) = g(D) ∆

f(t) ≠ g(t) = 0, is the required conformance constraint over D to detect tuples that are

unsafe with respect to C and [D; Y ].

First, we claim that � is a conformance constraint for D. For this, we need to prove

that every tuple in D satisfies �. Consider any tÕ
œ D. We need to prove that f(tÕ) = g(tÕ)

for all f, g œ C s.t. f(D) = g(D) = Y . Since tÕ
œ D, and since f(D) = g(D), it follows

that f(tÕ) = g(tÕ). This shows that � is a conformance constraint for every tuple in D.
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Next, we claim that � is not satisfied by exactly tuples that are unsafe w.r.t. C and

[D; Y ]. Consider any tÕ such that ¬�(tÕ). By definition of �, it follows that there exist

f, g œ C s.t. f(D) = g(D) = Y , but f(tÕ) ”= g(tÕ). This is equivalent to saying that tÕ is

unsafe, by definition.

The required conformance constraint � is: ’f, g œ C : f(D) = g(D) = Y ∆ f(Ą) ≠

g(Ą) = 0, where A denotes the set of predictor attributes in D. Intuitively, the proposition

states that when all possible pairs of functions that agree on D also agree on t, only then

the prediction on t can be (fully) trusted.

5.4.1 Applicability

Generalization to noisy setting. While our analysis and formalization for using confor-

mance constraints for TML focused on the noise-free setting, the intuition generalizes to

noisy data. Specifically, suppose that f and g are two possible functions a model may learn

over D; then, we expect that the difference f ≠ g will have small variance over D, and thus

would be a good conformance constraint. In turn, the violation of this constraint would

mean that f and g diverge on a tuple t (making t unsafe); since we are oblivious of the

function the model learned, prediction on t is untrustworthy.

False positives. Conformance constraints are designed to work in a model-agnostic set-

ting. Although this setting is of great practical importance, designing a perfect mechanism

for quantifying trust in ML model predictions, while remaining completely model-agnostic,

is challenging. It raises the concern of false positives: conformance constraints may incor-

rectly flag tuples for which the model’s prediction is in fact correct. This may happen

when the model ignores the trend that conformance constraints learn. Since we are obliv-

ious of the prediction task and the model, it is preferable that conformance constraints

behave rather conservatively so that the users can be cautious about potentially unsafe tu-

ples. Moreover, if a model ignores some attributes (or their interactions) during training, it
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is still necessary to learn conformance constraints over them. Particularly, in case of con-

cept drift [313], the ground truth may start depending on those attributes, and by learning

conformance constraints over all attributes, we can better detect potential model failures.

False negatives. Another concern involving conformance constraints is of false nega-

tives: linear conformance constraints may miss nonlinear constraints, and thus fail to iden-

tify some unsafe tuples. However, the linear dependencies modeled in conformance con-

straints persist even after sophisticated (nonlinear) attribute transformations. Therefore,

violation of conformance constraints is a strong indicator of potential failure of a possibly

nonlinear model.

Modeling nonlinear constraints. While linear conformance constraints are the most

common ones, we note that our framework can be easily extended to support nonlinear

conformance constraints using kernel functions [290]—which offer an efficient, scalable,

and powerful mechanism to learn nonlinear decision boundaries for support vector ma-

chines (also known as “kernel trick”). Briefly, instead of explicitly augmenting the dataset

with transformed nonlinear attributes—which grows exponentially with the desired degree

of polynomials—kernel functions enable implicit search for nonlinear models. The same

idea also applies for PCA called kernel-PCA [13, 164]. While we limit our evaluation to

only linear kernel, polynomial kernels—e.g., radial basis function (RBF) [181]—can be

plugged into our framework to model nonlinear conformance constraints.

In general, our conformance language is not guaranteed to model all possible functions

that an ML model can potentially learn, and thus is not guaranteed to find the best confor-

mance constraint. However, our empirical evaluation on real-world datasets shows that our

language models conformance constraints effectively.
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5.5 Experimental Evaluation
We now present experimental evaluation to demonstrate the effectiveness of confor-

mance constraints over our two case-study applications (Section 5.1): trusted machine

learning and data drift. Our experiments target the following research questions:

• How effective are conformance constraints for trusted machine learning? Is there a

relationship between constraint violation score and the ML model’s prediction accu-

racy? (Section 5.5.2)

• Can conformance constraints be used to quantify data drift? How do they compare

to other state-of-the-art drift-detection techniques? (Section 5.5.3)

Efficiency. In all our experiments, our algorithms for deriving conformance constraints

were extremely fast, and took only a few seconds even for datasets with 6 million rows.

The number of attributes were reasonably small (≥40), which is true for most practical

applications. As our theoretical analysis showed (Section 5.3.3), our approach is linear in

the number of data rows and cubic in the number of attributes. Since the runtime perfor-

mance of our techniques is straightforward, we opted to not include further discussion of

efficiency here and instead focus this empirical analysis on the techniques’ effectiveness.

5.5.1 Experimental Settings

We now describe our experimental settings, including implementation details and the

datasets we used for the experiments.

5.5.1.1 Implementation: CCSYNTH

We created an open-source implementation of conformance constraints and our method

for synthesizing them, CCSYNTH, in Python 3. Experiments were run on a Windows 10

machine (3.60 GHz processor and 16GB RAM).
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5.5.1.2 Datasets

Airlines [9] contains data about flights and has 14 attributes: year, month, day, day of

week, departure time, arrival time, carrier, flight number, elapsed time, origin, destination,

distance, diverted, and arrival delay. We used a subset of the data containing all flight in-

formation for year 2008. In this dataset, most of the attributes follow uniform distribution

(e.g., month, day, arrival and departure time, etc.); elapsed time and distance follow skewed

distribution with higher concentration towards small values (implying that shorter flights

are more common); arrival delay follows a slightly skewed gaussian distribution implying

most flights are on-time, few arrive late and even fewer arrive early. The training and serv-

ing datasets contain 5.4M and 0.4M rows, respectively. We use this dataset for a regression

task of predicting the arrival delay in the trusted machine learning problem setting.

Human Activity Recognition (HAR) [306] is a real-world dataset about activities for 15

individuals, 8 males and 7 females, with varying fitness levels and BMIs. We use data

from two sensors—accelerometer and gyroscope—attached to 6 body locations—head,

shin, thigh, upper arm, waist, and chest. We consider 5 activities—lying, running, sit-

ting, standing, and walking. The dataset contains 36 numerical attributes (2 sensors ◊ 6

body-locations ◊ 3 co-ordinates) and 2 categorical attributes—activity-type and person-

ID. We pre-processed the dataset to aggregate the measurements over a small time window,

resulting in 10,000 tuples per person and activity, for a total of 750,000 tuples.

Extreme Verification Latency (EVL) [69] is a widely used benchmark to evaluate drift-

detection algorithms in non-stationary environments under extreme verification latency. It

contains 16 synthetic datasets with incremental and gradual concept drifts. The number of

attributes of these datasets vary from 2 to 6 and each of them has one categorical attribute.

5.5.2 Trusted Machine Learning

We now demonstrate the applicability of CCSYNTH in the trusted machine learning

problem. We show that, serving tuples that violate the conformance constraints derived
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from the training data are unsafe, and therefore, a machine-learned model is more likely to

perform poorly on those tuples.

Airlines. For the airlines dataset, we design a regression task of predicting the arrival

delay and train a linear regression model for the task. Our goal is to observe whether the

mean absolute error of the predictions (positively) correlates to the constraint violation for

the serving tuples. In a process analogous to the one described in Example 5.1, our training

dataset (Train) comprises of a subset of daytime flights, flights that have arrival time later

than the departure time (in 24 hour format). We design three serving sets: (1) Daytime:

similar to Train, but another subset, (2) Overnight: flights that have arrival time ear-

lier than the departure time (the dataset does not explicitly report the date of arrival), and

(3) Mixed: a mixture of Daytime and Overnight. A few sample tuples of this dataset

are in Fig. 5.1.

Our experiment involves the following steps: (1) CCSYNTH computes conformance

constraints � over Train, while ignoring the target attribute delay. (2) We compute

average constraint violation for all four datasets—Train, Daytime, Overnight, and

Mixed—against � (first row of Fig. 5.5). (3) We train a linear regression model over

Train—including delay—that learns to predict arrival delay. (4) We compute mean

absolute error (MAE) of the prediction accuracy of the regressor over the four datasets

(second row of Fig. 5.5). We find that constraint violation is a very good proxy for predic-

tion error, as they vary in a similar manner across the four datasets. The reason is that the

model implicitly assumes that the constraints (e.g., AT ≠ DT ≠ DUR ¥ 0) derived by

CCSYNTH will always hold, and thus, deteriorates when the assumption no longer holds.

To observe the rate of false positives and false negatives, we investigate the relationship

between constraint violation and prediction error at tuple-level granularity. We sample

1000 tuples from Mixed and organize them by decreasing order of violations (Fig. 5.6).

For all the tuples (on the left) that incur high constraint violations, the regression model

incurs high error for them as well. This implies that CCSYNTH reports no false positives.
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Train Serving
Daytime Overnight Mixed

Average violation 0.02% 0.02% 27.68% 8.87%
MAE 18.95 18.89 80.54 38.60

Figure 5.5: Average constraint violation (in percentage) and MAE (for linear regression) of
four data splits on the airlines dataset. The constraints were learned on train, excluding
the target attribute, delay.

Figure 5.6: Constraint violation strongly correlates with the absolute error of delay predic-
tion of a linear regression model.

There are some false negatives (right part of the graph), where violation is low, but the

prediction error is high. Nevertheless, such false negatives are very few.

HAR. On the HAR dataset, we design a supervised classification task to identify persons

from their activity data that contains 36 numerical attributes. We construct train_x with

data for sedentary activities (lying, standing, and sitting), and train_y with the corre-

sponding person-IDs. We learn conformance constraints on train_x, and train a Logis-

tic Regression (LR) classifier using the annotated dataset [train_x;train_y]. During

serving, we mix mobile activities (walking and running) with held-out data for sedentary

activities and observe how the classification’s mean accuracy-drop (i.e., how much the

mean prediction accuracy decreases compared to the mean prediction accuracy over the

training data) relates to average constraint violation. To avoid any artifact due to sampling

bias, we repeat this experiment 10 times for different subsets of the data by randomly sam-
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pling 5000 data points for each of training and serving. Fig. 5.7(a) depicts our findings:

classification degradation has a clear positive correlation with violation (pcc = 0.99 with

p-value = 0).

Noise sensitivity. Intuitively, noise weakens conformance constraints by increasing vari-

ance in the training data, which results in reduced violations of the serving data. However,

this is desirable: as more noise makes machine-learned models less likely to overfit and

thus, more robust. In our experiment for observing noise sensitivity of conformance con-

straints, we use only mobile activity data as the serving set and start with sedentary data

as the training set. Then we gradually introduce noise in the training set by mixing mobile

activity data. As Fig. 5.7(b) shows, when more noise is added to the training data, confor-

mance constraints start getting weaker; this leads to reduction in violations. However, the

classifier also becomes robust with more noise, which is evident from gradual decrease in

accuracy-drop (i.e., increase in accuracy). Therefore, even under the presence of noise, the

positive correlation between classification degradation and violation persists (pcc = 0.82

with p-value = 0.002).

The key takeaway is that CCSYNTH derives conformance constraints whose violation

is a strong proxy of model prediction accuracy.

5.5.3 Data Drift

We now present results of using CCSYNTH as a drift-detection tool; specifically, for

quantifying drift in data. Given a baseline dataset D, and a new dataset DÕ, the drift is

measured as average violation of tuples in DÕ on constraints learned for D.

HAR. We perform three drift-quantification experiments on the HAR dataset which we

discuss next.

Gradual drift. For observing how CCSYNTH detects gradual drift, we introduce drift in an

organic way. The initial training dataset contains data of exactly one activity for each per-

son. This is a realistic scenario as one can think of it as taking a snapshot of what a group
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Figure 5.7: (a) As a higher fraction of mobile activity data is mixed with sedentary activity
data, conformance constraints are violated more, and the classifier’s mean accuracy-drop
increases. (b) As more noise is added during training, conformance constraints get weaker,
leading to less violation and decreased accuracy-drop. (c) CCSYNTH detects the gradual
local drift on the HAR dataset as more people start changing their activities. In contrast,
weighted-PCA (W-PCA) fails to detect drift in absence of a strong global drift.

of people are doing during a reasonably small time window. We introduce gradual drift to

the initial dataset by altering the activity of one person at a time. To control the amount of

drift, we use a parameter K. When K = 1, the first person switches their activity, i.e., we

replace the tuples corresponding to the first person performing activity A with new tuples

that correspond to the same person performing another activity B. When K = 2, the sec-

ond person switches their activity in a similar fashion, and so on. As we increase K from

1 to 15, we expect a gradual increase in the drift magnitude compared to the initial training

data. When K = 15, all persons switch their activities, and we expect to observe maximum

drift. We repeat this experiment 10 times, and display the average constraint violation in

Figure 5.7(c). We note that the drift magnitude (violation) indeed increases as more people

alter their activities.

In contrast, the baseline weighted-PCA (W-PCA) method fails to detect this drift. This

is because W-PCA does not model local constraints (who is doing what), and learns some

weaker global constraints. Thus, it fails to detect the gradual local drift, as the global sit-

uation “a group of people are performing some activities” is not changing. In contrast,
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Figure 5.8: Inter-person constraint violation heat map. Each person has a very low
self-violation.

CCSYNTH learns disjunctive constraints that encode which person is performing which

activity, and hence, is capable to detect drift when individuals switch activities.

Inter-person drift. The goal of this experiment is to observe how effectively conformance

constraints can model the representation of an entity and whether such learned represen-

tations can be used to accurately quantify drift between two entities. We use half of each

person’s data to learn the constraints, and compute violation on the held-out data. CC-

SYNTH learns disjunctive constraints for each person over all activities, and then we use

the violation w.r.t. the learned constraints to measure how much the other persons drift.

While computing drift between two persons, we compute activity-wise constraint violation

scores and then average them out. In Fig. 5.8, the violation score at row p1 and column p2

denotes how much p2 drifts from p1. As one would expect, we observe a very low self-

drift across the diagonal. Interestingly, our result also shows that some people are more

different from others, which appears to have some correlation with (the hidden ground

truth) fitness and BMI values. This asserts that the constraints we learn for each person are
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Figure 5.9: Inter-activity constraint violation heat map. Mobile activities violate the con-
straints of the sedentary activities more.

an accurate abstraction of that person’s activities, as people do not deviate too much from

their usual activity patterns.

Inter-activity drift. Similar to inter-person constraint violation, we also compute inter-

activity constraint violation. Figure 5.9 shows our findings. Note the asymmetry of vio-

lation scores between activities, e.g., running is violating the constraints of standing

much more than the other way around. A close observation reveals that, all mobile activ-

ities violate all sedentary activities more than the other way around. This is because, the

mobile activities behave as a “safety envelope” for the sedentary activities. E.g., while a

person walks, she also stands (for a brief moment); but the opposite does not happen.

EVL. We now compare CCSYNTH against other state-of-the-art drift detection approaches

on the EVL benchmark.

Baseline Approaches. In our experiments, we use two drift-detection approaches as base-

lines which we describe below:

(1) PCA-SPLL [194] 2, similar to us, also argues that principal components with lower

variance are more sensitive to a general drift, and uses those for dimensionality reduction.

It then models multivariate distribution over the reduced dimensions and applies semi-

parametric log-likelihood (SPLL) to detect drift between two multivariate distributions.

2SPLL source code: github.com/LucyKuncheva/Change-detection
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Figure 5.10: In the EVL benchmark, CCSYNTH quantifies drift correctly for all cases,
outperforming other approaches. PCA-SPLL fails to detect drift in a few cases by discard-
ing all principal components; CD-MKL and CD-Area are too sensitive to small drift and
detect spurious drifts.

However, PCA-SPLL discards all high-variance principal components and does not model

disjunctive constraints.

(2) CD (Change Detection) [263] 3 is another PCA-based approach for drift detection

in data streams. But unlike PCA-SPLL, it ignores low-variance principal components. CD

projects the data onto top k high-variance principal components, which results into multiple

univariate distributions. We compare against two variants of CD: CD-Area, which uses the

3CD source code: mine.kaust.edu.sa/Pages/Software.aspx
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Figure 5.11: Snapshots over time for 4CR dataset with local drift. It reaches maximum
drift from the initial distribution at time step 3 and goes back to the initial distribution at
time step 5.

intersection area under the curves of two density functions as a divergence metric, and CD-

MKL, which uses Maximum KL-divergence as a symmetric divergence metric, to compute

divergence between the univariate distributions.

Figure 5.10 depicts how CCSYNTH compares against CD-MKL, CD-Area, and PCA-

SPLL, on 16 datasets in the EVL benchmark. For PCA-SPLL, we retain principal compo-

nents that contribute to a cumulative explained variance below 25%. Beyond drift detection,

which just detects if drift is above some threshold, we focus on drift quantification. A tuple

(x, y) in the plots denotes that drift magnitude for dataset at xth time window, w.r.t. the

dataset at the first time window, is y. Since different approaches report drift magnitudes

in different scales, we normalize the drift values within [0, 1]. Additionally, since different

datasets have different number of time windows, for the ease of exposition, we normalize

the time window indices. Below we state our key findings from this experiment:

CCSYNTH’s drift quantification matches the ground truth. In all of the datasets in

the EVL benchmark, CCSYNTH is able to correctly quantify the drift, which matches the

ground truth exceptionally well.4 In contrast, as CD focuses on detecting the drift point,

it is ill-equipped to precisely quantify the drift, which is demonstrated in several cases

(e.g., 2CHT), where CD fails to distinguish the deviation in drift magnitudes. In contrast,

both PCA-SPLL and CCSYNTH correctly quantify the drift. Since CD only retains high-

variance principal components, it is more susceptible to noise and considers noise in the

4EVL video: sites.google.com/site/nonstationaryarchive/home
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dataset as significant drift, which leads to incorrect drift quantification. In contrast, PCA-

SPLL and CCSYNTH ignore the noise and only capture the general notion of drift. In all

of the EVL datasets, we found CD-Area to work better than CD-MKL, which also agrees

with the authors’ experiments. Since CD only retains high-variance principal components,

it is more susceptible to noise and considers noise in the dataset as significant drift, which

leads to incorrect drift quantification. In contrast, PCA-SPLL and CCSYNTH ignore the

noise and only capture the general notion of drift.

CCSYNTH models local drift. When the dataset contains instances from multiple

classes, the drift may be just local, and not global. Figure 5.11 demonstrates such a scenario

for the 4CR dataset. If we ignore the color/shape of the tuples, we will not observe any sig-

nificant drift across different time steps. In such cases, PCA-SPLL fails to detect drift

(4CR, 4CRE-V2, and FG-2C-2D). In contrast, CCSYNTH learns disjunctive constraints

and quantifies local drifts accurately.

The key takeaway is that CCSYNTH can effectively detect data drift, both global and

local, is robust across drift patterns, and significantly outperforms the state of the arts.

5.6 Interactive Exploration of Conformance Constraints for Data Un-

derstanding and Data Cleaning (COCO)
Traditionally, integrity constraints are specified along with the schema to keep the “in-

tegrity” of new data over that schema, e.g., to prevent erroneous tuple insertion. Like other

data profiles, conformance constraints can also be specified during schema design. How-

ever, it is difficult to come up with the right set of conformance constraints manually. First,

real-world data is often noisy and pre-specified constraints can be too strict, resulting in

unwanted conservativeness during future data operations. Second, figuring out the right set

of conformance constraints requires complete understanding of the domain and semantics

of each attribute (e.g., duration includes both the flight time and the delay). Third, find-

ing the coefficients manually is tedious: it requires knowledge of the measurement units of
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the attributes (e.g., distance is in miles). Thus, it is preferable to have a mechanism for

automatic discovery of conformance constraints from a given dataset.

Interactive exploration of conformance constraints. A shortcoming of our approach

for conformance constraint discovery is that it prioritizes effectiveness (finds the strongest

conformance constraints) over interpretability (may involve a large number of numerical

attributes). For example, if there exists a correlation between the two constraints over the

data, i.e., all tuples tend to incur similar violation scores against both, then they can be

merged to derive a stronger constraint. However, such an increase in strength comes at

the cost of interpretability, as a conformance constraint that involves too many numeri-

cal attributes is less interpretable. To address this issue, COCO allows the user to tune

the parameters for conformance constraint discovery: they can specify the attributes that

are of interest and the maximum number of attributes they prefer within the conformance

constraints. While this might produce suboptimal constraints, it nonetheless is valuable be-

cause it gives users more control and confidence. In particular, COCO displays the strength

of each discovered conformance constraint and also shows the top 15 most violating tuples,

which helps the user judge the effectiveness of the constraints.

Conformance constraints for data cleaning. An obvious application of conformance

constraints is data cleaning. The idea is to first learn conformance constraints over a clean

(reference) dataset and then consult the learned constraints for data cleaning. Specifically,

violation of the learned constraints by a new tuple indicates that the tuple may be dirty.

Furthermore, the closed form expression of conformance constraints also allows us to pro-

vide suggestions regarding valid values for each cell (Figure 5.12), which can guide the

user throughout the data cleaning process. COCO provides an interactive data cleaning so-

lution where the user can edit a cell within a tuple and gets immediate feedback about the

corresponding change in constraint violation: reduction or removal of constraint violation

confirm a correct cleaning operation (Figure 5.13).
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We now present COCO, a tool that discovers interpretable conformance constraints,

based on user preferences, and how violation of conformance constraints can facilitate in

interactive data cleaning.

5.6.1 Interpretable Conformance Constraints

Involving all attributes during learning yields the strongest set of conformance con-

straints. However, it may result in poor interpretability. COCO allows the user to specify

a parameter K that denotes the maximum number of attributes preferred within a confor-

mance constraint. Additionally, COCO allows the user to tune a second parameter A which

denotes a set of attributes over which conformance constraint discovery should be limited.

With K and A specified by the user, COCO learns constraints on different vertical parti-

tions of the reference dataset, with each partition limited to a subset of K attributes from

A. Although, theoretically, this results in combinatorial explosion, the set A is expected to

be small and the value K must be small (Æ 5) for ensuring interpretability. Therefore, in

practice, such a runtime complexity is acceptable.

COCO preprocesses the discovered conformance constraints before presenting them

to the user. The preprocessing involves (1) removing attributes that are associated with

very small weights within a constraint, as this improvs interpretability, and (2) removing

redundant constraints that involve the same attributes (and, thus, are equivalent) by keep-

ing only one of the redundant constraints. E.g., the constraints ≠2 Æ X+Y Æ 2 and

≠4 Æ 2X+2Y Æ 4 are equivalent and keeping only one of them is sufficient.

5.6.2 Generating Suggestions for Data Cleaning

For data cleaning, we use a reasonably clean dataset as a reference data. Discovery

of conformance constraints requires only a small amount of data that are reasonably clean

(number of tuples should be more than the number of attributes for PCA to work). However,

our technique for conformance constraint discovery is robust to uniformly distributed out-

liers across all projections, and straightforward modification in bound computation (tight-
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Figure 5.12: User scenario for COCO: 1� upload reference (clean) data, 2� select relevant
attributes and specify the maximum number of attributes desired within the conformance
constraints, 3� discover conformance constraints, 4� view the discovered constraints along
with their strengths, 5� select a subset of conformance constraints for further exploration,
6� view the selected conformance constraints, 7� upload test (unclean) data, 8� view top 15

most violating tuples and select a tuple for checking its violations, 9� view constraint-wise
violations for the selected tuple, 10� hover on a cell to get suggestion on how to alter its
value to satisfy the conformance constraints.

ening) can adjust to noisy data. For a tuple t, all of whose attributes are correct, except the

jth attribute, we can generate a range of valid values for the jth attribute to fix it by exploiting

a given conformance constraint C. When we have a set of such constraints C1, C2, . . . , we

can generate a range of valid values for each Ci and take their intersection to find a range

that will satisfy all of the constraints. Using this mechanism, COCO generates suggestions

on how to alter value of a single cell of a tuple to fix it. However, we note that when mul-
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Figure 5.13: Interactive data cleaning: the user edits a cell in-place and views changes
in constraint violation. Changing ArrTime from 605 to 670 for the 7th tuple reduces its
violation against the first constraint, but increases violation against the 6th constraint.

tiple attributes are incorrect, such a suggestion may not be helpful. Figures 5.12 and 5.13

show two screenshots of COCO.

5.7 Explaining Tuple Non-conformance (EXTUNE)
In data-driven systems, we often encounter tuples on which the predictions of a machine-

learned model are untrustworthy. Early detection of such tuples is necessary to ensure

Trusted Machine Learning (TML) [164]. Since data is inherently an incomplete specifica-

tion for any task, invariably there will exist multiple different models that can be learned

from the given training dataset. This in return introduces uncertainty in predictions made

using any specific model learned from the dataset. Motivated by the issue of trusting the

predictions made by machine learning, we define non-conforming tuples—which are tu-

ples on which a machine-learned model makes untrustworthy predictions. One might see

non-conforming tuples as outliers. However, traditional definition of outlier overlooks the

fact that some outliers are non-conforming, for certain tasks, while others are not.

Example 5.10. Consider a dataset with three training tuples with predictor attributes x1

and x2: {(1, 10), (2, 20), (4, 40)}. We consider a task-agnostic setting and hence omit

the target attribute. Now consider two new tuples: t1 = (3, 12) and t2 = (10, 100). A
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traditional distance-based outlier detector will mark t2 as an outlier and possibly t1 as an

inlier. However, ML models often exploit the consistent relationship observed between the

attribute pairs (x2 = 10x1) within the training tuples, and assume it as an invariant or

constraint. Since t1 violates this constraint, a model that uses 10x1 instead of x2 is likely

to make inaccurate prediction on t1, if x2 is the true predictor. Here, t1 is non-conforming

and t2 is conforming with the constraint.

Example 5.10 shows the shortcoming of distance-based outliers in capturing the no-

tion of non-conformance. Identification of non-conforming tuples is a two-step process:

(1) learning conformance constraints from the training dataset, and (2) checking for vi-

olation of the learned conformance constraints by the test tuples; violation of confor-

mance constraints indicates non-conformance. We present EXTUNE, which (1) detects

non-conforming tuples and quantifies the degree of non-conformance based on [101], and

(2) extends [101] to explain the cause of non-conformance by assigning degree of respon-

sibility to tuple attributes.

EXTUNE’s attribute responsibility has connection to one class classification (OCC)

and feature importance and feature selection for binary classification. However, EXTUNE

works in an OCC setting, where data from other classes (counter-examples) are unavailable

during training. Unlike binary classifiers, which start with the knowledge of tuples from

both classes, EXTUNE’s goal is to (1) predict which tuples fall in the negative class (i.e.,

non-conforming), and (2) assign responsibility to the attributes for non-conformance. Fea-

ture importance for OCC fails here too, as it only considers the training data and overlooks

the test tuples. Responsibility computation in EXTUNE is generic and can be applied to any

technique (distance- or pattern-based outlier detectors or classifiers) that distinguishes two

classes (representing conforming and non-conforming tuples); however, EXTUNE applies

it to non-conformance based on conformance constraints due to our interest in TML.
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We present how EXTUNE detects the non-conforming tuples and provides real-time

explanation for non-conformance. We proceed to discuss, at a high level, the solution

sketch of EXTUNE, provide a user scenario, and conclude by some evaluation results.

5.7.1 Solution Sketch

The key component of EXTUNE is a conformance constraint learner, which learns

conformance constraints from the training tuples. When a new test tuple arrives, EXTUNE

checks if the test tuple satisfies the conformance constraint, and if it does not, EXTUNE

quantifies the degree of non-conformance. To generate explanation for non-conformance,

EXTUNE uses an intervention-centric approach that alters values of attributes, and observes

change in conformance constraint violation. EXTUNE then assigns degree of responsibility

to the attributes for non-conformance (Section 5.7.1.1).

5.7.1.1 Responsibility for Non-conformance

Responsibility quantifies how much attributes of a tuple contribute for causing non-

conformance. We adapt Halpern and Pearl’s [132] definition of causality. To measure

the degree of responsibility of attributes of tuples that violate conformance constraints, we

adapt the notion of degree of responsibility from Meliou et al. [227]. We reason about

causality by intervening on attribute-values: we alter value of an attribute to the attribute-

mean over the training dataset, and observe how it affects the tuple’s conformance con-

straint violation.

Counterfactual cause. By definition, C is a counterfactual cause of an event E if E

would not occur unless C occurs. In our case, an event is the violation of conformance

constraint I by a tuple x̨ = Èx1, x2, . . . , xi, . . . , xmÍ, i.e., x̨ 0 I . The fact Ai = xi is a coun-

terfactual cause for the violation if intervening on the value of Ai prevents the conformance

constraint violation: Èx1, x2, . . . , µi, . . . xmÍ „ I , where µi denotes the attribute-mean of

Ai. In such case, we assign responsibility 1 to attribute Ai.
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Actual cause. C is an actual cause of E if E counterfactually depends on C under some

permissive contingency [227]. To determine causality for an attribute-value that is not a

counterfactual cause, we allow alteration of other attributes that are not counterfactual

causes as permissive contingency. However, we only allow alterations that involve chang-

ing the value of an attribute to its attribute-mean. We define minimum support to be the

minimum number of attribute-value alterations required within a contingency, among all

possible contingencies, to achieve counterfactual causality. Contingencies with minimum

support are the minimal contingencies. We assign responsibility 1
M+1 to an attribute with

minimum support M .

Example 5.11. Consider a tuple x̨=Èx1, x2, . . . , xmÍ s.t. x̨ 0 I . Suppose that, individ-

ually, none of A1 = x1 and A2 = x2 are counterfactual causes for the violation, but

Èµ1, µ2, x3, . . . , xmÍ „ I . Since A1 = x1 is a counterfactual cause for the violation under

the contingency A2 = µ2, it is an actual cause with minimum support 1. So, we assign

responsibility 1
1+1 = 1

2 to A1. Using a symmetric argument, A2 also gets responsibility 1
2 .

Approximating minimal contingency. Finding the minimal contingency for an actual

cause is NP-hard [227]. Hence, we follow a greedy approach to find an approximate min-

imal contingency. While this approach does not guarantee optimality and might even fail

to identify an actual cause, it works well in practice, particularly when responsibility is

aggregated over a large set of non-conforming tuples.

The greedy approach iteratively selects attributes to alter based on their contribution

to the conformance constraint violation. For example, consider the conformance constraint

≠3 Æ F (Ą) Æ 3 where F (Ą) = 2A1+4A2+7A3+5A4+4A5 and attribute-mean is 0 for all

attributes. For a tuple x̨ = È6, ≠5, 2, 3, 2Í, F (x̨) = 12 + (≠20) + 14 + 15 + 8 = 29. None

of the attribute-values are counterfactual in this case. Now, suppose that we are looking

for minimal contingency (if one exists) of A1 = 6. Clearly, x̨ violated the conformance

constraint due to 29 being too high than the upper bound 3 of the conformance constraint.
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We start by greedily picking A4 to alter as it contributes the maximum (15) to F (x̨). We

obtain x̨Õ = È6, ≠5, 2, 0, 2Í and F (x̨Õ) = 12 + (≠20) + 14 + 0 + 8 = 14. With this

contingency, A1 = 6 now counterfactually causes the violation as for x̨ÕÕ = È0, ≠5, 2, 0, 2Í,

F (x̨ÕÕ) = 0 + (≠20) + 14 + 0 + 8 = 2, which satisfies the conformance constraint. So, we

found M = 1 and hence assign responsibility 1
2 to A1. If this was not a valid contingency,

we would continue to intervene on the next most contributing attribute (A3 in this case) to

find a valid contingency.

Aggregating responsibility. Following the above procedure, we compute Ri,j,k which

denotes the responsibility of attribute Ai for causing tuple x̨(j) to violate conformance con-

straint Ik. To ensure that responsibilities are proportionate to the degree of violations, we

multiply Ri,j,k by violation(x̨(j), Ik). Finally, we aggregate responsibilities over all con-

formance constraints and tuples and normalize the responsibilities across all attributes.

Figure 5.14 shows a screenshot of EXTUNE’s graphical user interface, over a real-world

cardiovascular disease dataset [52]. For the first tuple, the non-conformance comes mostly

from the abnormally high blood pressures. For the second tuple, besides abnormally high

blood pressures, he also has above normal glucose and cholesterol levels. For the sixth

tuple, although the blood pressures look normal, she has an abnormally high weight of 180

kg (397 lbs) which is one of the prime causes for her non-conformance. Systolic blood

pressure is most responsible for non-conformance, followed by diastolic blood pressure.

This is very meaningful since abnormal blood pressure is a primary indicator for cardio-

vascular disease. This is followed by weight, cholesterol level, and smoking, three other

well-known risk factors.

5.7.2 Experiments

We now present the effectiveness of EXTUNE through several case studies.
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Figure 5.14: The EXTUNE interface: 1� upload reference data, 2� learn conformance constraints,
3� upload test data, 4� select the number of most non-conforming tuples to preview, 5� tuple-wise
attribute-responsibility heat map, 6� aggregated attribute responsibility.

Datasets. We use four datasets for this evaluation: (1) Cardiovascular Disease [52]

is a real-world dataset that contains information about cardiovascular patients with at-

tributes such as height, weight, cholesterol level, glucose level, systolic and diastolic blood

pressures, etc. (2) Mobile Prices [236] is a real-world dataset that contains information

about mobile phones with attributes such as ram, battery power, talk time, etc. (3) House

Prices [148] is a real-world dataset that contains information about houses for sale with

attributes such as basement area, number of bathrooms, year built, etc. (4) LED (Light

Emitting Diode) [40] is a synthetic benchmark. The dataset has a digit attribute, ranging

from 0 to 9, 7 binary attributes—each representing one of the 7 LEDs relevant to the digit

attribute—and 17 irrelevant binary attributes. This dataset includes gradual concept drift

every 25,000 rows.

Case Studies. EXTUNE produces bar-charts of responsibility values as depicted in Fig-

ure 5.15. Figures 5.15(a), 5.15(b), and 5.15(c) show the explanation results for Cardiovas-

cular Disease, Mobile Price, and House Price datasets, respectively. For the cardiovascular

disease dataset, the training and serving sets consist of data for patients without and with
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(a) (b) (c) (d)

Figure 5.15: Responsibility assignment on attributes for drift on (a) Cardiovascular dis-
ease: trained on patients with no disease and served on patients with disease, (b) Mobile
Prices: trained on cheap mobiles and served on expensive mobiles and (c) House Prices:
trained on house with price <= 100K and served on house with price >= 300K. (d) Detec-
tion of drift on LED dataset. The dataset drifts every 5 windows (25,000 tuples). At each
drift, a certain set of LEDs malfunction and take responsibility of the drift.

cardiovascular disease, respectively. For the House Price and Mobile Price datasets, the

training and serving sets consist of houses and mobiles with prices below and above a cer-

tain threshold, respectively. As one can guess, we get many useful insights from the non-

conformance responsibility bar-charts such as: “abnormal (high or low) blood pressure is a

key cause for non-conformance of patients with cardiovascular disease w.r.t. normal peo-

ple”, “RAM is a distinguishing factor between expensive and cheap mobiles”, “the reason

for houses being expensive depends holistically on several attributes”.

Figure 5.15(d) shows a similar result on the LED dataset. Instead of one serving set,

we had 20 serving sets (the first set is also used as a training set to learn conformance

constraints). We call each serving set a window where each window contains 5,000 tuples.

This dataset introduces gradual concept drift every 25,000 rows (5 windows) by making a

subset of LEDs malfunctioning. As one can clearly see, during the initial 5 windows, no
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drift is observed. In the next 5 windows, LED 4 and LED 5 starts malfunctioning; in the

next 5 windows, LED 1 and LED 3 starts malfunctioning, and so on.

5.8 Summary and Future Work
We introduced conformance constraints, and the notion of unsafe tuples for trusted

machine learning. We presented an efficient and highly scalable approach for synthesizing

conformance constraints; and demonstrated their effectiveness to tag unsafe tuples and

quantify data drift. The experiments validate our theory and our principle of using low

variance projections to generate effective conformance constraints.

We have studied only two use-cases from a large pool of potential applications using

linear conformance constraints. An interesting extension is to explore more powerful non-

linear conformance constraints that can be extracted from autoencoders. Another direction

is to explore approaches to learn conformance constraints in a decision-tree-like structure

where categorical attributes will guide the splitting conditions and leaves of the decision

tree will contain simpler conformance constraints.

We have showcased how the tool COCO can effectively learn useful conformance con-

straints according to the user’s preferences and provide a natural way for data under-

standing and interactive data cleaning. We have also showcased how the tool EXTUNE

can effectively detect non-conforming tuples and explain the causes of the observed non-

conformance, and, thus, help users make decisions about (1) when to trust machine learning

models and when not, and (2) how to enrich the training data towards building more robust

models.
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CHAPTER 6

CAUSALITY-GUIDED ADAPTIVE INTERVENTIONAL
DEBUGGING (AID)

Modern data management systems and database-backed applications run on commodity

hardware and heavily rely on asynchronous and concurrent processing [70, 140, 241, 296].

As a result, they commonly experience runtime nondeterminism such as transient faults and

variability in timing and thread scheduling. Unfortunately, software bugs related to han-

dling nondeterminism are also common to these systems. Previous studies reported such

bugs in MySQL [46, 219], PostgreSQL [218], NoSQL systems [201, 342], and database-

backed applications [23], and showed that the bugs can cause crashes, unresponsiveness,

and data corruptions. It is, therefore, crucial to identify and fix these bugs as early as

possible.

Unfortunately, localizing root causes of intermittent failures is extremely challeng-

ing [211, 220, 350]. For example, concurrency bugs such as deadlocks, order and atomicity

violation, race conditions, etc. may appear only under very specific thread interleavings.

Even when an application executes with the same input in the same environment, these

bugs may appear only rarely (e.g., in flaky unit tests [220]). When a concurrency bug is

confirmed to exist, the debugging process is further complicated by the fact that the bug

cannot be consistently reproduced. Heavy-weight techniques based on record-replay [16]

and fine-grained tracing with lineage [12, 247] can provide insights on root causes after a

bug manifests; but their runtime overheads often interfere with thread timing and schedul-

ing, making it even harder for the intermittent bugs to manifest in the first place [195].

Statistical Debugging (SD) [167, 171, 205, 212] is a data-driven technique that partly

addresses the above challenge. SD uses lightweight logging to capture an application’s run-
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time (mis)behaviors, called predicates. An example predicate indicates whether a method

returns null in a particular execution or not. Given an application that intermittently fails,

SD logs predicates from many successful and failed executions. SD then uses statistical

analyses of the logs to identify discriminative predicates that are highly correlated with the

failure.

SD has two key limitations. First, SD can produce many discriminative predicates that

are correlated to, but not a true cause of, a failure. Second, SD does not provide enough

insights that can explain how a predicate may eventually lead to the failure. Lack of such

insights and the presence of many non-causal predicates make it hard for a developer to

identify the true root cause of a failure. SD expects that a developer has sufficient domain

knowledge about if/how a predicate can eventually cause a failure, even when the predicate

is examined in isolation without additional context. This is often hard in practice, as is

reported by real-world surveys [254].

Example 6.1. To motivate our work, we consider a recently reported issue in Npgsql [245],

an open-source ADO.NET data provider for PostgreSQL. On its GitHub repository, a user

reported that a database application intermittently crashes when it tries to create a new

PostgreSQL connection (GitHub issue #2485 [246]). The underlying root cause is a data

race on an array index variable. The data race, which happens only when racing threads

interleave in a specific way, causes one of the threads to access beyond the size of the array.

This causes an exception that crashes the application.

We used SD to localize the root cause of this nondeterministic bug (more details are in

Section 6.6). SD identified 14 predicates, only three of which were causally related to the

error. Other predicates were just symptoms of the root cause or happened to co-occur with

the root cause.

In Section 6.6, we describe five other case studies that show the same general prob-

lem: SD produces too many predicates, only a small subset of which are causally related

to the failure. Thus, SD is not specific enough, and it leaves the developer with the task
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of identifying the root causes from a large number of candidates. This task is particu-

larly challenging, since SD does not provide explanations of how a potential predicate can

eventually lead to the failure.

We address these limitations with a new data-driven technique called Adaptive Inter-

ventional Debugging (AID). Given predicate logs from successful and failed executions of

an application, AID can pinpoint why the application failed, by identifying one (or a small

number of) predicate that indicates the real root cause (instead of producing a large num-

ber of potentially unrelated predicates). Moreover, AID can explain how the root cause

leads to the failure, by automatically generating a causal chain of predicates linking the

root cause, subsequent effects, and the failure. By doing so, AID enables a developer to

quickly localize (and fix) the bug, even without deep knowledge about the application.

AID achieves the above by combining SD with causal analysis [227, 228, 229], fault

injection [12, 134, 176], and group testing [151] in a novel way. Like SD, it starts by iden-

tifying discriminative predicates from successful and failed executions. In addition, AID

uses temporal properties of the predicates to build an approximate causal DAG (Directed

Acyclic Graph), which contains a superset of all true causal relationships among predicates.

AID then progressively refines the DAG. In each round of refinement, AID uses ideas from

adaptive group testing to carefully select a subset of predicates. Then, AID re-executes the

application during which it intervenes (i.e., modifies application’s behavior by e.g., inject-

ing faults) application to fail or not, AID confirms or discards causal relationships in the

approximate causal DAG, assuming counterfactual causality (C is a counterfactual cause

of F iff F would not occur unless C occurs) and a single root cause. A sequence of inter-

ventions enables AID to identify the root cause and generate a causal explanation path, a

sequence of causally related predicates that connect the root cause to the failure.

A key benefit of AID is its efficiency—it can identify root-cause and explanation predi-

cates with significantly fewer rounds of interventions than adaptive group testing. In group

testing, predicates are considered independent and hence each round selects a random sub-
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set of predicates to intervene on and makes causality decisions about only those intervened

predicates. In contrast, AID uses potential causality among predicates (in the approximate

causal DAG). This enables AID to (1) make decisions not only about the intervened predi-

cates, but also about other predicates; and (2) carefully select predicates whose intervention

would maximize the effect of (1). Through theoretical and empirical analyses we show that

this can significantly reduce the number of required interventions. This is an important

benefit in practice since each round of intervention involves executing the application with

fault injection and hence is time-consuming.

We evaluated AID on 3 open-source applications: Npgsql, Apache Kafka, Microsoft

Azure Cosmos DB, and on 3 proprietary applications in Microsoft. We used known issues

that cause these applications to intermittently fail even for same inputs. In each case, AID

was able to identify the root cause of failure and generate an explanation that is consistent

with the explanation provided by respective developers. Moreover, AID achieved this with

significantly fewer interventions than traditional adaptive group testing. We also performed

sensitivity analysis of AID with a set of synthetic workloads. The results show that AID

requires fewer interventions than traditional adaptive group testing, and has significantly

better worst-case performance than other variants.

In summary, we make the following contributions:

• We propose Adaptive Interventional Debugging (AID), a data-driven technique that

localizes the root cause of an intermittent failure through a novel combination of

statistical debugging, causal analysis, fault injection, and group testing (Section 6.1).

AID provides significant benefits over the state-of-the-art Statistical Debugging (SD)

techniques by (1) pinpointing the root cause of an application’s failure and (2) gen-

erating an explanation of how the root cause triggers the failure (Sections 6.2–6.4).

In contrast, SD techniques generate a large number of potential causes and without

explaining how a potential cause may trigger the failure.
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• We use information theoretic analysis to show that AID, by utilizing causal relation-

ship among predicates, can converge to the true root cause and explanation signifi-

cantly faster than traditional adaptive group testing (Section 6.5).

• We evaluate AID with six real-world applications that intermittently fail under spe-

cific inputs (Section 6.6). AID was able to identify the root causes and explain how

the root causes triggered the failure, much faster than adaptive group testing and

more precisely than SD. We also evaluate AID with many synthetically generated

applications with known root causes and confirm that the benefits hold for them as

well.

6.1 Background and Preliminaries
AID combines several existing techniques in a novel way. We now briefly review the

techniques.

Statistical debugging. Statistical debugging (SD) aims to automatically pinpoint likely

causes for an application’s failure by statistically analyzing its execution logs from many

successful and failed executions. It works by instrumenting an application to capture run-

time predicates about the application’s behavior. Examples of predicates include “the pro-

gram takes the false branch at line 31”, “the method foo() returns null”, etc. Execut-

ing the instrumented application generates a sequence of predicate values, which we refer

to as predicate logs. Without loss of generality, we assume that all predicates are Boolean.

Intuitively, the true root cause of the failure will cause certain predicates to be true only

in the failed logs (or, only in the successful logs). Given logs from many successful execu-

tions and many failed executions of an application, SD aims to identify those discriminative

predicates. Discriminative predicates encode program behaviors of failed executions that

deviate from the ideal behaviors of the successful executions. Without loss of generality,

we assume that discriminative predicates are true during failed executions. The predi-
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cates can further be ranked based on their precision and recall, two well-known metrics

that capture their discriminatory power.

precision(P ) = #failed executions where P is true
#executions where P is true

recall(P ) = #failed executions where P is true
#failed executions

Causality. Informally, causality characterizes the relationship between an event and an

outcome: the event is a cause if the outcome is a consequence of the event. There are

several definitions of causality [132, 256]. In this work, we focus on counterfactual

causes. According to counterfactual causality, C causes E iff E would not occur un-

less C occurs. Reasoning about causality frequently relies on a mechanism for interven-

tions [142, 255, 301, 330], where one or more variables are forced to particular values,

while the mechanisms controlling other variables remain unperturbed. Such interventions

uncover counterfactual dependencies between variables.

Trivially, executing a program is a cause of its failure: if the program was not executed

at the first place, the failure would not have occurred. However, our analysis targets fully

discriminative predicates (with 100% precision and 100% recall), thereby eliminating such

trivial predicates that are program invariants.

Fault injection. In software testing, fault injection [12, 134, 176, 224] is a technique

to force an application, by instrumenting it or by manipulating the runtime environment,

to execute a different code path than usual. We use the technique to intervene on (i.e.,

repair) discriminative predicates. Consider a method ExecQuery() that returns a result

object in all successful executions and null in all failed executions. Then, the predicate

“ExecQuery() returns null” is discriminative. The predicate can be intervened by

forcing ExecQuery() to return the correct result object. Similarly, the predicate “there

is a data race on X” can be intervened by delaying one access to X or by putting a lock

around the code segments that access X to avoid simultaneous accesses to X.

148



Group testing. Given a set of discriminative predicates, a naïve approach to identify

which predicates cause the failure is to intervene on one predicate at a time and observe if

the intervention causes an execution to succeed. However, the number of required interven-

tions is linear in number of predicates. Group testing reduces the number of interventions.

Group testing refers to the procedure that identifies certain items (e.g., defective) among

a set of items while minimizing the number of group tests required. Formally, given a set

P of N elements where D of them are defective, group testing performs k group tests, each

on group Pi ™ P . Result of test on group Pi is positive if ÷P œ Pi s.t. P is defective, and

negative otherwise. The objective is to minimize k, i.e., the number of group tests required.

In our context, a group test is simultaneous intervention on a group of predicates, and the

goal is to identify the predicates that cause the failure.

Two variations of group testing are studied in the literature: adaptive and non-adaptive.

Our approach is based on adaptive group testing where the i-th group to test is decided

after we observe the results of all 1 Æ j < i previous group tests. A trivial upper bound

for adaptive group testing [151] is O(D log N). A simple binary search algorithm can find

each of the D defective items in at most log N group tests and hence a total of D log N

group tests are sufficient to identify all defective items. Note that if D Ø
N

log N , then a linear

strategy is preferable over any group testing scheme. Hence, we assume that D < N
log N .

6.2 AID Overview
Adaptive Interventional Debugging (AID) targets applications (e.g., flaky tests [220])

that, even with the same inputs, intermittently fail due to various runtime nondetermin-

ism such as thread scheduling and timing. Given predicate logs of successful and failed

executions of an application, the goals of AID are to (1) identify what predicate actually

causes the failure, and (2) generate an explanation of how the root cause leads to the failure

(via a sequence of intermediate predicates). This is in contrast with traditional statistical
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Figure 6.1: Adaptive Interventional Debugging workflow.

debugging, which generates a set of potential root-cause predicates (often a large number),

without any explanation of how each potential root cause may lead to the failure.

Figure 6.1 shows an overview of AID. First, the framework employs standard SD tech-

niques on predicate logs to identify a set of fully discriminative predicates, i.e., predicates

that always appear in the failed executions and never appear in the successful executions.

Then, AID uses the temporal relationships of predicates to infer approximate causality:

if P1 temporally precedes P2 in all logs where they both appear, then P1 may cause P2.

AID represents this approximate causality in a DAG called Approximate Causal DAG (AC-

DAG), where predicates are nodes and edges indicate these possible causal relationships.

We describe the AC-DAG in Section 6.3.

Based on its construction, the AC-DAG is guaranteed to contain all the true root-cause

predicates and causal relationships among predicates. However, it may also contain

additional predicates and edges that are not truly causal. The key insight of AID is that we

can refine the AC-DAG and prune the non-causal nodes and edges through a sequence of

interventions. To intervene on a predicate, AID changes the application’s behavior through

fault injection so that the predicate’s value matches its value in successful executions. If

the failure does not occur under the intervention, then, based on counterfactual causality,

the predicate is guaranteed to be a root cause of the failure. Over several iterations,
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AID intervenes on a set of carefully chosen predicates, refines the set of discriminative

predicates, and prunes the AC-DAG, until it discovers the true root cause and the path that

leads to the failure. We describe the intervention mechanism of AID in Section 6.4.

We now describe how AID adapts existing approaches in SD and fault injection for two

of its core ideas: predicates and interventions.

6.2.1 AID Predicates

Predicate design. Similar to traditional SD techniques, AID is effective only if the initial

set of predicates (in the predicate logs) contains a root-cause predicate that causes the

failure. Predicate design is orthogonal to AID. We use predicates used by existing SD

techniques, especially the ones used for finding root causes of concurrency bugs [167], a

key reason behind intermittent failures [220]. Figure 6.2 shows examples of predicates in

AID (column 1).

Predicate extraction. AID automatically instruments a target application to generate its

execution trace. The trace contains each executed method’s start and end time, its thread

id, ids of objects it accesses, return values, whether it throws exception or not, and so on.

This trace is then analyzed offline to evaluate a set of predicates at each execution point.

This results in a sequence of predicates, called predicate log. The instrumented application

is executed multiple times with the same input, to generate a set of predicate logs, each

labeled as a successful or failed execution. Figure 6.2 shows the runtime conditions used

to extract predicates (column 2).

Modeling nondeterminism. In practice, some predicates may cause a failure nondeter-

ministically: two predicates A and B in conjunction cause a failure. AID does not consider

such predicates since they are not fully discriminative (recall < 100%). However, AID can

still model these cases with compound predicates, adapted from state-of-the-art SD tech-

niques [167], which model conjunctions. These compound predicates (“A and B”) would
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deterministically cause the failure and hence be fully discriminative. Note that AID fo-

cuses on counterfactual causality and thus does not support disjunctive root causes (as they

are not counterfactual). In Section 6.4, we discuss AID’s assumptions and their impact in

practice.

6.2.2 AID Interventions

Intervention mechanism. AID uses an existing fault injection tool (similar to LFI [224])

to intervene on fully discriminative predicates; interventions change a predicate to match

its value in a successful execution. In a way, AID’s interventions try to locally “repair” a

failed execution. Figure 6.2 shows examples of AID’s interventions (column 3). Most of

the interventions rely on changing timing and thread scheduling that can occur naturally by

the underlying execution environment and runtime. More specifically, AID can slow down

the execution of a method (by injecting delays), force or prevent concurrent execution of

methods in different threads (by using synchronization primitives such as locks), change

the execution order of concurrent threads (by injecting delays), etc. Such interventions can

repair many concurrency bugs.

Validity of intervention. AID supports two additional intervention types, return-value

alteration and exception-handling, which, in theory, can have undesirable runtime side-

effects. Consider two predicates: (1) method QueryAvgSalary fails returning null

and (2) method UpdateSalary fails returning error. AID can intervene to match

their return values in successful executions, e.g., 50 and OK, respectively. The intervention

on the first predicate does not modify any program state and, as the successful execution

shows, the return value 50 can be safely used by the application. However, altering the

return value of UpdateSalary, but not updating the salary, may not be sufficient inter-

vention: other parts of the application that rely on the updated salary may fail. Inferring

such side-effects is hard, if not impossible.
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AID is restricted to safe interventions. It relies on developers to indicate which methods

do not change (internal or external) application states and limits return-value interventions

to only those methods (e.g., to QueryAvgSalary, but not to UpdateSalary). The

same holds for exception-handling interventions. AID removes from predicate logs any

predicates that cannot be safely intervened without undesirable side-effects. This ensures

that the rest of the AID pipeline can safely intervene on any subset of predicates. Excluding

some interventions may limit AID’s precision, as it may eliminate a root-cause predicate.

In such cases, AID may find another intervenable predicate that is causally related to the

root cause, and is still useful for debugging. In our experiments (Section 6.6) we did not

observe this issue, since the root-cause predicates were safe to intervene.

6.2.3 Program Instrumentation

AID separates program instrumentation and predicate extraction unlike prior SD tech-

niques [167, 205, 212]. One advantage of our separation of instrumentation and predicate

extraction is that it enables us to design predicates after collection of the application’s exe-

cution traces. In contrast, prior works in SD instrument applications to directly extract the

predicates. For example, to assess if two methods return the same value, prior work would

instrument the program using a hard coded conditional statement “pred = (foo() ==

bar())”. In contrast, our instrumentation simply collects the return values of the two

methods and stores them in the execution trace. AID later evaluates the predicates based

on the execution traces. This gives us the flexibility to design predicates post-execution,

often based on knowledge of some domain-expert. For example, in this case, we can design

multiple predicates such as whether two values are equal, unequal, or satisfy any custom

relation.

Instrumentation granularity. Instrumentation granularity is orthogonal to AID. Like

prior SD work, we could have instrumented at a finer granularity such as at each condi-

tional branch; but instrumenting method calls were sufficient for our purpose. Since our
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(1) Predicate (2) Extraction condition (3) Intervention mechanism
There is a data race
involving methods M1
and M2

M1 and M2 temporally overlap access-
ing some object X while one of them is
a write

Put locks around the code segments
within M1 and M2 that access X

Method M fails M throws an exception Put M in a try-catch block
Method M runs too fast M ’s duration is less than the minimum

duration for M among all successful ex-
ecutions

Insert delay before M ’s return
statement

Method M runs too
slow

M ’s duration is greater than the maxi-
mum duration for M among all success-
ful executions

Prematurely return from M the cor-
rect value that M returns in all suc-
cessful executions

Method M returns in-
correct value

M ’s return value ”= x, where x is the cor-
rect value returned by M in all success-
ful executions

Alter M ’s return statement to
force it to return the correct value
x

Figure 6.2: Few example predicates, conditions used to extract them, and the correspond-
ing interventions using fault injection.

instrumentation is of much sparser granularity than existing SD work [167, 205, 212] that

employ sampling based finer granularity instrumentation, we do not use any sampling.

6.3 Approximating Causality
AID relies on traditional SD to derive a set of fully discriminative predicates. Using

the logs of successful and failed executions, AID extracts temporal relationships among

these predicates, and uses temporal precedence to approximate causality. It is clear that

in the absence of feedback loops, a cause temporally precedes an effect [257]. To handle

loops, AID considers multiple executions of the same program statement (e.g., within a

loop, recursion, or multiple method calls) as separate instances, identified by their relative

order of appearances during program execution, and maps them to separate predicates. This

ensures that temporal precedence among predicates correctly over-approximates causality.

Approximate causal DAG. AID represents the approximation of causality in a DAG:

each node represents a predicate, and an edge P1 æ P2 indicates that P1 temporally

precedes P2 in all logs where both predicates appear. Figure 6.4(a) shows an example of

the approximate causal DAG (AC-DAG). We use circles to explicitly depict junctions in
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the AC-DAG; junctions are not themselves predicates, but denote splits or merges in the

precedence ordering of predicates. Therefore, each predicate has in- and out-degrees of

at most 1, while junctions have in- or out-degrees greater than 1. Note that, for clarity of

visuals, in our depictions of the AC-DAG, we omit edges implied by transitive closure.

For example, there exists an edge P3 æ P5, implied by P3 æ P4 and P4 æ P5, but it

is not depicted. AID enforces an assumption of counterfactual causality by excluding

from the AC-DAG any predicates that were not observed in all failed executions: if some

executions failed without manifesting P , then P cannot be a cause of the failure.

Completeness of AC-DAG. The AC-DAG is complete with respect to the available, and

safely intervenable, predicates: it contains all fully discriminative predicates that are safe

to intervene, and if P1 causes P2, it includes the edge P1 æ P2. However, it may not

be complete with respect to all possible true root causes, as a root cause may not always

be represented by the available predicates (e.g., if the true root cause is a data race and no

predicate is used to capture it). In such cases, AID will identify the (intervenable) predicate

that is closest to the root cause and is causally related to the failure.

Since temporal precedence among predicates is a necessary condition for causality,

the AC-DAG is guaranteed to contain the true causal relationships. However, temporal

precedence is not sufficient for causality, and thus some edges in the AC-DAG may not be

truly causal.

Temporal precedence. Capturing temporal precedence is not always straightforward.

For simplicity of implementation, AID relies on computer clocks, which works reasonably

well in practice. Relying on computer clocks is not always precise as the time gap between

two events may be too small for the granularity of the clock; moreover, events may occur

on different cores or machines whose clocks are not perfectly synchronized. These issues

can be addressed with the use of logical clocks such as Lamport’s Clock [196].
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Another challenge is that some predicates are associated with time windows, rather

than time points. The correct policy to resolve temporal precedence of two temporally

overlapping predicates often depends on their semantics. However, the predicate types give

important clues regarding the correct policy. In AID, predicate design involves specifying

a set of rules that dictates the temporal precedence of two predicates. In constructing the

AC-DAG, AID uses those rules.

For example, consider a scenario where foo() calls bar() and waits for bar() to

end—so, foo() starts before but ends after bar().

• (Case 1): Consider two predicates P1: “foo() is running slow” and P2: “bar()

is running slow”. Here, P2 can cause P1 but not the other way around. In this case,

AID uses the policy that end-time implies temporal precedence.

• (Case 2): Now consider P1: “foo() starts later than expected” and P2 : “bar()

starts later than expected”. Here, P1 can cause P2 but not the other way around.

Therefore, in this case, start-time implies temporal precedence.

AID works with any policy of deciding precedence, as long as it does not create cycles in

the AC-DAG. Since temporal precedence is a necessary condition for causality, any con-

servative heuristic for deriving temporal precedence would work. A conservative heuristic

may introduce more false positives (edges that are not truly causal), but those will be pruned

by interventions (Section 6.4).

6.4 Causal Intervention
In this section, we describe AID’s core component, which refines the AC-DAG through

a series of causal interventions. An intervention on a predicate forces the predicate to

a particular state; the execution of the application under the intervention asserts or con-

tradicts the causal connection of the predicate with the failure, and AID prunes the AC-

DAG accordingly. Interventions can be costly, as they require the application to be re-
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Notation Description
G Approximate causal DAG (AC-DAG)
P Causal path
F Failure indicating predicate
P A predicate
P Set of predicates

P (r) Predicate P is observed in execution r
¬P (r) Predicate P is not observed in execution r

P1 ; P2 There is a path from P1 to P2 in G

Figure 6.3: Summary of notations used in Section 6.4.

executed. AID minimizes this cost by (1) smartly selecting the proper predicates to inter-

vene, (2) grouping interventions that can be applied in a single application execution, and

(3) aggressively pruning predicates even without direct intervention, but based on outcomes

of other interventions. Figure 6.3 summarizes the notations used in this section.

We start by formalizing the problem of causal path discovery and state our assumptions

(Section 6.4.1). Then we provide an illustrative example to show how AID works (Sec-

tion 6.4.2). We proceed to describe interventional pruning that AID applies to aggressively

prune predicates during group intervention rounds (Section 6.4.3). Then we present AID’s

causality-guided group intervention algorithm (Section 6.4.4) which administers group in-

terventions to derive the causal path.

6.4.1 Problem Definition and Assumptions

Given an application that intermittently fails, our goal is to provide an informative ex-

planation for the failure. To that end, given a set of fully discriminative predicates P , we

want to find an ordered subset of P that defines the causal path from the root-cause predi-

cate to the predicate indicating the failure. Informally, AID finds a chain of predicates that

starts from the root-cause predicate, ends at the failure predicate, and contains the maxi-

mal number of explanation predicates such that each is caused by the previous one in the
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chain. We address the problem in a similar setting as SD, and make the following two

assumptions:

Assumption 1 (Single Root-cause Predicate). The root cause of a failure is the predicate

whose absence (i.e., a value of false) certainly avoids the failure, and there is no other

predicate that causes the root cause. We assume that in all the failed executions, there is

exactly one root-cause predicate.

This assumption is prevalent in the SD literature [167, 205, 212], and is supported by

several studies on real-world concurrency bug characteristics [219, 316, 329], which show

that a vast majority of root causes can be captured with reasonably simple single pred-

icates and hence this assumption is very common in the SD literature [167, 205, 212].

Some notable findings include: (1) “97% of the non-deadlock concurrency bugs are cov-

ered by two simple patterns: atomicity violation and order violation” [219], (2) “66% of

the non-deadlock concurrency bugs involve only one variable” [219] (3) “The manifesta-

tion of 96% of the concurrency bugs involves no more than two threads.” [219], (4) “most

fault localization approaches assume that each buggy source file has exactly one line of

faulty code” [329], (5) “The majority of flaky test bugs occur when the test does not wait

properly for asynchronous calls during the exercise phase of testing.” [316], etc. In prac-

tice, even with specific inputs, a program may fail in multiple ways. However, failures by

the same root cause generate a unique failure signature and hence can be grouped together

using metadata (e.g., stack trace of the failure, location of the failure in the program bi-

nary, etc.) collected by failure trackers [120]. AID can then treat each group separately,

targeting a single root cause for a specific failure. Moreover, the single-root-cause assump-

tion is reasonable in many simpler settings such as unit tests that exercise small parts of an

application.

Note that this assumption does not imply that the root cause consists of a single event; a

predicate can be arbitrarily complex to capture multiple events. For example, the predicate

“there is a data race on X” is true when two threads access the same shared memory X

158



at the same time, the accesses are not lock-protected, and one of the accesses is a write

operation. Whether a single predicate is sufficient to capture the root cause depends on

predicate design, which is orthogonal to AID. AID adapts the state-of-the art predicate

design, tailored to capture root causes of concurrency bugs [167], which is sophisticated

enough to capture all common root causes using single predicates. If no single predicate

captures the true root cause, AID still finds the predicate closest to the true root cause in

the true causal path.

Assumption 2 (Deterministic Effect). A root-cause predicate, if triggered, causes a fixed

sequence of intermediate predicates (i.e., effects) before eventually causing the failure. We

call this sequence causal path, and we assume that there is a unique one for each root-

cause-failure pair.

Prior work has considered, and shown evidence of, a unique causal path between a

root cause and the failure in sequential applications [170, 304]. The unique causal path

assumption is likely to hold in concurrent applications as well for two key reasons. First,

the predicates in AID’s causal path may remain unchanged, despite nondeterminism in the

underlying instruction sequence. For example, the predicate “there is a data race between

methods X and Y” is not affected by which method starts first, as long as they temporally

overlap. Second, AID only considers fully discriminative predicates. If such predicates

exist to capture the root cause and its effects, by the definition of being fully discriminative,

there will be a unique causal path (of predicates) from the root cause to the failure. In all six

of our real-world case studies (Section 6.6), such predicates existed and there were unique

causal paths from the root causes to the failures.

Note that it is possible to observe some degree of disjointness within the true causal

paths. For example, consider a case where the root cause C triggers the failure F in two

ways: in some failed executions, the causal path is C æ A1 æ B æ F and, for others,

C æ A2 æ B æ F . This implies that neither A1 nor A2 is fully discriminative. Since

AID only considers fully discriminative predicates, both of them are excluded from the AC-
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DAG. In this case, AID reports C æ B æ F as the causal path; this is the shared part of

the two causal paths, which includes all counterfactual predicates and omits any disjunctive

predicates. One could potentially relax this assumption by encoding the interaction of such

predicates through a fully discriminative predicate (e.g., A = A1 ‚ A2 encodes disjunction

and is fully discriminative).

Based on these assumptions, we define the causal path discovery problem formally as

follows.

Definition 6.1 (Causal Path Discovery). Given an approximate causal DAG G = (V , E)

and a predicate F œ V indicating a specific failure, the causal path discovery problem

seeks a path P = ÈC0, C1, . . . , CnÍ such that the following conditions hold:

• C0 is the root cause of the failure and Cn = F .

• ’ 0 Æ i Æ n, Ci œ V and ’ 0 Æ i < n, (Ci, Ci+1) œ E .

• ’ 0 Æ i < j Æ n, Ci is a counterfactual cause of Cj .

• |P| is maximized.

6.4.2 Illustrative Example

AID performs causal path discovery through an intervention algorithm (Section 6.4.4).

Here, we illustrate the main steps and intuitions through an example.

Figure 6.4(a) shows an AC-DAG derived by AID (Section 6.3). The AC-DAG contains

all edges implied by transitive closure, but we do not depict them to have clearer visuals.

The true causal path for the failure F is P1 æ P2 æ P11 æ F , depicted with dashed

red outline. The AC-DAG is a superset of the actual causal graph, which is shown in

Figure 6.4(b).

AID follows an intervention-centric approach for discovering the causal path. Interven-

ing on a predicate forces it to behave the way it does in the successful executions, which
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Figure 6.4: (a) AC-DAG as constructed by AID. The DAG includes all edges implied by
transitive closure, but we omit them for clarity of the visuals. We indicate the predicates
in the causal path with the dashed red outline. (b) The actual causal DAG is a subgraph
of the AC-DAG. (c) Step by step illustration to discover the causal path (shown at bottom
right). Steps 1� and 2� perform branch pruning, steps 3�– 8� perform group intervention
with pruning on the predicate chain, steps 6� and 7� apply interventional pruning.

is by definition, the opposite of the failed executions. (Recall that, without loss of gen-

erality, we assume that all predicates are boolean.) Following the adaptive group testing

paradigm, AID performs group intervention, which is simultaneous intervention on a set

of predicates, to reduce the total number of interventions. Figure 6.4(c) shows the steps of

the intervention algorithm, numbered 1�– 8�.

AID first aims to reduce the AC-DAG by pruning entire chains that are not associated

with the failure, through a process called branch pruning (Section 6.4.4). Starting from

the root of the AC-DAG, AID discovers the first junction, after predicate P3. For each

child of a junction, AID creates a compound predicate, called an independent branch,

or simply branch, that is a disjunction over the child and all its descendants that are not

descendants of the other children. So, for the junction after P3, we get branches B1 =
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P4 ‚ P5 ‚ P6 and B2 = P7 ‚ P8 ‚ P9 ‚ P11. AID intervenes on one of the branches

chosen at random—in this case B1—at step 1�; this requires an intervention on all of its

disjunctive predicates (P4, P5, and P6) in order to make the branch predicate False.

Despite the intervention, the program continues to fail, and AID prunes the entire branch

of B1, resolving the junction after P3. For a junction of B branches, AID would need

log B interventions to resolve it using a divide-and-conquer approach. At step 2�, AID

similarly prunes a branch at the junction after P7. At this point, AID is done with branch

pruning since it is left with just a chain of predicates (step 3�).

What is left for AID is to prune any non-causal predicate from the remaining chain.

AID achieves that through a divide-and-conquer strategy that intervenes on groups of pred-

icates at a time (Algorithm 3). It intervenes on the top half of the chain—{P1, P2, P3}—

which stops the failure and confirms that the root cause is in this group (step 3�). With two

more steps that narrow down the interventions (steps 4� and 5�), AID discovers that P1 is

the root cause. Note that we cannot simply assume that the root of the AC-DAG is a cause,

because the edges are not all necessarily causal.

After the discovery of the root cause, AID needs to derive the causal path. Continuing

the divide-and-conquer steps, it intervenes on P2 (step 6�). This stops the failure, confirm-

ing that P2 is in the causal path. In addition, since P7 is not causally dependent on P2,

the intervention on P2 does not stop P7 from occurring. This observation allows AID to

prune P7 without intervening on it directly. At step 7�, AID intervenes on P3. The effect

of this intervention is that the failure is still observed, but P10 no longer occurs, indicating

that P10 is causally connected to P3, but not to the failure; this allows AID to prune both

P3 and P10. Finally, at step 8�, AID intervenes on P11 and confirms that it is causal,

completing the causal path derivation. AID discovered the causal path in 8 interventions,

while naïvely we would have needed 11—one for each predicate.
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6.4.3 Predicate Pruning

In the initial construction of the AC-DAG, AID excludes predicates based on a simple

rule: a predicate P is excluded if there exists a program execution r, where P occurs and

the failure does not (P (r) · ¬F (r)), or P does not occur and the failure does (¬P (r) ·

F (r)). Intervening executions follow the same basic intuition for pruning the intervened

predicate C: By definition C does not occur in an execution rC that intervenes on predicate

C (¬C(rC)); thus, if the failure still occurs on rC (F (rC)), then C is pruned from the

AC-DAG.

As we saw in the illustrative example, intervention on a predicate C may also lead

to the pruning of additional predicates. However, the same basic pruning logic needs to

be applied more carefully in this case. In particular, we can never prune predicates that

precede C in the AC-DAG, as their potential causal effect on the failure may be muted by

the intervention on C. Thus, we can only apply the pruning rule to any predicate X that

is not an ancestor of C in the AC-DAG (X ”; C). We formalize the predicate pruning

strategy over G(V , E) in the following definition.

Definition 6.2 (Interventional Pruning). Let RC be a set of program executions1 intervening

on a group of predicates C ™ V . Every C œ C is pruned from G iff ÷r œ RC such that F (r).

Any other predicate P ”œ C is pruned from G iff @C œ C such that P ; C and ÷r œ RC

such that (P (r) · ¬F (r)) ‚ (¬P (r) · F (r)).

6.4.4 Causality-guided Intervention

AID’s core intervention method is described in Algorithm 3: Group Intervention With

Pruning (GIWP). GIWP applies adaptive group testing to derive causal and spurious (non-

causal) nodes in the AC-DAG. The algorithm applies a divide-and-conquer approach that

groups predicates based on their topological order (a linear ordering of its nodes such that

1Because of nondeterminism issues in concurrent applications, we execute a program multiple times with the same intervention.
However, it is sufficient to identify a single counter-example execution to invoke the pruning rule.
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Algorithm 3: GIWP (P , G, F )
Input : A set of candidate predicates, P ,

AC-DAG, G

Failure indicating predicate, F
Output : The set of counterfactual causes of F , C

The set of spurious predicates, X

1 C = ÿ /* causal predicate set */
2 X = ÿ /* spurious predicate set */
3 while P ”= ÿ do
4 P1 = first half of P in topological order
5 RP1 = Intervene (P1)
6 if @r œ RP1 s.t. F (r) then /* failure stopped */
7 if P1 contains a single predicate then
8 C = C fi P1 /* a cause is confirmed */

9 else /* need to confirm causes */
10 C

Õ, X
Õ = GIWP(P1, G, F )

11 C = C fi C
Õ /* confirmed causes */

12 X = X fi X
Õ /* spurious predicates */

/* interventional pruning */
13 if ÷r œ RP1 s.t. F (r) then /* failure didn’t stop */
14 X = X fi P1 /* pruning */

15 foreach P œ P ≠ P1 s.t. ’P Õ
œ P1 P ”; P Õ do

16 if ÷r œ RP1 s.t. (P (r) · ¬F (r)) ‚ (¬P (r) · F (r)) then
17 X = X fi {P} /* pruning */

18 P = P ≠ (C fi X ) /* remove confirmed and spurious predicates
from candidate predicate pool */

19 return C, X

for every directed edge P1 æ P2, P1 comes before P2 in the ordering). In every iteration,

GIWP selects the predicates in the lowest half of the topological order, resolving ties ran-

domly, and intervenes by setting all of them to False (lines 4–5). The intervention returns

a set of predicate logs.

If the failure is not observed in any of the intervening executions (line 6), based on coun-

terfactual causality, GIWP concludes that the intervened group contains at least one predi-

cate that causes the failure. If the group contains a single predicate, it is marked as causal

(line 8). Otherwise, GIWP recurses to trace the causal predicates within the group (line 10).
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Algorithm 4: Branch-Prune (G, F )
Input : AC-DAG, G = (V, E)

Failure indicating predicate, F
Output : Reduces G to an approximate causal chain

1 C = ÿ /* potential causal predicate set */
2 X = ÿ /* spurious predicate set */
3 while V ≠ C ”= ÿ do
4 P = predicates at the lowest topological level in V ≠ C

5 if P contains a single predicate then
6 C = C fi P /* add to potential causal set */

7 else /* this is a junction */
8 B = ÿ

9 foreach P œ P do
10 BP = x

{Q : P ; Q · ’P Õ
œ P≠{P} P Õ

”; Q}

11 BP = P ‚ BP

12 B = B fi {BP } /* set of branches */

13 C
Õ, X

Õ = GIWP (B, G, F )
14 C = C fi C

Õ /* add to potential causal set */
15 X = X fi X

Õ /* add to spurious set */

/* refining G */
16 U = {U : C ”= ÿ · ’C œ C C ”; U} /* unreachable */
17 V = V ≠ X /* remove spurious predicates */
18 V = V ≠ U /* remove unreachable predicates */

During each intervention round, GIWP applies Definition 6.2 to prune predicates that

are determined to be non-causal (lines 13–17). First, if the algorithm discovers an inter-

vening execution that still exhibits the failure, then it labels all intervened predicates as

spurious and marks them for removal (line 14). Second, GIWP examines each other pred-

icate that does not precede any intervened predicate and observes if any of the intervened

executions demonstrate a counterfactual violation between the predicate and the failure. If

a violation is found, that predicate is pruned (line 17).

At completion of each intervention round, GIWP refines the predicate pool by eliminat-

ing all confirmed causes and spurious predicates (line 18) and enters the next intervention

round . It continues the interventions until all predicates are either marked as causal or

spurious and the remaining predicate pool is empty. Finally, GIWP returns two disjoint

predicate sets—the causal predicates and the spurious predicates (line 19).
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Algorithm 5: Causal-Path-Discovery (G, F, F lagB)
Input : AC-DAG, G = (V, E)

Failure indicating predicate, F
FlagB , whether to apply branch pruning or not

Output : A causal path
1 if FlagB then
2 Branch-Prune (G, F )

3 C, X = GIWP (V≠{F}, G, F )
4 return C

6.4.4.1 Branch Pruning

GIWP is sufficient for most practical applications and can work directly on the

AC-DAG. However, when the AC-DAG satisfies certain conditions (analyzed in Sec-

tion 6.5.3.1), we can reduce the number of required interventions through a process called

branch pruning. The intuition is that since there is a single causal path that explains the

failure, junctions (where multiple paths exist) can be used to quickly identify independent

branches to be pruned or confirmed as causal as a group. The branches can be used to

more effectively identify groups for intervention, reducing the overall number of required

interventions.

Branch pruning iteratively prunes branches at junctions (steps 1� and 2� in the illus-

trative example) to reduce the AC-DAG to a chain of predicates. The process is detailed

in Algorithm 4. The algorithm traverses the DAG based on its topological order, and does

not intervene while it encounters a single node at a time, which means it is still in a chain

(line 5). When it encounters multiple nodes at the same topological level, it means it en-

countered a junction (line 7). A junction means that the true causal path can only continue

in one direction, and AID can perform group intervention to discover it. The algorithm in-

vokes GIWP to perform this intervention over a set of special predicates constructed from

the branches at the encountered junction (lines 10–12). A branch at predicate P is defined

as a disjunctive predicate over P and all descendants of P that are not descendants of any

other predicate at the same topological level as P . An example branch from our illustrative
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example is B1 = P4 ‚ P5 ‚ P6. To intervene on a branch, one has to intervene on all of

its disjunctive predicates. The algorithm defines B as the union of all branches, which cor-

responds to a completely disconnected graph (no edges between the nodes), thus all branch

predicates are at the same topological level. GIWP is then invoked (line 13) to identify

the causal branch. The algorithm removes any predicate that is not causally connected to

the failure (line 17) or is no longer reachable from the correct causal chain (line 18), and

updates the AC-DAG accordingly. At the completion of branch pruning, AID reduces the

AC-DAG to simple chain of predicates.

Finally, Algorithm 5 presents the overall method that AID uses to perform causal path

discovery, which optionally invokes branch pruning before the divide-and-conquer group

intervention through GIWP.

6.5 Theoretical Analysis
In this section, we theoretically analyze the performance of AID in terms of the

number of interventions required to identify all causal predicates, which are the predicates

causally related to the failure.2 Similar to the analysis of group testing algorithms, we study

the information-theoretic lower bound, which specifies the minimum number of bits of

information that an algorithm must extract to identify all causal predicates for any instance

of a problem. We also study the lower and the upper bounds that quantify the minimum

and the maximum number of group interventions required to identify all causal predicates,

respectively, for AID versus a Traditional Adaptive Group Testing (TAGT) algorithm.

Any group testing algorithm takes N items (predicates), D of which are faulty (causal),

and aims to identify all faulty items using as few group interventions as possible. Since

there are
1

N
D

2
possible outcomes, the information-theoretic lower bound for this problem

is log
1

N
D

2
. The upper bound on the number of interventions using TAGT is O(D log N),

2Causal predicates correspond to faulty predicates in group testing. This distinction in terminology is
because group testing does not meaningfully reason about causality.
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since log N group interventions are sufficient to reveal each causal predicate. Here, we

assume D < N
log N ; otherwise, a linear approach that intervenes on one predicate at a time

is preferable.

We now show that the Causal Path Discovery (CPD) problem (Definition 6.1) can re-

duce the lower bound on the number of required interventions compared to Group Testing

(GT). We also show that the upper bound on the number of interventions is lower for AID

than TAGT, because of the two assumptions of CPD (Section 6.4.1). In TAGT, predicates

are assumed to be independent of each other, and hence, after each intervention, decisions

(about whether predicates are causal) can be made only about the intervened predicates.

In contrast, AID uses the precedence relationships among predicates in the AC-DAG to

(1) aggressively prune, by making decisions not only about the intervened predicates but

also about other predicates, and to (2) select predicates based on the topological order,

which enables effective pruning during each intervention.

Example 6.2. Consider the AC-DAG of Figure 6.5(a), consisting of N = 6 predicates

and the failure predicate F . If AID intervenes on all predicates in one branch (e.g.,

{A1, B1, C1}) and finds causal connection to the failure, it can avoid intervening on

predicates in the other branch according to the deterministic effect assumption. AID can

also use the structure of the AC-DAG to intervene on A1 (or A2) before other predicates

since the intervention can prune a large set of predicates. Since GT algorithms do not

assume relationships among predicates, they can only intervene on predicates in random

order and can make decisions about only the intervened predicates.

6.5.1 Search Space

The temporal precedence and potential causality encoded in the AC-DAG restrict the

possible causal paths and significantly reduce the search space of CPD compared to GT.

Example 6.3. In the example of Figure 6.5(a), GT considers all subsets of the 6 predicates

as possible solutions, and thus its search space includes 26 = 64 candidates. CPD lever-
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Figure 6.5: (a) An AC-DAG with failure predicate F . (b) Horizontal and vertical expan-
sion. (c) A symmetric AC-DAG with J junctions where each junction has B branches and
each branch has n predicates.

ages the AC-DAG and the deterministic effect assumption (Section 6.4.1) to identify invalid

candidates and reduce the search space considerably. For example, the candidate solution

{A1, B2, C1} is not possible under CPD, because it involves predicates in separate paths

on the AC-DAG. In fact, based on the AC-DAG, CPD does not need to explore any solu-

tions with more than 3 predicates. The complete search space of CPD includes all subsets

of predicates along each branch of length 3, thus a total of 2 · (23
≠ 1) + 1 = 15 possible

solutions.

We proceed to characterize the search space of CPD compared to GT more generally.

We use |G| to denote the number of predicates in an AC-DAG represented by G, and

W GT
G and W CP D

G to denote the size of the search space for GT and CPD, respectively. We

start from the simplest case of DAG, a chain, and then using the notions of horizontal and

vertical expansion, we can derive the search space for any DAG.
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If G is a simple chain of predicates, then GT and CPD have the same search space: 2|G|.

CPD reduces the search space drastically when junctions split the predicates into separate

branches, like in Example 6.3. We call this case a horizontal expansion: a DAG GH is a

horizontal expansion of two subgraphs G1 and G2 if it connects them in parallel through

two junctions, at the roots (lowest topological level) and leaves (highest topological level).

In contrast, GV is a vertical expansion, if it connects them sequentially via a junction.

Horizontal and vertical expansion are depicted in Figure 6.5(b). In horizontal expansion,

the search space of CPD is additive over the combined DAGs, while in vertical expansion

it is multiplicative.

Lemma 6.1 (DAG expansion). Let W CP D
G1 and W CP D

G2 be the numbers of valid solutions

for CPD over DAGs G1 and G2, respectively. Let GH and GV represent their horizontal

and vertical expansion, respectively. Then:

W CP D
GH

= 1 + (W CP D
G1 ≠ 1) + (W CP D

G2 ≠ 1)

W CP D
GV

= W CP D
G1 W CP D

G2

In contrast, in both cases, the search space of GT is 2|G1|+|G2|.

Intuitively, in horizontal expansion, the valid solutions for GH are those of G1 and those

from G2, but no combinations between the two are possible. Note that both W CP D
G1 and

W CP D
G2 have the empty set as a common solution, so in the computation of W CP D

GH
, one

solution is subtracted from each search space (W CP D
Gi

≠ 1) and then added to the overall

result.

Symmetric AC-DAG. Lemma 6.1 allows us to derive the size of the search space for

CPD over any AC-DAG. To further highlight the difference between GT and CPD, we an-

alyze their search space over a special type of AC-DAG, a symmetric AC-DAG, depicted

in Figure 6.5(c). A symmetric AC-DAG has J junctions, and B branches at each junc-

tion, where each branch is a simple chain of n predicates. Therefore, the total number

170



of predicates in the symmetric AC-DAG is N = JBn, and the search space of GT is

W GT = 2JBn. For CPD, based on horizontal expansion, the subgraph in-between two sub-

sequent junctions has a total of 1+qB
i (2n

≠1) = 1+B(2n
≠1) candidate solutions. Then,

based on vertical expansion, the overall search space of CPD is:

W CP D = (B(2n
≠ 1) + 1)J

6.5.2 Lower Bound of Number of Interventions

We now show that, due to the predicate pruning mechanisms, and the strategy of picking

predicates according to topological order, the lower bound3 on the required number of

interventions in CPD is significantly reduced. For the sake of simplicity, we drop the

deterministic effect assumption in this analysis. In GT, after each group test, we get at

least 1 bit of information. Since after retrieving all information, the remaining information

should be Æ 0, therefore, the number of required interventions in GT is bounded below by

log
1

N
D

2
. In contrast, for CPD, we have the following theorem.

Theorem 6.1. The number of required group interventions in CPD is bounded below by

N
N+DS1

log
1

N
D

2
, where at least S1 predicates are discarded (either pruned using the pruning

rule or marked as causal) during each group intervention (proof is in Appendix C.1).

Since DS1
N > 0, we obtain a reduced lower bound for the number of required interven-

tions in CPD than GT. In general, as S1 increases, the lower bound in CPD decreases. Note

that we are not claiming that AID achieves this lower bound for CPD; but this sets the

possibility that improved algorithms can be designed in the setting of CPD than GT.

3Lower bound is a theoretical bound which states that, it might be possible to design an algorithm that can
solve the problem which requires number of steps equal to the lower bound. Note that, this does not imply
that there exists one such algorithm.
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Figure 6.6: Theoretical comparison between CPD and GT for the symmetric AC-DAG of
Figure 6.5(c).

Symmetric AC-DAG. Figure 6.6 shows the lower bound on the number of required in-

terventions in CPD and GT for the symmetric AC-DAG of Figure 6.5(c), assuming that

each intervention discards at least S1 predicates in CPD.

6.5.3 Upper Bound of Number of Interventions

We now analyze the upper bound on the number of interventions for AID under

(1) branch pruning, which exploits the deterministic effect assumption, and (2) predicate

pruning.

6.5.3.1 Branch Pruning

Whenever AID encounters a junction, it has the option to apply branch pruning. In

CPD, at most one branch can be causal at each junction; hence, we can find the causal

branch using log B interventions at each junction, where B is the number of branches at

that junction. Also, B is upper-bounded by the number of threads T in the program. This

holds since we assume that the program inputs are fixed and there is no different conditional

branching due to input variation in different failed executions within the same thread. If

there are J junctions and at most T branches at each junction, the number of interventions

required to reduce the AC-DAG to a chain is at most J log T . Now let us assume that the

maximum number of predicates in any path in the AC-DAG is NM . Therefore, the chain

found after branch pruning can contain at most NM predicates. If D of them are causal

predicates, we need at most D log NM interventions to find them. Therefore, the total
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number of required interventions for AID is Æ J log T +D log NM . In contrast, the number

of required interventions for TAGT, which does not prune branches, is Æ D log(TNM) =

D log T + D log NM . Therefore, whenever J < D, the upper bound on the number of

interventions for AID is smaller than the upper bound for TAGT.

6.5.3.2 Predicate Pruning

For an AC-DAG with N predicates, D of which are causal, we now focus on the upper

bound on the number of interventions in AID using only predicate pruning. In the worst

case, when no pruning is possible, the number of required interventions would be the same

as that of TAGT without pruning, i.e., O(D log N).

Theorem 6.2. If at least S2 predicates are discarded (pruned or marked as causal) from

the candidate predicate pool during each causal predicate discovery, then the number of

required interventions for AID is Æ D log N ≠
D(D≠1)S2

2N (proof is in Appendix C.2).

Hence, the reduction depends on S2. When S2 = 1, we are referring to TAGT, in

absence of pruning, because once TAGT finds a causal predicate, it removes that predicate

from the candidate predicate pool.

Symmetric AC-DAG. Figure 6.6 shows the upper bound on the number of required in-

terventions using AID and TAGT for the symmetric AC-DAG of Figure 6.5(c), assuming

that at least S2 predicates are discarded during each causal predicate discovery by AID.

6.6 Experimental Evaluation
We now empirically evaluate AID. We first use AID on six real-world applications to

demonstrate its effectiveness in identifying root cause and generating explanation on how

the root cause causes the failure. Then we use a synthetic benchmark to compare AID and

its variants against traditional adaptive group testing approach to do a sensitivity analysis

of AID on various parameters of the benchmark.
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6.6.1 Case Studies of Real-world Applications

We now use three real-world open-source applications and three proprietary applica-

tions to demonstrate AID’s effectiveness in identifying root causes of transient failures.

Figure 6.7 summarizes the results and highlights the key benefits of AID:

• AID is able to identify the true root cause and generate an explanation that is consis-

tent with the explanation provided by the developers in corresponding GitHub issues.

• AID requires significantly fewer interventions than traditional adaptive group testing

(TAGT), which does not utilize causality among predicates (columns 5 and 6).

• In contrast, SD generates a large number of discriminative predicates (column 3),

only a small number of which is actually causally related to the failures (column 4).

6.6.1.1 Data Race in Npgsql

As a case study, we first consider a recently discovered concurrency bug in

Npgsql [245], an open-source ADO.NET Data Provider for PostgreSQL. The bug (GitHub

issue #2485) causes an Npgsql-baked application to intermittently crash when it tries to

create a new PostgreSQL connection. We use AID to check if it can identify the root cause

and generate an explanation of how the root cause triggers the failure.

We used one of the existing unit tests in Npgsql that causes the issue, and generated

logs from 50 successful executions and 50 failed executions of the test. By applying SD,

we found a total of 14 discriminative predicates. However, SD did not pinpoint the root

cause or generate any explanation.

We then applied AID on the discriminative predicates. In the branch pruning step, it

used 3 rounds of interventions to prune 8 of the 14 predicates. In the next step, it required

2 more rounds of interventions. Overall, AID required a total of 5 intervention rounds; in

contrast, TAGT would require 11 interventions in the worst case.

After all the interventions, AID identified a data race as the root cause of the failure

and produced the following explanation: (1) two threads race on an index variable:
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(1) (2) (3) (4) #Interventions
Application GitHub

Issue #
#Discrim.
preds (SD)

#Preds in
causal path

(5)
AID

(6)
TAGT

Npgsql [245] 2485 [246] 14 3 5 11
Kafka [172] 279 [173] 72 5 17 33
Azure Cosmos DB [63] 713 [64] 64 7 15 42
Network N/A 24 1 2 5
BuildAndTest N/A 25 3 10 15
HealthTelemetry N/A 93 10 40 70

Figure 6.7: Results from case studies of real-world applications. SD produces way too
many spurious predicates beyond the correct causal predicates (columns 3 & 4). SD ac-
tually produces even more predicates, but here we only report the number of fully dis-
criminative predicates. AID and traditional adaptive group testing (TAGT) both pin-point
the correct causal predicates using interventions, but AID does so with significantly fewer
interventions (columns 5 & 6).

one increments it while the other reads it (2) The second thread accesses an array at

the incremented index location, which is outside the array size. (3) This access throws

IndexOutOfRange exception (4) Application fails to handle the exception and crashes.

This explanation matches the root cause provided by the developer who reported the bug

to Npgsql GitHub repository.

6.6.1.2 Use-after-free in Kafka

Next, we use AID on an application built on Kafka [172], a distributed message queue.

On Kafka’s GitHub repository, a user reported an issue [173] that causes a Kafka applica-

tion to intermittently crash or hang. The user also provided a sample code to reproduce the

issue; we use a similar code for this case study.

As before, we collected predicate logs from 50 successful and 50 failed executions. Us-

ing SD, we identified 72 discriminative predicates. The AC-DAG identified 30 predicates

with no causal path to the failure indicating predicate, and hence were discarded. AID

then used the intervention algorithm on the remaining 42 predicates. After a sequence of 7

interventions, AID could identify the root-cause predicate. It took an additional 10 rounds
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(total 17) of interventions to discover a causal path of 5 predicates that connects the root

cause and the failure. The causal path gives the following explanation: (1) The main thread

that creates a Kafka consumer C starts a child thread (2) the child thread runs too slow

before calling a method on C (3) main thread disposes C (4) child thread calls a commit

method on C (5) since C has already been disposed by the main thread, the previous step

causes an exception, causing the failure. The explanation matches well with the description

provided in GitHub.

Overall, AID required 17 interventions to discover the root cause and explanation. In

contrast, SD generates 72 predicates, without pinpointing the true root cause or explanation.

TAGT could identify all predicates in the explanation, but it takes 33 interventions in the

worst case.

6.6.1.3 Timing Bug in Azure Cosmos DB Application

Next, we use AID on an application built on Azure Cosmos DB [63], Microsoft’s glob-

ally distributed database service for operational and analytics workloads. The application

has an intermittent timing bug similar to the one mentioned in a Cosmos DB’s pull request

on GitHub [64]. In summary, the application populates a cache with several entries that

would expire after 1 second, performs a few tasks, and then accesses one of the cached

entries. During successful executions, the tasks run fast and end before the cached entries

expire. However, a transient fault triggers expensive fault handling code that makes a task

run longer than the cache expiry time. This makes the application fail as it cannot find the

entry in the cache (i.e., it has already expired).

Using SD, we identified 64 discriminative predicates from successful and failed execu-

tions of the application. Applying AID on them required 15 interventions and it generated

an explanation consisting of 7 predicates that are consistent with the aforementioned infor-

mal explanation. In contrast, SD would generate 64 predicates and TAGT would take 42

interventions in the worst case.
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Figure 6.8: Number of interventions required in the average and worst case by traditional
adaptive group testing (TAGT) and different variations of AID with varying MAXt. For
average case analysis, total number of predicates is shown using a grey dotted line. Total
number of predicates is not shown for the worst-case analysis, because the worst cases vary
across approaches.

6.6.1.4 Bugs in Proprietary Software

We applied AID for finding root causes of intermittent failures of several proprietary

applications inside Microsoft. We here report our experience with three of the applications

that we name as follows (Figure 6.7): (1) Network: the control plane of a data center

network, (2) BuildAndTest: a large-scale software build and test platform, and

(3) HealthTelemetry: a module used by various services to report their runtime

health. Parts of these applications (and associated tests) had been intermittently failing

for several months and their developers could not identify the exact root causes. This

highlights that the root causes of these failures were nontrivial. AID identified the root

causes and generated explanations for how the root causes lead to failures: for Network,

the root cause was a random number collision, for BuildAndTest, it was an order

violation of two events, and for HealthTelemetry, it was a race condition. Developers

of the applications confirmed that the root causes identified by AID are indeed the correct

ones and that the explanations given by AID correctly showed how the root causes lead to

the (intermittent) failures.

Figure 6.7 also shows the performance of AID with these applications. As before, SD

produces many discriminative predicates, only a subset of which are causally related to the
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failures. Moreover, for all applications, AID requires significantly fewer interventions than

what TAGT would require in the worse case.

6.6.2 Sensitivity Analysis

We further evaluate AID on a benchmark of synthetically generated applications, de-

signed to fail intermittently and with known root causes. We generate multi-threaded appli-

cations ranging the maximum number of threads MAXt from 2 to 40. For each parameter

setting, we generate 500 applications. In these applications, the total number of predicates

N ranges from 4 to 284, and we randomly choose the number of causal predicates in the

range [1, N
log N ].

For this experiment, we compare four approaches: TAGT, AID, AID without predicate

pruning (AID-P), and AID without predicate or branch pruning (AID-P-B). All four ap-

proaches derive the correct causal paths but differ in the number of required interventions.

Figure 6.8 shows the average (left) and the maximum (right) number of interventions re-

quired by each approach. The grey dotted line in the average case shows the average

number of predicates over the 500 instances for that setting. This experiment provides two

key observations:

Interventions in topological order converge faster. Causally related predicates are

likely to be topologically close to each other in the AC-DAG. AID discards all predicates

in an intervened group only when none are causal. This is unlikely to occur when predi-

cates are grouped randomly. For this reason, AID-P-B, which uses topological ordering,

requires fewer interventions than TAGT.

Pruning reduces the required number of interventions. We observe that both

predicate and branch pruning reduce the number of interventions. Pruning is a key

differentiating factor of AID from TAGT. In the worst-case setting in particular, the
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margin between AID and TAGT is significant: TAGT requires up to 217 interventions in

one case, while the highest number of interventions for AID is 52.

6.7 Summary and Future Work
In this work, we defined the problem of causal path discovery for explaining failure of

concurrent programs. Our key contribution is the novel Adaptive Interventional Debugging

(AID) framework, which combines existing statistical debugging, causal analysis, fault

injection, and group testing techniques in a novel way to discover root cause of program

failure and generate the causal path that explains how the root cause triggers the failure.

Such explanation provides better interpretability for understanding and analyzing the root

causes of program failures. We showed both theoretically and empirically that AID is both

efficient and effective to solve the causal path discovery problem. A possible extension is to

incorporate additional information regarding the program behavior to better approximate

the causal relationship among predicates, and address the cases of multiple root causes

and multiple causal paths. Another interesting direction is to to address the challenge of

explaining multiple types of failures as well.
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CHAPTER 7

EXPOSING DISCONNECT BETWEEN DATA AND SYSTEMS
(DATAEXPOSER)1

Traditional software debugging aims to identify errors and bugs in the mechanism—

such as source code, configuration files, and runtime conditions—that may cause a

system to malfunction [96, 131, 205]. However, in modern systems, data has become a

central component that itself can cause a system to fail. Data-driven systems comprise

complex pipelines that rely on data to solve a target task. Prior work addressed the

problem of debugging machine-learning models [51] and finding root causes of failures

in computational pipelines [216], where certain values of the pipeline parameters—such

as a specific model and/or a specific dataset—cause the pipeline failure. However, just

knowing that a pipeline fails for a certain dataset is not enough; naturally, we ask: what

properties of a dataset caused the failure?

Two common reasons for malfunctions in data-driven systems are: (1) incorrect data,

and (2) disconnect between the assumptions about the data and the design of the system

that operates on the data. Such disconnects may happen when the system is not robust,

i.e., it makes strict assumptions about metadata (e.g., data format, domains, ranges, and

distributions), and when new data drifts from the data over which the system was tested

on before deployment [270] (e.g., when a system expects a data stream to have a weekly

frequency, but the data provider suddenly switches to daily data).

Therefore, in light of a failure, one should investigate potential issues in the data. Some

specific examples of commonly observed system malfunctions caused by data include:

1The work was done in collaboration with another Ph.D. student Sainyam Galhotra.
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(1) decline of a machine-learned model’s accuracy (due to out-of-distribution data), (2) un-

fairness in model predictions (due to imbalanced training data), (3) excessive processing

time (due to a system’s failure to scale to large data), and (4) system crash (due to invalid in-

put combination in the data tuples beyond what the system was designed to handle). These

examples indicate a common problem: disconnect or mismatch between the data and the

system design. Once the mismatch is identified, then possible fixes could be either to repair

the data to suit the system design, or to adjust the system design (e.g., modify source code)

to accommodate data with different properties.

A naïve approach to deal with potential issues in the data is to identify outliers: report

tuples as potentially problematic based on how atypical they are with respect to the rest

of the tuples in the dataset. However, without verifying whether the outliers actually cause

unexpected outcomes, we can never be certain about the actual root causes. As pointed

out in prior work [30]: “With respect to a computation, whether an error is an outlier in

the program’s input distribution is not necessarily relevant. Rather, potential errors can be

spotted by their effect on a program’s output distribution.” To motivate our work, we start

with an example taken from a real-world incident, where Amazon’s delivery service was

found to be racist [159].

Example 7.1 (Biased Classifier). An e-commerce company wants to build an automated

system that suggests who should get discounts. To this end, they collect information from

the customers’ purchases over one year and build a dataset over the attributes name,

gender, age, race, zip_code, phone, products_purchased, etc. Anita, a data

scientist, is then asked to develop a machine learning (ML) pipeline over this dataset to

predict whether a customer will spend over a certain amount, and, subsequently, should be

offered discounts. Within this pipeline, Anita decides to use a logistic regression classifier

for prediction and implements it using an off-the-shelf ML library. To avoid discrimination

over any group and to ensure that the classifier trained on this dataset is fair, Anita decides

to drop the sensitive attributes—race and gender—during the pre-processing step of
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the ML pipeline, before feeding it to the classifier. However, despite this effort, the trained

classifier turns out to be highly biased against African American people and women. Af-

ter a close investigation, Anita discovers that: (1) In the training data, race is highly

correlated with zip_code, and (2) The training dataset is imbalanced: a larger fraction

of the people who purchase expensive products are male. Now she wonders: if these two

properties did not hold in the dataset, would the learned classifier be fair? Have either (or

both) of these properties caused the observed unfairness?

Unfortunately, existing tools (e.g., CheckCell [30]) that blame individual cells (values)

for unexpected outcomes cannot help here, as no single cell in the training data is respon-

sible for the observed discrimination, rather, global statistical properties (e.g., correlation)

that involve multiple attributes over the entire data are the actual culprits. Furthermore,

Anita only identified two potential or correlated data issues that may or may not be the

actual cause of the unfairness. To distinguish mere correlation from true causation and to

verify if there is indeed a causal connection between the data properties and the observed

unfairness, we need to dig deeper.

Example 7.1 is one among many incidents in real-world applications where issues in

the data caused systems to malfunction [38, 122]. A recent study of 112 high-severity

incidents in Microsoft Azure services showed that 21% of the bugs were due to inconsis-

tent assumptions about data format by different software components or versions [213].

The study further found that 83% of the data-format bugs were due to inconsistencies

between data producers and data consumers, while 17% were due to mismatch between

interpretations of the same data by different data consumers. Similar incidents happened

due to misspelling and incorrect date-time format [275], and issues pertaining to data

fusion where schema assumptions break for a new data source [75, 325]. We provide

another illustrative example where a system times out when the distribution of the data,

over which the system operates, exhibits significant skew.
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Example 7.2 (Process Timeout). A toll collection software EZGO checks if vehicles

passing through a gate have electronic toll pass installed. If it fails to detect a toll pass,

it uses an external software OCR to extract the registration number from the vehicle’s

license plate. EZGO operates in a batch mode and processes every 1000 vehicles together

by reserving AWS for one hour, assuming that one hour is sufficient for processing each

batch. However, for some batches, EZGO fails. After a close investigation, it turns out

that the external software OCR uses an algorithm that is extremely slow for images of

black license plates captured in low illumination. As a result, when a batch contains a

large number of such cases (significantly skewed distribution), EZGO fails.

The aforementioned examples bring forth two key challenges. First, we need to cor-

rectly identify potential causes of unexpected outcomes and generate hypotheses that are

expressive enough to capture the candidate root causes. For example, “outliers cause un-

expected outcomes” is just one of the many possible hypotheses, which offers very limited

expressivity. Second, we need to verify the hypotheses to confirm or refute them, which

enables us to pinpoint the actual root causes, eliminating false positives.

Data profile as root cause. Towards solving the first challenge, our observation is that

data-driven systems often function properly for certain datasets, but malfunction for oth-

ers. Such malfunction is often rooted in certain properties of the data, which we call data

profiles, that distinguish passing and failing datasets. Examples include size of a dataset,

domains and ranges of attribute values, correlations between attribute pairs, conditional in-

dependence [337], functional dependencies and their variants [53, 90, 154, 187, 251], and

other more complex data profiles [61, 197, 252, 299].

Oracle-guided root cause identification. Our second observation is that if we have ac-

cess to an oracle that can indicate whether the system functions desirably or not, we can

verify our hypotheses. Access to an oracle allows us to precisely isolate the correct root

causes of the undesirable malfunction from a set of candidate causes. Here, an oracle is a
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mechanism that can characterize whether the system functions properly over the input data.

The definition of proper functioning is application-specific; for example, achieving a cer-

tain accuracy may indicate proper functioning for an ML pipeline. Such oracles are often

available in many practical settings, and have been considered in prior work [96, 216].

Solution sketch. We propose DATAEXPOSER, a framework that identifies and exposes

data profiles that cause a data-driven system to malfunction. Our framework involves two

main components: (1) an intervention-based mechanism that alters the profiles of a dataset,

and (2) a mechanism that speeds up analysis by carefully selecting appropriate interven-

tions. Given a scenario where a system malfunctions (fails) over a dataset but functions

properly (passes) over another, DATAEXPOSER focuses on the discriminative profiles, i.e.,

data profiles that significantly differ between the two datasets. DATAEXPOSER’s interven-

tion mechanism modifies the “failing” dataset to alter one of the discriminative profiles;

it then observes whether this intervention causes the system to perform desirably, or the

malfunction persists. DATAEXPOSER speeds up this analysis by favoring interventions on

profiles that are deemed more likely causes of the malfunction. To estimate this likelihood,

we leverage three properties of a profile: (1) coverage: the more tuples an intervention af-

fects, the more likely it is to fix the system behavior, (2) discriminating power: the bigger

the difference between the failing and the passing datasets over a profile, the more likely

that the profile is a cause of the malfunction, and (3) attribute association: if a profile in-

volves an attribute that is also involved with a large number of other discriminative profiles,

then that profile has high likelihood to be a root cause. This is because altering such a pro-

file is likely to passively repair other discriminative profiles as a side-effect (through the

associated attribute). We also provide a group-testing-based technique that allows group

intervention, which helps expedite the root-cause analysis further.

Scope. In this work, we assume knowledge of the classes of (domain-specific) data pro-

files that encompass the potential root causes. E.g., in Example 7.1, we assume the knowl-
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edge that correlation between attribute pairs and disparity between the conditional proba-

bility distributions (the probability of belonging to a certain gender, given price of items

bought) are potential causes of malfunction. This assumption is realistic because: (1) For a

number of tasks there exists a well-known set of relevant profiles: e.g., class imbalance and

correlation between sensitive and nonsensitive attributes are common causes of unfairness

in classification [36]; and violation of conformance constraints [101], missing values, and

out-of-distribution tuples are well-known causes of ML model’s performance degradation.

(2) Domain experts are typically aware of the likely class of data profiles for the specific

task at hand and can easily provide this additional knowledge as a conservative approxi-

mation, i.e., they can include extra profiles just to err on the side of caution. Notably, this

assumption is also extremely common in software debugging techniques [96, 205, 350],

which rely on the assumption that the “predicates” (traps to extract certain runtime condi-

tions) are expressive enough to encode the root causes, and software testing [231], valida-

tion [193], and verification [139] approaches, which rely on the assumption that the test

cases, specifications, and invariants reasonably cover the codebase and correctness con-

straints.

To support a data profile, DATAEXPOSER further needs the corresponding mechanisms

for discovery and intervention. In this work, we assume knowledge of the profile discovery

and intervention techniques, as they are orthogonal to our work. Nevertheless, we discuss

some common classes of data profiles supported in DATAEXPOSER and the corresponding

discovery and intervention techniques. For data profile discovery, we rely on prior work

on pattern discovery [262], statistical-constraint discovery [337], data-distribution learn-

ing [137], knowledge-graph-based concept identification [113], etc. While our evaluation

covers specific classes of data profiles (for which there exist efficient discovery techniques),

our approach is generic and works for any class of data profiles, as long as the correspond-

ing discovery and intervention techniques are available.
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Limitations of prior work. To find potential issues in data, Dagger [274, 275] provides

data debugging primitives for human-in-the-loop interactions with data-driven computa-

tional pipelines. Other explanation-centric efforts [24, 60, 118, 325] report salient proper-

ties of historical data based only on observations. In contrast with observational techniques,

the presence of an oracle allows for interventional techniques [216] that can query the ora-

cle with additional, system-generated test cases to identify root causes of system malfunc-

tion more accurately. One such approach is CheckCell [30], which presents a ranked list of

cells of data rows that unusually affect output of a given target function. CheckCell uses a

fine-grained approach: it removes one cell of the data at a time, and observes changes in the

output distribution. While it is suitable for small datasets, where it is reasonable to expect

a human-in-the-loop paradigm to fix cells one by one, it is not suitable for large datasets,

where no individual cell is significantly responsible, rather, a holistic property of the entire

dataset (profile) causes the problem.

Interpretable machine learning is related to our problem, where the goal is to explain

behavior of machine-learned models. However, prior work on interpretable machine learn-

ing [276, 277] typically provides local (tuple-level) explanations, as opposed to global

(dataset-level) explanations. While some approaches provide feature importance as a global

explanation for model behavior [54], they do not model feature interactions as possible ex-

planations.

Software testing and debugging techniques [16, 18, 56, 107, 121, 128, 144, 169,

205, 350] are either application-specific, require user-defined test suites, or rely only on

observational data. The key contrast between software debugging and our setting is that

the former focuses on white-box programs: interventions, runtime conditions, program

invariants, control-flow graphs, etc., all revolve around program source code and execution

traces. Unlike programs, where lines have logical and semantic connections, tuples in

data do not have similar associations. Data profiles significantly differ in their semantics,

and discovery and intervention techniques from program profiles, and, thus, techniques
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for program profiling do not trivially apply here. We treat data as a first-class citizen in

computational pipelines, while considering the program as a black box.

Contributions. We make the following contributions:

• We formalize the novel problem of identifying root causes (and fixes) of the discon-

nect between data and data-driven systems in terms of data profiles (and interven-

tions). (Section 7.1)

• We design a set of data profiles that are common root causes of data-driven sys-

tem malfunctions, and discuss their discovery and intervention techniques based on

available technology. (Section 7.2)

• We design and develop a novel interventional approach to pinpoint causally verified

root causes. The approach leverages a few properties of the data profiles to efficiently

explore the space of candidate root causes with a small number of interventions. Ad-

ditionally, we develop an efficient group-testing-based algorithm that further reduces

the number of required interventions. (Section 7.3)

• We evaluate DATAEXPOSER on three real-world applications, where data profiles are

responsible for causing system malfunction, and demonstrate that DATAEXPOSER

successfully explains the root causes with a very small number of interventions (<

5). Furthermore, DATAEXPOSER requires 10–1000◊ fewer interventions when com-

pared against two state-of-the-art techniques for root-cause analysis: BugDoc [216]

and Anchors [277]. Through an experiment over synthetic pipelines, we further show

that the number of required interventions by DATAEXPOSER increases sub-linearly

with the number of discriminative profiles, thanks to our group-testing-based ap-

proach. (Section 7.4)
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7.1 Preliminaries and Problem Definition
In this section, we first formalize the notions of system malfunction and data profile, its

violation, and transformation function used for intervention. We then proceed to define ex-

planation (cause and corresponding fix) of system malfunction and formulate the problem

of data-profile-centric explanation of system malfunction.

Basic notations. We use R(A1, A2, . . . , Am) to denote a relation schema over m at-

tributes, where Ai denotes the ith attribute. We use Domi to denote the domain of attribute

Ai. Then the set Domm = Dom1 ◊ · · ·◊Domm specifies the domain of all possible tuples. A

dataset D ™ Domm is a specific instance of the schema R. We use t œ Domm to denote

a tuple in the schema R. We use t.Ai œ Domi to denote the value of the attribute Ai of the

tuple t and use D.Aj to denote the multiset of values all tuples in D take for attribute Aj .

7.1.1 Quantifying System Malfunction

To measure how much the system malfunctions over a dataset, we use the malfunction

score.

Definition 7.1 (Malfunction score). Let D ™ Domm be a dataset, and S be a system

operating on D. The malfunction score mS(D) œ [0, 1] is a real value that quantifies how

much S malfunctions when operating on D.

The malfunction score mS(D) = 0 indicates that S functions properly over D and a

higher value indicates a higher degree of malfunction, with 1 indicating extreme malfunc-

tion. A threshold parameter · defines the acceptable degree of malfunction and translates

the continuous notion of malfunction to a Boolean value. If mS(D) Æ · , then D is consid-

ered to pass with respect to S; otherwise, there exists a mismatch between D and S, whose

cause (and fix) we aim to expose.

Example 7.3. For a binary classifier, its misclassification rate (additive inverse of accu-

racy) over a dataset can be used as a malfunction score. Given a dataset D, if a classifier
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S makes correct predictions for tuples in DÕ
™ D , and incorrect predictions for the re-

maining tuples, then S achieves accuracy |DÕ|
|D| , and, thus, mS(D) = 1 ≠

|DÕ|
|D| .

Example 7.4. In fair classification, we can use disparate impact [152], which is defined

by the ratio between the number of tuples with favorable outcomes within the unprivileged

and the privileged groups, to measure malfunction.

7.1.2 Profile-Violation-Transformation (PVT)

Once we detect existence of a mismatch, the next step is to investigate its cause. We

characterize the issues in a dataset that are responsible for the mismatch between the dataset

and the system using data profiles. Structure or schema of data profiles is given by profile

templates, which contains holes for parameters. Parameterizing a profile template gives

us a concretization of the corresponding profile (P ). Given a dataset D, we use existing

data-profiling techniques to find out parameter values to obtain concretized data profiles,

such that D satisfies the concretized profiles. To evaluate how much a dataset D satisfies or

violates a data profile, we need a corresponding violation function (V ). Violation functions

provide semantics of the data profiles. Finally, to alter a dataset D, with respect to a data

profile and the corresponding violation function, we need a transformation function (T ).

Transformation functions provide the intervention mechanism to alter data profiles of a

dataset and suggest fix to remove the cause of malfunction. DATAEXPOSER requires the

following three components over the schema ÈProfile, Violation function, Transformation

functionÍ, PVT in short:

1. P : a (concretized) profile along with its parameters, which follows the schema

Èprofile type, parametersÍ.

2. V (D, P ): a violation function that computes how much the dataset D violates the

profile P and returns a violation score.
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3. T (D, P, V ): a transformation function that transforms the dataset D to another

dataset DÕ such that DÕ no longer violates the profile P with respect to the viola-

tion function V . (When clear from the context, we omit the parameters P and V

when using the notation for transformation functions.)

For a PVT triplet X , we define XP as its profile, XV as the violation function and XT

as the transformation function. We provide examples and additional discussions on data

profiles, violation functions, and transformation functions in Section 7.2.

7.1.2.1 Data Profile

Intuitively, data profiles encode dataset characteristics. They can refer to a single at-

tribute (e.g., mean of an attribute) or multiple attributes (e.g., correlation between a pair of

attributes, functional dependencies, etc.).

Definition 7.2 (Data Profile). Given a dataset D, a data profile P denotes properties or

constraints that tuples in D (collectively) satisfy.

7.1.2.2 Profile Violation Function

To quantify the degree of violation a dataset incurs with respect to a data profile, we

use a profile violation function that returns a numerical violation score.

Definition 7.3 (Profile violation function). Given a dataset D and a data profile P , a

profile violation function V (D, P ) ‘æ [0, 1] returns a real value that quantifies how much

D violates P .

V (D, P ) = 0 implies that D fully complies with P (does not violate it at all). In

contrast, V (D, P ) > 0 implies that D violates P . The higher the value of V (D, P ), the

higher the profile violation.
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Profile Data type Discovery over D Interpretation Violation by D Transformation func.

1 ÈDOMAIN, Aj , SÍ Categorical S =
€

tœD

{t.Aj}
Values are drawn
from a specific do-
main.

q
tœD

Jt.Aj ”œ SK
|D|

Map values outside S to
values in S using domain
knowledge.

2 ÈDOMAIN, Aj , SÍ Numerical

S = [lb, ub], where
lb = min

tœD
t.Aj

ub = max
tœD

t.Aj

Values lie within a
bound.

q
tœD

Jt.Aj ”œ SK
|D|

(1) Use monotonic linear
transformation and trans-
form all values.
(2) Use winsorization
techniques to replace the
violating values only.st

ri
ct

3 ÈDOMAIN, Aj , SÍ Text

S = [t œ Domj | t |= P],
where P is a regex
over D.Aj learned via
pattern discovery [262]

Values satisfy a
regular expression
or length of values
lie within a bound.

q
tœD

Jt.Aj ”œ SK
|D|

Minimally alter data to
satisfy regular expres-
sion. For example, insert
(remove) characters to
increase (reduce) text
length.

4 ÈOUTLIER, Aj , O, ◊Í All
◊ =

q
tœD

JO(D.Aj ,t.Aj)K
|D| ,

where O is learned from
D.Aj’s distribution [137]

Fraction of outliers
within an attribute
does not exceed a
threshold.

max
3

0,
q

tœD
JO(D.Aj ,t.Aj)K≠◊·|D|

|D|·(1≠◊)

4

(1) Replace outliers
with the expected value
(mean, median, mode) of
the attribute.
(2) Map all values above
(below) the maximum
(minimum) limit with
highest (lowest) valid
value.

5 ÈMISSING, Aj , ◊Í All ◊ =
q

tœD
Jt.Aj=NULLK

|D|

Fraction of missing
values within an at-
tribute does not ex-
ceed a threshold.

max
3

0,
q

tœD
Jt.Aj=NULLK≠◊·|D|

|D|·(1≠◊)

4
Use missing value impu-
tation techniques.

th
re

sh
ol

de
d

by
da

ta
co

ve
ra

ge

6 ÈSELECTIVITY, P, ◊Í All ◊ = |‡P(D)|
|D|

Fraction of tuples
satisfying a given
constraint (selec-
tion predicate)
does not exceed a
threshold.

max
3

0, |‡P(D)|≠◊·|D|
|D|·(1≠◊)

4
Undersample tuples that
satisfy the predicate P.

7 ÈINDEP, Aj , Ak, –Í Categorical
– denotes Chi-squared
statistic between D.Aj

and D.Ak

‰2 statistic between
a pair of attributes
is below a thresh-
old with a p-value
Æ 0.05.

1 ≠ e≠ max(0,‰2(D.Aj ,D.Ak)≠–)
Modify attribute values
to remove/reduce depen-
dence.

8 ÈINDEP, Aj , Ak, –Í Numerical
– denotes Pearson
correlation coefficient
between D.Aj and D.Ak

PCC between a pair
attributes is below a
threshold with a p-
value Æ 0.05.

max
1
0, |PCC(D.Aj ,D.Ak)|≠|–|

1≠|–|

2
Add noise to re-
move/reduce
dependence between at-
tributes.

th
re

sh
ol

de
d

by
pa

ra
m

et
er

9 ÈINDEP, Aj , Ak, –Í
Categorical,
numerical

Learn causal graph and
causal coefficients (–)
using TETRAD [288]

A causal relation-
ship between a pair
of attributes is un-
likely (with causal
coefficient less than
–).

max
1
0, |coeff(Aj ,Ak)|≠–

1≠–

2 Change data distribution
to modify the causal rela-
tionship.

Figure 7.1: A list of PVT triplets that we consider in this work, their syntax, and semantics.
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7.1.2.3 Transformation Function

In our work, we assume knowledge of a passing dataset for which the system functions

properly, and a failing dataset for which the system malfunctions. Our goal is to iden-

tify which profiles of the failing dataset caused the malfunction. We seek answer to the

question: how to “fix” the issues within the failing dataset such that the system no longer

malfunctions on it (i.e., mismatch is resolved)? To this end, we apply interventional causal

reasoning: we intervene on the failing dataset by altering its attributes such that the pro-

file of the altered dataset matches the corresponding correct profile of the passing dataset.

To perform intervention, we need transformation functions with the property that it should

push the failing dataset “closer” to the passing dataset in terms of the profile that we are in-

terested to alter. More formally, after the transformation, the profile violation score should

decrease.

Definition 7.4 (Transformation function). Given a dataset D, a data profile P , and a vio-

lation function V , a transformation function T (D, P, V ) ‘æ 2Domm alters D to produce DÕ

such that V (DÕ, P ) = 0.

A dataset can be transformed by applying a series of transformation functions, for

which we use the composition operator (¶).

Definition 7.5 (Composition of transformations). Given a dataset D, and two PVT triplets

X and Y , (XT ¶ YT )(D) = XT (YT (D)). Further, if DÕÕ = (XT ¶ YT )(D), then

XV (DÕÕ, XP ) = YV (DÕÕ, YP ) = 0.

7.1.3 Problem Definition

We expose a set of PVT triplets for explaining the system malfunction. The explanation

contains both the cause and the corresponding fix: profile within a PVT triplet indicates the

cause of system malfunction with respect to the corresponding transformation function,

which suggests the fix.
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Definition 7.6 (Explanation of system malfunction). Given

1. a system S with a mechanism to compute mS(D) ’D ™ Domm,

2. an allowable malfunction threshold · ,

3. a passing dataset Dpass for which mS(Dpass) Æ · ,

4. a failing dataset Dfail for which mS(Dfail) > · , and

5. a set of candidate PVT triplets X such that ’X œ X XV (Dpass, XP ) = 0 ·

XV (Dfail , XP ) > 0,

the explanation of the malfunction of S for Dfail , but not for Dpass, is a set of PVT triplets

X
ú

™ X such that mS((¶XœX úXT )(Dfail)) Æ · .

Informally, X
ú explains the cause: why S malfunctions for Dfail , but not for Dpass.

More specifically, failing to satisfy the profiles of the PVT triplets in X
ú is the cause of

malfunction. Furthermore, the transformation functions of the PVT triplets in X
ú suggest

the fix: how can we repair Dfail to eliminate system malfunction. However, there could be

many possible such X
ú and we seek a minimal set X

ú such that transformation for every

X œ X
ú is necessary to bring down the malfunction score below the threshold · .

Definition 7.7 (Minimal explanation of system malfunction). Given a system S that mal-

functions for Dfail and an allowable malfunction threshold · , an explanation X
ú of S’s

malfunction for Dfail is minimal if ’X
Õ
µ X

ú mS((¶XœX ÕXT )(Dfail)) > · .

Note that there could be multiple such minimal explanations and we seek any one of

them, as any minimal explanation exposes the causes of mismatch and suggests minimal

fixes.

Problem 7.1 (Discovering explanation of mismatch between data and system). Given a

system S that malfunctions for Dfail but functions properly for Dpass, the problem of dis-

covering the explanation of mismatch between Dfail and S is to find a minimal explanation
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that captures (1) the cause why S malfunctions for Dfail but not for Dpass and (2) how to

repair Dfail to remove the malfunction.

7.2 Data Profiles, Violation Functions, & Transformation Functions
We now provide an overview of the data profiles we consider, how we discover them,

how we compute the violation scores for a dataset w.r.t. a data profile, and how we apply

transformation functions to alter profiles of a dataset. While a multitude of data-profiling

primitives exist in the literature, we consider a carefully chosen subset of them that are par-

ticularly suitable for modeling issues in data that commonly cause malfunction or failure of

a system. We focus on profiles that, by design, can better “discriminate” a pair of datasets as

opposed to “generative” profiles (e.g., data distribution) that can profile the data better, but

nonetheless are less useful for the task of discriminating between two datasets. However,

the DATAEXPOSER framework is generic, and other profiles can be plugged into it.

As discussed in Section 7.1, a PVT triplet encapsulates a profile, and corresponding vio-

lation and transformation functions. Figure 7.1 provides a list of profiles along with the data

types they support, how to learn their parameters from a given dataset, how to interpret them

intuitively, and the corresponding violation and transformation functions. In this work, we

assume that a profile can be associated with multiple transformation functions (e.g., rows

2 and 4), but each transformation function can be associated with at most one profile. This

assumption helps us to blame a unique profile as cause of the system malfunction when at

least one of the transformation functions associated with that profile is verified to be a fix.

PVT triplets can be classified in different ways. Based on the strictness of the violation

function, they can be classified as follows:

• Strict: All tuples are expected to satisfy the profile (rows 1–3).

• Thresholded by data coverage: Certain fraction (◊) of data tuples are allowed to

violate the profile (rows 4–6).
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• Thresholded by a parameter: Some degree of violation is allowed with respect to a

specific parameter (–) (rows 7–9).

Further, PVT triplets can be classified in two categories based on the nature of the

transformation functions:

• Local transformation functions can transform a tuple in isolation without the knowl-

edge of how other tuples are being transformed (e.g., rows 1–3). Some local trans-

formation functions only transform the violating tuples (e.g., row 2, transformation

(2)), while others transform all values (e.g., row 2, transformation (1)). For instance,

in case of unit mismatch (kilograms vs. lbs), it is desirable to transform all values

and not just the violating ones.

• Global transformation functions are holistic, as they need the knowledge of how

other tuples are being transformed while transforming a tuple (e.g., rows 6 and 9).

Example 7.5. DOMAIN requires two parameters: (1) an attribute Aj œ R(D), and (2) a

set S specifying its domain. A dataset D satisfies ÈDOMAIN, Aj, SÍ if ’t œ D t.Aj œ S.

The profile ÈDOMAIN, Aj, SÍ is minimal w.r.t. D if @SÕ
µ S s.t. D satisfies the profile

ÈDOMAIN, Aj, SÕ
Í. The technique for discovering a domain S varies depending on the

data type of the attribute. Rows 1–3 of Figure 7.1 show three different domain-discovery

techniques for different data types.

Peoplefail (Figure 7.2) satisfies ÈDOMAIN, gender, {F, M}Í, as all tuples draw values

from {F, M} for the attribute gender. Our case studies of Sentiment Prediction

and Cardiovascular Disease Prediction show the application of the profile

DOMAIN (Section 7.4).

Example 7.6. OUTLIER requires three parameters: (1) an attribute Aj œ R(D), (2) an

outlier detection function O(A, a) ‘æ {True, False} that returns True if a is an outlier

w.r.t. the values within A, and False otherwise, and (3) a threshold ◊ œ [0, 1]. A dataset D
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satisfies ÈOUTLIER, Aj, O, ◊Í if the fraction of outliers within the attribute Aj—according

to O—does not exceed ◊. Otherwise, we compute how much the fraction of outliers exceeds

the allowable fraction of outliers (◊) and then normalize it by dividing by (1 ≠ ◊). The

profile ÈOUTLIER, Aj, O, ◊Í is minimal if @◊Õ < ◊ s.t. D satisfies ÈOUTLIER, Aj, O, ◊Õ
Í.

An outlier detection function O1.5 identifies values that are more than 1.5 standard

deviation away from the mean as outliers. In Peoplefail , age has a mean 34.5 and a

standard deviation 11.78. According to O1.5, only t3—which is 0.1 fraction of the tuples—

is an outlier in terms of age as t3’s age 60 > (34.5 + 1.5 ◊ 11.78) = 52.17. Therefore,

Peoplefail satisfies ÈOUTLIER, age, O1.5, 0.1Í.

Example 7.7. INDEP requires three parameters: two attributes Aj, Ak œ R(D), and a

real value –. A dataset D satisfies the profile ÈINDEP, Aj, Ak, –Í if the dependency between

D.Aj and D.Ak does not exceed –. Different techniques exist to quantify the dependency

and rows 6–9 of Figure 7.1 show three different ways to model dependency, where the first

two are correlational and the last one is causal.

ÈINDEP, race, high_expenditure, 0.67Í is satisfied by Peoplefail using the PVT triplet

of row 7, as ‰2-statistic between race and high_expenditure over Peoplefail is

0.67. We show the application of the profile INDEP in our case study involving the task

of Income Prediction in Section 7.4.

While the profiles in Figure 7.1 are defined over the entire data, analogous to conditional

functional dependency [90], an extension to consider is conditional profiles, where only a

subset of the data is required to satisfy the profiles.

7.3 Intervention Algorithms
We now describe our intervention algorithms to explain the mismatch between a

dataset and a system malfunctioning on that dataset. Our algorithms consider a failing and

a passing dataset as input and report a collection of PVT triplets (or simply PVTs) as the
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id name gender age race zip code phone high expenditure
t1 Shanice Johnson F 45 A 01004 2088556597 no
t2 DeShawn Bad M 40 A 01004 2085374523 no
t3 Malik Ayer M 60 A 01005 2766465009 no
t4 Dustin Jenner M 22 W 01009 7874891021 yes
t5 Julietta Brown F 41 W 01009 yes
t6 Molly Beasley F 32 W 7872899033 no
t7 Jake Bloom M 25 W 01101 4047747803 yes
t8 Luke Stonewald M 35 W 01101 4042127741 yes
t9 Scott Nossenson M 25 W 01101 yes
t10 Gabe Erwin M 20 W 4048421581 yes

Figure 7.2: A sample dataset Peoplefail with 10 entities. A logistic regression classifier
trained over this dataset discriminates against African Americans (race = ‘A’) and women
(gender = ‘F’) (Example 7.1).

id name gender age race zip code phone high expenditure
t1 Darin Brust M 25 W 01004 2088556597 no
t2 Rosalie Bad F 22 W 01005 no
t3 Kristine Hilyard F 50 W 01004 2766465009 yes
t4 Chloe Ayer F 22 A 7874891021 yes
t5 Julietta Mchugh F 51 W 01009 9042899033 yes
t6 Doria Ely F 32 A 01101 yes
t7 Kristan Whidden F 25 W 01101 4047747803 no
t8 Rene Strelow M 35 W 01101 6162127741 yes
t9 Arial Brent M 45 W 01102 4089065769 yes

Figure 7.3: A sample dataset Peoplepass with 9 entities. A logistic regression classifier
trained over this dataset does not discriminate against any specific race or gender, and,
thus, is fair (Example 7.1).

explanation (cause and fix) of the observed mismatch. To this end, we first identify a set

of discriminative PVTs—whose profiles take different values in the failing and passing

datasets—as potential explanation units, and then intervene on the failing dataset to alter

the profiles and observe change in system malfunction.

We develop two approaches that differ in terms of the number of PVTs considered

simultaneously during an intervention. DATAEXPOSERGRD is a greedy approach that con-

siders only one PVT at a time. However, in worst case, the number of interventions required

by DATAEXPOSERGRD is linear in number of discriminative PVTs. Therefore, we propose

a second algorithm DATAEXPOSERGT, built on the group-testing paradigm, that considers
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multiple PVTs to reduce the number of interventions, where the number of required in-

terventions is logarithmically dependent on the number of discriminative PVTs. We start

with an example scenario to demonstrate how DATAEXPOSERGRD works and then proceed

to describe our algorithms.

7.3.1 Example Scenario

Consider the task of predicting the attribute high_expenditure to determine if a

customer should get a discount (Example 7.1). The system uses bias of the trained classifier

against the unprivileged groups (measured using disparate impact [152]) as its malfunction

score. We seek the causes of mismatch between this prediction pipeline and Peoplefail

(Figure 7.2), for which the pipeline fails with a malfunction score of 0.75. We assume

the knowledge of Peoplepass (Figure 7.3), for which the malfunction score is 0.15. The

goal is to identify a minimal set of PVTs whose transformation functions bring down the

malfunction score of Peoplefail below 0.20.

(Step 1) The first goal is to identify the profiles whose parameters differ between

Peoplefail and Peoplepass. To do so, DATAEXPOSERGRD identifies the exhaustive set of

PVTs over Peoplepass and Peoplefail and discards the identical ones (PVTs with identical

profile-parameter values). We call the PVTs of the passing dataset whose profile-parameter

values differ over the failing dataset discriminative PVTs. Figure 7.5 lists a few profiles of

the discriminative PVTs w.r.t. Peoplepass and Peoplefail .

(Step 2) Next, DATAEXPOSERGRD ranks the set of discriminative PVTs based on their

likelihood of offering an explanation of the malfunction. Our intuition here is that if an

attribute A is related to the malfunction, then many PVTs containing A in their profiles

would differ between Peoplefail and Peoplepass. Additionally, altering A with respect to

one PVT is likely to automatically “fix” other PVTs associated with A.2 Based on this in-

2Altering values of A w.r.t. a PVT may also increase violation w.r.t. some other PVTs. However, for ease
of exposition, we omit such issues in this example.
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tuition, DATAEXPOSERGRD constructs a bipartite graph, called PVT-attribute graph, with

discriminative PVTs on one side and data attributes on the other side (Figure 7.4). In this

graph, a PVT X is connected to an attribute A if XP is defined over A. In the bipartite

graph, the degree of an attribute A captures the number of discriminative PVTs associ-

ated with A. During intervention, DATAEXPOSERGRD prioritizes PVTs associated with a

high-degree attributes. For instance, since high_expenditure has the highest degree in

Figure 7.4, PVTs associated with it are considered for intervention before others.

(Step 3) DATAEXPOSERGRD further ranks the subset of the discriminative PVTs that are

connected to the highest-degree attributes in the PVT-attribute graph based on their benefit

score. Benefit score of a PVT X encodes the likelihood of reducing system malfunction

when the failing dataset is altered using XT . The benefit score of X is estimated from

(1) the violation score that the failing dataset incurs w.r.t. XV , and (2) the number of

tuples in the failing dataset that are altered by XT . For example, to break the dependence

between high_expenduture and race, the transformation corresponding to INDEP

modifies five tuples in Peoplefail by perturbing (adding noise to) high_expenditure.

In contrast, the transformation for MISSING needs to change only one value (t6 or t10).

Since more tuples are affected by the former, it has higher likelihood of reducing the

malfunction score. The intuition behind this is that if a transformation alters more tuples

in the failing dataset, the more likely it is to reduce the malfunction score. This holds

particularly in applications where the system optimizes aggregated statistics such as

accuracy, recall, F-score, etc.

(Step 4) DATAEXPOSERGRD starts intervening on Peoplefail using the transforma-

tion of the PVT corresponding to the profile ÈINDEP, race, high_expenditure, 0.04Í

as its transformation offers the most likely fix. Then, it evaluates the malfunction of

the system over the altered version of Peoplefail . Breaking the dependence between

high_expenditure and race helps reduce bias in the trained classifier, and, thus,
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< Missing, zip-code, ... >

< Indep, race, high-expenditure, … >

age

race

gender

high-expenditure< Selectivity, gender = X ∧ high-expenditure = Y, … >

AttributesPVTs

< Domain, age, ... >

zip-code

Figure 7.4: PVT-attribute graph. The attribute high_expenditure is associated with
two discriminative PVTs. For ease of exposition, we only show profile within a PVT to
denote the entire PVT.

Peoplepass Peoplefail

ÈDOMAIN, age, [22, 51]Í ÈDOMAIN, age, [20, 60]Í
ÈMISSING, zip_code, 0.11Í ÈMISSING, zip_code, 0.2Í

ÈINDEP, race, high_expenditure, 0.04Í ÈINDEP, race, high_expenditure, 0.67Í

ÈSELECTIVITY, gender = F ÈSELECTIVITY, gender = F
·high_expenditure = yes, 0.44Í ·high_expenditure = yes, 0.1Í

Figure 7.5: A list of PVTs that discriminate Peoplepass (Figure 7.3) and Peoplefail (Fig-
ure 7.2) based on the scenario of Example 7.1 . We omit the violation and transformation
functions for ease of exposition.

we observe a malfunction score of 0.35 w.r.t. the altered dataset. This exposes the first

explanation of malfunction.

(Step 5) DATAEXPOSERGRD then removes the processed PVT (INDEP) from the PVT-

attribute graph, updates the graph according to the altered dataset, and re-iterates steps 2–4.

Now the PVT corresponding to the profile SELECTIVITY is considered for intervention as it

has the highest benefit score. To do so, DATAEXPOSERGRD oversamples tuples correspond-

ing to female customers with high_expenditure = yes. This time, DATAEXPOSERGRD

intervenes on the transformed dataset obtained from the previous step. After this transfor-

mation, bias of the learned classifier further reduces and the malfunction score falls below
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the required threshold. Therefore, with these two interventions, DATAEXPOSERGRD is able

to expose two issues that caused undesirable behavior of the prediction model trained on

Peoplefail .

(Step 6) DATAEXPOSERGRD identifies an initial explanation over two PVTs: INDEP

and SELECTIVITY. However, to verify whether it is a minimal, DATAEXPOSERGRD tries

to drop from it one PVT at a time to obtain a proper subset of the initial explanation that is

also an explanation. This procedure guarantees that the explanation only consists of PVTs

that are necessary, and, thus, is minimal. In this case, both INDEP and SELECTIVITY

are necessary, and, thus, are part of the minimal explanation. DATAEXPOSERGRD finally

reports the following as a minimal explanation of the malfunction, where failure to satisfy

the profiles is the cause and the transformations indicate fix (violation and transformation

functions are omitted).

{ÈINDEP, race, high_expenditure, 0.04Í,

ÈSELECTIVITY, gender = F · high_expenditure = yes, 0.44Í}

7.3.2 Assumptions and Observations

We now proceed to describe our intervention algorithms more formally. We first state

our assumptions and then proceed to present our observations that lead to the development

of our algorithms.

Assumptions. DATAEXPOSER makes the following assumptions:

(A1) The ground-truth explanation of malfunction is captured by at least one of the

discriminative PVTs. This assumption is prevalent in software-debugging literature where

program predicates are assumed to be expressive enough to capture the root causes [96,

205].

(A2) If the fix corresponds to a composition of transformations, then the malfunction

score achieved after applying the composition of transformations is less than the malfunc-
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tion score achieved after applying any of the constituents, and all these scores are less than

the malfunction score of the original dataset. For example, consider two discriminative

PVTs X and Y and a failing dataset Dfail . Our assumption is that if {X, Y } corresponds

to a minimal explanation, then mS((YT ¶ XT )(Dfail)) < mS(XT (Dfail)) < mS(Dfail) and

mS((YT ¶ XT )(Dfail)) < mS(YT (Dfail)) < mS(Dfail). Intuitively, this assumption states

that X and Y have consistent (independent) effect on reducing the malfunction score, re-

gardless of whether they are intervened together or individually. If this assumption does

not hold, DATAEXPOSER can still work with additional knowledge about multiple failing

and passing datasets [112].

Observations. We make the following observations:

(O1) If the ground-truth explanation of malfunction corresponds to an attribute, then

multiple PVTs that involve the same attribute are likely to differ across the passing and

failing datasets. This observation motivates us to prioritize interventions based on PVTs

that are associated with high-degree attributes in the PVT-attribute graph. Additionally,

intervening on the data based on one such PVT is likely to result in an automatic “fix”

of other PVTs connecting via the high-degree attribute. For example, adding noise to

high_expenditure in Example 7.1 breaks its dependence with not only race but

also with other attributes.

(O2) The PVT for which the failing dataset incurs higher violation score is more likely

to be a potential explanation of malfunction.

(O3) A transformation function that affects a large number of data tuples is likely to

result in a higher reduction in the malfunction score, after the transformation is applied.

PVT-attribute graph. DATAEXPOSER leverages observation O1 by constructing a bipar-

tite graph (GP A), called PVT-attribute graph, with all attributes A œ R(D) as nodes on

one side and all discriminative PVTs X œ X on the other side. An attribute A is connected

to a PVT X if and only if XP has A as one of its parameters. E.g., Figure 7.4 shows the

PVT-attribute graph w.r.t. Peoplefail and Peoplepass (Example 7.1). In this graph, the PVT
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Algorithm 6: DATAEXPOSERGRD (greedy)
Input: Failing dataset Dfail , passing dataset Dpass, malfunction score threshold ·
Output: A minimal explanation set of PVTs X

ú

1 Xf Ω DISCOVER-PVT(Dfail)
2 Xp Ω DISCOVER-PVT(Dpass)
3 Xfl Ω Xf fl Xp /* Common PVTs */
4 X Ω Xp \ Xfl /* Discriminative PVTs */
5 GP A(VG, EG) Ω CONSTRUCT-PVT-ATTR-GRAPH(X , Dfail)
6 B Ω CALCULATE-BENEFIT-SCORE(X , GP A, Dfail)
7 X

ú
Ω ÿ /* Initialize minimal explanation set to be empty

*/
8 D Ω Dfail /* Initialize dataset to the failing dataset */
9 while mS(D) > · do

10 Xhda = {XœX |(X, A)œEG·A= argmaxAœR(D) degG(A)} /* PVTs
adjacent to high-degree attributes in GP A */

11 X = argmaxXœXhda B(X) /* Highest-benefit PVT */
12 � Ω mS(D) ≠ mS(XT (D)) /* Malfunction reduction */
13 GP A Ω GP A.REMOVE(X) /* Update GP A */
14 if � > 0 then /* Reduces malfunction */
15 D Ω XT (D) /* Apply transformation */
16 GP A.UPDATE(D) /* Update the PVT-attribute graph */
17 B.UPDATE(D) /* Update benefit scores */
18 X

ú
Ω X

ú
fi {X} /* Add P to explanation set */

19 X Ω X \ {X} /* Remove P from the candidates */

20 X
ú = MAKE-MINIMAL(X ú) /* Obtain minimality of X

ú */
21 return X

ú /* X
ú is a minimal explanation */

corresponding to ÈINDEP, race, high_expenditureÍ is connected to two attributes, race

and high_expenditure. Intuitively, this graph captures the dependence relationship

between PVTs and attributes, where an intervention with respect to a PVT X modifies an

attribute A connected to it. If this intervention reduces the malfunction score then it could

possibly fix other PVTs that are connected to A.

Benefit score computation. DATAEXPOSER uses the aforementioned observations to com-

pute a benefit score for each PVT to model their likelihood of reducing system malfunction

if the corresponding transformation is used to modify the failing dataset Dfail . Intuitively,

it assigns a high score to a PVT with a high violation score (O2) and if the corresponding

transformation function modifies a large number of tuples in the dataset (O3). Formally,
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the benefit score of a PVT X is defined as the product of violation score of Dfail w.r.t. XV

and the “coverage” of XT . The coverage of XT is defined as the fraction of tuples that it

modifies. Note that the procedure for benefit computation acts as a proxy of the likelihood

of a PVT to offer an explanation, without actually applying any intervention.

7.3.3 Greedy Approach

Algorithm 6 presents the pseudocode of our greedy technique DATAEXPOSERGRD,

which takes a passing dataset Dpass and a failing dataset Dfail as input and returns the

set of PVTs that corresponds to a minimal explanation of system malfunction.

Lines 1–2 Identify two sets of PVTs Xf and Xp satisfied by Dfail and Dpass, respectively.

Lines 3–4 Discard the PVTs Xf fl Xp from Xp and consider the remaining discriminative

ones X © Xp \ Xf as candidates for potential explanation of system malfunction.

Line 5 Compute the PVT-attribute graph GP A, where the candidate PVTs X correspond

to nodes on one side and the data attributes correspond to nodes on the other side.

Line 6 Compute the benefit score of each discriminative PVT X œ X w.r.t. Dfail . This

procedure relies on the violation score using the violation function of the PVT and

the coverage of the corresponding transformation function over Dfail .

Line 7–8 Initialize the solution set X
ú to ÿ and the dataset to perform intervention on

D to the failing dataset Dfail . In subsequent steps, X
ú will converge to a minimal

explanation set and D will be transformed to a dataset for which the system passes.

Line 9 Iterate over the candidate PVTs X until the dataset D (which is being transformed

iteratively) incurs an acceptable violation score (less than the allowable threshold · ).

Line 10 Identify the subset of PVTs Xhda ™ X such that all X œ Xhda are adjacent to at

least one of the highest degree attributes in the current PVT-attribute graph (Obser-

vation O1).
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Line 11 Choose the PVT X œ Xhda that has the maximum benefit.

Line 12 Compute the reduction in malfunction score if the dataset D is transformed ac-

cording to the transformation XT .

Line 13 Remove X from GP A as it has been explored.

Lines 14–19 If the malfunction score reduces over XT (D), then X is added to the solution

set X
ú, and D is updated to XT (D), which is then used to update the PVT-attribute

graph and benefit of each PVT. The update procedure recomputes the benefit scores

of all PVTs that are connected to the attributes adjacent to X in GP A.

Line 20 Post-process the set X
ú to identify a minimal subset that ensure that malfunction

score remains less than the threshold · . This procedure iteratively removes one PVT

at a time (say X) from X
ú and recomputes the malfunction score over the failing

dataset Dfail transformed according to the transformation functions of the PVTs in

the set X
Õ = X

ú
\ {X}. If the transformed dataset incurs a violation score less than

· then X
ú is replaced with X

Õ.

7.3.4 Group-testing-based Approach

We now present our second algorithm DATAEXPOSERGT, which performs group inter-

ventions to identify the minimal explanation that exposes the mismatch between a dataset

and a system. The group intervention methodology is applicable under the following as-

sumption along with assumptions A1 and A2 (Section 7.3.2).

(A3) The malfunction score incurred after applying a composition of transformations

is less than the malfunction score incurred by the the original dataset if and only if

at least one of the constituent transformations reduces the malfunction score. For two

PVTs X and Y , mS((XT ¶ YT )(Dfail)) < mS(Dfail), iff mS(XT (Dfail)) < mS(Dfail) or

mS(YT (Dfail)) < mS(Dfail). Note that this assumption is crucial to consider group inter-

ventions and is prevalent in the group-testing literature [80].
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DATAEXPOSERGT follows the classical adaptive group testing (GT) paradigm [80] for

interventions. To this end, it iteratively partitions the set of discriminative PVTs into two

“almost” equal subsets (when the number of discriminative PVTs is odd, then the size

of the two partitions will differ by one). During each iteration, all PVTs in a partition

are considered for intervention together (group intervention) to evaluate the change in

malfunction score. If a partition does not help reduce the malfunction score, all PVTs

within that partition are discarded. While traditional GT techniques [80] would use a

random partitioning of the PVTs, DATAEXPOSERGT can leverage the dependencies among

PVTs (inferred from the PVT-attribute graph) to achieve more effective partitioning.

Intuitively, it is beneficial to assign all PVTs whose transformations operate on the same

attribute to the same partition, which is likely to enable aggressive pruning of spurious

PVTs that do not reduce malfunction.

DATAEXPOSERGRD captures the dependencies among PVTs by constructing a PVT-

dependency graph GP D. Two PVTs U and V are connected by an edge in GP D if they

are connected via some attribute in GP A. GP D is equivalent to G2
P A (transitive closure of

GP A), restricted to PVT nodes (excluding the attribute nodes). This ensures that PVTs that

are associated via some attribute in GP A are connected in GP D. DATAEXPOSERGRD parti-

tions GP D such that the number of connections (edges) between PVTs that fall in different

partitions are minimized. More formally, we aim to construct two “almost” equal-sized par-

titions of X such that the number of edges between PVTs from different partitions minimum

bisection of a graph [116]. The minimum bisection problem is NP-hard [116] and approx-

imate algorithms exist [102, 103]. In this work, we use the local search algorithm [102].

We proceed to demonstrate the benefit of using DATAEXPOSERGT as opposed to tradi-

tional GT with the following example.

Example 7.8. Consider a set of 8 PVTs X = {X1, . . . , X8} where the ground-truth

(minimal) explanation is either {X1, X6} or {X4, X8} (disjunction). An example of steps

for a traditional adaptive GT approach is shown in Figure 7.6(c). In this case, it requires
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Algorithm 7: DATAEXPOSERGT (group-testing-based)
Input: Failing dataset Dfail , passing dataset Dpass, malfunction score threshold ·
Output: A minimal explanation set of PVTs X

ú

1 Xf Ω DISCOVER-PVT(Dfail)
2 Xp Ω DISCOVER-PVT(Dpass)
3 Xfl Ω Xf fl Xp /* Common PVTs */
4 X Ω Xp \ Xfl /* Discriminative PVTs */
5 GP A(VG, EG) Ω CONSTRUCT-PVT-ATTR-GRAPH(X , Dfail)
6 D, X

ú
Ω GROUP-TEST(X , Dfail , G2

P A, ·) /* Obtain an exp. */
7 X

ú = MAKE-MINIMAL(X ú) /* Obtain minimality of X
ú */

8 return X
ú /* X

ú is a minimal cause */

a total of 14 interventions. Note that adaptive GT is a randomized algorithm and this

example demonstrates one such execution. However, we observed similar results for other

instances. In contrast to adaptive GT, DATAEXPOSERGT constructs a min-bisection of the

graph during each iteration: it does not partition {X2, X3} and {X5, X7} as none of these

PVTs help reduce the malfunction. Therefore, it requires only 10 interventions.

Algorithm 7 presents the DATAEXPOSERGT algorithm. It starts with a set of discrimi-

native PVTs X and the PVT-attribute graph GP A. All candidate PVTs are then considered

by GROUP-TEST subroutine to identify the explanation X
ú.

GROUP-TEST. Algorithm 8 presents the procedure that takes the set of discriminative

PVTs X , a failing dataset D, PVT-dependency graph GP D, and the malfunction score

threshold · as input. It returns a transformed (fixed) dataset and an explanation.

Line 1 Initialize the solution set X
ú to ÿ.

Lines 2–3 Return the candidate PVT set X if its cardinality is 1.

Line 4 Partition X into X1 and X2 using min-bisection of the PVT-dependency graph

GP D.

Line 5 Compute the malfunction score of the input dataset.
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Algorithm 8: GROUP-TEST

Input: Candidate PVT X , dataset D, PVT-dependency graph GP D, malfunction
score threshold ·

Output: A transformed dataset DÕ and an explanation set of PVTs X
ú

1 X
ú

Ω ÿ /* Initialize explanation set to be empty */
2 if |X | = 1 then /* Only a single PVT is candidate */
3 return TX (D), X

4 X
1, X

2
Ω GET-MIN-BISECTION(GP D, X ) /* Partition X */

5 M Ω mS(D) /* Initial malfunction score */
6 �1 Ω M ≠ mS(X 1

T (D)) /* Malfunction reduction by X
1
T */

7 if M ≠ �1 > · then /* X
1 alone is insufficient */

8 �2 Ω M≠mS(X 2
T (D)) /* Malfunction reduction by X

2
T */

9 if (M ≠ �1 Æ ·) OR (�1 > 0 AND M ≠ �2 > ·) then
/* X1 is sufficient OR X1 helps AND X2 is insufficient
*/

10 D, X
Õ
Ω GROUP-TEST(X1, D, GP D)

11 X
ú = X

ú
fi X

Õ /* Augment explanation set */
12 if M ≠ �1 Æ · then /* Malfunction is acceptable */
13 return D, X

ú /* No need to check X2 */

14 if �2 > 0 then /* TX2 reduces malfunction */
15 D, X

Õ
Ω GROUP-TEST(X2, D, GP D)

16 X
ú = X

ú
fi X

Õ /* Augment explanation set */

17 return D, X
ú

Line 6 Compute the reduction in malfunction score �1 if D is intervened w.r.t. all PVTs

X1.

Lines 7–8 If the malfunction exceeds · even after intervening on D w.r.t. all PVTs in X1

then try out X2: compute the reduction in malfunction score �2 if D is intervened

w.r.t. all PVTs in X2.

Lines 9–13 Recursively call GROUP-TEST on the partition X1 if one of the following con-

ditions hold: (1) Intervening on D w.r.t. all PVTs in X1 reduces the malfunction to

be lower than · : the explanation over X1 is returned as the final explanation. (2)

Intervening on D w.r.t. all PVTs in X1 reduces the malfunction, but still remains

above · , but intervening on D w.r.t. all PVTs in X2 brings the malfunction below · :
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(c) Execution of traditional group testing algorithm

Figure 7.6: Comparison between DATAEXPOSERGT and adaptive group testing on a toy
example.

the explanation returned by the recursive call on X1 is added to the set X
ú and X2 is

processed next.

Lines 14–16 Recursively call GROUP-TEST on X2 if intervening on all PVTs in X2 re-

duces malfunction. The set of PVTs returned by this recursive call of the algorithm

are added to the solution set X
ú.

Discussion on DATAEXPOSERGRD vs. DATAEXPOSERGT. DATAEXPOSERGRD inter-

venes by considering a single discriminative PVT at a time. Hence, in the worst case,

it requires O(|X |) interventions where X denotes the set of discriminative PVTs. Note

that DATAEXPOSERGRD requires much fewer interventions in practice and would require

209



O(|X |) only when any of the mentioned observations (O1–O3) do not hold. In contrast,

DATAEXPOSERGT performs group intervention by recursively partitioning the set of

discriminative PVTs. Thus, the maximum number of interventions required by DATAEX-

POSERGT is O(t log |X |) where t denotes the number of PVTs that help reduce malfunction

if the corresponding profile is altered. Note that, in expectation, DATAEXPOSERGT

requires fewer interventions than DATAEXPOSERGRD whenever t = o(|X |/ log |X |).

DATAEXPOSERGT is particularly helpful when multiple PVTs disjunctively explain the

malfunction. However, DATAEXPOSERGT requires an additional assumption assumption

A3 (Section 7.3.4). We discuss the empirical impact of this assumption in Section 7.4.1

(Cardiovascular disease prediction). Overall, we conclude that DATAEXPOSERGT is

beneficial for applications whenever t = O(|X |/ log |X |) and observations O1-O3 hold.

As discussed in Section 7.3.4, DATAEXPOSERGRD always identifies the ground-truth

cause of malfunction, but, the number of interventions required may increase if observa-

tions O1-O3 do not hold. If O1 does not hold, then the initial ordering of attributes, which

is computed based on their degree in PVT-Attribute graph GP A, may not be accurate. In

this case, DATAEXPOSERGRD may require O(X ) interventions to explain the cause of sys-

tem malfunction. Similarly, whenever O2 or O3 fail, the benefit-based ordering of the

PVTs is likely to be incorrect. In applications where O1 holds but O2 and O3 do not hold,

GP A is expected to be accurate and the number of required interventions is O(r), where

r is the degree of the attribute that has the highest degree in GP A. In contrast, DATA-

EXPOSERGT requires O(t log |X |) interventions even when these observations are violated.

Therefore, DATAEXPOSERGRD is beneficial whenever all of these observations hold, or

t = �(|X |/ log |X |).

7.4 Experimental Evaluation
Our experiments involving DATAEXPOSER aim to answer the following questions:

(Q1) Can DATAEXPOSER correctly identify the cause and corresponding fix of mismatch
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Number of Interventions
Application DATAEXPOSERGRD DATAEXPOSERGT BugDoc Anchor GrpTest

Sentiment 2 3 10 303 3
Income 1 8 20 800 10

Cardiovascular 1 NA 100 5900 NA

Figure 7.7: Comparison of number of interventions of DATAEXPOSER with other base-
lines. NA denotes that the technique could not identify the cause of malfunction because
assumption A3 did not hold.

Execution Time (seconds)
Application DATAEXPOSERGRD DATAEXPOSERGT BugDoc Anchor GrpTest

Sentiment 25.1 23.4 64.6 4594.9 21.2
Income 11.8 12.5 20.0 195.5 10.4

Cardiovascular 7.6 NA 62.1 8602.9 NA

Figure 7.8: Comparison of running time of DATAEXPOSER with other baselines. NA
denotes that the technique could not identify the cause of malfunction because assumption
A3 did not hold.

between a system and a dataset for which the system fails? (Q2) How efficient is DATA-

EXPOSER compared to other alternative techniques? (Q3) Is DATAEXPOSER scalable with

respect to the number of discriminating PVTs?

Baselines. Since there is no prior work on modifying a dataset according to a PVT,

we adapted state-of-the-art debugging and explanation techniques to incorporate profile

transformations and explain the cause of system failure. We consider three baselines:

(1) BugDoc [216] is a recent debugging technique that explores different parameter con-

figurations of the system to understand its behavior. We adapt BugDoc to consider each

PVT as a parameter of the system and interventions as the modified configurations of the

pipeline. (2) Anchor [277] is a local explanation technique for classifiers that explains in-

dividual predictions based on a surrogate model. We train Anchor with PVTs as features,

and the prediction variable is Pass/Fail where Pass (Fail) denotes the case where an input

dataset incurs malfunction below (above) · . In this technique, each intervention creates a
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new data point to train the surrogate model. (3) GrpTest [80] is an adaptive group test-

ing approach that performs group interventions to expose the mismatch between the input

dataset and the system. It is similar to DATAEXPOSERGT with a difference that the recur-

sive partitioning of PVTs is performed randomly without exploiting the PVT-dependency

graph.

7.4.1 Real-world Case Studies

We design three case studies focusing on three different applications, where we use

well-known ML models [4, 10, 269] as black-box systems. For all of the three case studies,

we use real-world datasets. Figures 7.7 and 7.8 presents a summary of our evaluation

results.

Sentiment Prediction. The system in this study predicts sentiment of input text (re-

views/tweets) and computes misclassification rate as the malfunction score. It uses

flair [10], a pre-trained classifier to predict sentiment of the input records and assumes

a target attribute in the input data, indicating the ground truth sentiment: A value of 1

for the attribute target indicates positive sentiment and a value of ≠1 indicates nega-

tive sentiment. We test the system over IMDb dataset [156] (50K tuples) and a twitter

dataset [291] (around 1.6M tuples). The malfunction score of the system on the IMDb

dataset is only 0.09 while on the twitter dataset it is 1.0. We considered IMDb as the

passing dataset and twitter as the failing dataset and used both DATAEXPOSERGRD and

DATAEXPOSERGT to explain the mismatch between the twitter dataset and the system.

The ground-truth cause of the malfunction is that the target attribute in the twitter

dataset uses “4” to denote positive and “0” to denote negative sentiment [291]. DATAEX-

POSERGRD identifies a total of 3 discriminative PVTs between the two datasets. One such

PVT includes the profile DOMAIN of the target attribute that has corresponding param-

eter S = {≠1, 1} for IMDb and S = {0, 4} for the twitter dataset. DATAEXPOSERGRD

performs two interventions and identifies that the malfunction score reduces to 0.36 by
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mapping 0 æ ≠1 and 4 æ 1 by intervening w.r.t. the PVT corresponding DOMAIN, which

is returned as an explanation of the malfunction.

DATAEXPOSERGT and GrpTest both require 3 group interventions to explain the

cause of system malfunction. BugDoc and Anchor require 10 and 303 interventions,

respectively. Anchor computes system malfunction on datasets transformed according to

various local perturbations of the PVTs in the failing dataset.

Income Prediction. The system in this study trains a Random Forest classifier [269] to

predict the income of individuals while ensuring fairness towards marginalized groups.

The pipeline returns the normalized disparate impact [152] of the trained classifier w.r.t.

the protected attribute (sex), as the malfunction score. Our input data includes census

records [81] containing demographic attributes of individuals along with information about

income, education, etc. We create two datasets through a random selection of records,

and manually add noise to one of them to break the dependence between target and

sex. The system has malfunction score of 0.195 for the passing dataset and 0.58 for

the failing dataset due to the dependence between target and sex. DATAEXPOSERGRD

identifies a total of 43 discriminative PVTs and constructs a PVT-attribute graph. In this

graph, the target attribute has degree 15 while all other attributes have degree 2. The

PVTs that include target are then intervened in non-increasing order of benefit. The

transformation w.r.t. INDEP PVT on the target attribute breaks the dependence between

target and all other attributes, thereby reducing the malfunction score to 0.32. Therefore,

DATAEXPOSERGRD requires one intervention to explain the cause of the malfunction. Our

group testing algorithm DATAEXPOSERGT and GrpTest require 8 and 10 interventions,

respectively. Note that group testing is not very useful because the datasets contain few

discriminative PVTs.

BugDoc and Anchor do not identify discriminative PVTs explicitly and consider all

PVTs (136 for this dataset) as candidates for intervention. Anchor performs 800 local

interventions to explain the malfunction. BugDoc identifies the ground truth malfunction

213



in 50% of the runs when allowed to run fewer than 10 interventions. It identifies the mis-

match with intervention budget of 20 but the returned solution of PVTs is not minimal. For

instance, BugDoc returns two PVTs: {ÈINDEP, target, educationÍ and ÈINDEP,

target, sexÍ} as the explanation of malfunction.

Cardiovascular Disease Prediction. This system trains an AdaBoost classifier [4] on

patients’ medical records [52] containing age, height (in centimeters) and weight along

with other attributes. It predicts if the patient has a disease and does not optimize for false

positives. Therefore, the system computes recall over the patients having cardiovascular

disease, and the goal is to achieve more than 0.70 recall. The pipeline returns the additive

inverse of recall as the malfunction score. We tested the pipeline with two datasets

generated through a random selection of records: (1) the passing dataset satisfies the

format assumptions of the pipeline; (2) for the failing dataset we manually converted

height to inches. DATAEXPOSERGRD identifies 86 discriminative PVTs with height,

weight and age having the highest degree of 15 in the PVT-attribute graph. Among the

PVTs involving these attributes, the DOMAIN of height has the maximum benefit, which

is the ground-truth PVT too. DATAEXPOSERGRD alters the failing dataset by applying a

linear transformation and it reduces the malfunction from 0.71 to 0.30. This explanation

matches the ground truth difference in the passing and the failing dataset. Among

baselines, BugDoc and Anchor performed 100 and 5900 interventions, respectively.

Group testing techniques are not applicable because assumption A3 (Section 7.3.4) does

not hold. We observe that the malfunction score with a composition of transformation

functions is higher than the one in the original dataset if the composition involves INDEP

PVT. This behavior is observed because adding noise to intervene with respect to INDEP

PVT worsens the classifier performance. If we remove PVTs that violate this assumption,

then DATAEXPOSERGT and GrpTest require 6 and 9 interventions, respectively.
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Efficiency. Figure 7.8 presents the execution time of considered techniques for real-world

applications presented above. DATAEXPOSERGRD, DATAEXPOSERGT and GrpTest are

highly efficient and require less than 30 seconds to explain the ground-truth cause of mal-

function. In contrast, Anchor is extremely inefficient as it requires more than 143 minutes

for cardiovascular, while DATAEXPOSERGRD and BugDoc explain the malfunction

within 63 seconds.

Key takeaways. Among all real-world case studies, the greedy approach DATAEX-

POSERGRD requires the fewest interventions to explain the cause of malfunction. Group

testing techniques, DATAEXPOSERGT and GrpTest, require fewer interventions than

BugDoc and Anchor whenever assumption A3 (Section 7.3.4) holds. Anchor requires

the highest number of interventions as it performs many local transformations to explain

the cause of failure. BugDoc optimizes interventions by leveraging combinatorial design

algorithms: it requires more interventions than DATAEXPOSER but fewer than Anchor.

7.4.2 Synthetic Pipelines

We evaluate the effectiveness and scalability of DATAEXPOSERGRD and DATAEX-

POSERGT for a diverse set of synthetic scenarios.

DATAEXPOSERGRD vs. DATAEXPOSERGT. In this experiment, we consider a pipeline

where the ground-truth explanation of malfunction violates the observations discussed in

Section 7.3.2. Specifically, the explanation requires modifying one particular value in the

dataset and its likelihood (as estimated by DATAEXPOSERGRD) is ranked 54 among the set

of discriminative PVTs. Therefore, it requires 54 interventions to explain the cause of mal-

function. On the other hand, DATAEXPOSERGT performs group interventions and requires

only 9 interventions. This experiment demonstrates that DATAEXPOSERGT requires fewer

interventions than DATAEXPOSERGRD when the failing dataset and the corresponding PVTs

do not satisfy the observations DATAEXPOSERGRD relies on.

215



Figure 7.9: Execution time of DATAEXPOSERGRD vs. DATAEXPOSERGT with varying
number of data attributes (left) and discriminative PVTs (right) over synthetic pipelines.

Scalability. To test the scalability of our techniques, we compare their running time with

increasing number of attributes and discriminative PVTs. Figure 7.9 shows that the time

required by DATAEXPOSERGRD and DATAEXPOSERGT to explain the malfunction grows

sub-linearly in the number of attributes and discriminative PVTs. We observe similar trend

of the number of required interventions on varying these parameters. This experiment

demonstrates that DATAEXPOSERGRD requires fewer than O(|X |) interventions in practice

(where X denotes the set of discriminative profiles) and validates the logarithmic depen-

dence of DATAEXPOSERGT on |X |.

7.4.3 Effect of Various Parameters

In this experiment, we test the effect of the number of dataset attributes and the number

of discriminative PVTs on the efficacy of DATAEXPOSER algorithms, and contrast those

with other state-of-the-art baselines. We also investigate the influence of the number of

PVTs involved in the root causes and their interactions on the number of interventions each

method requires.
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Figure 7.10: Average number of interventions required by two versions of DATAEXPOSER
and three other techniques for varying number of attributes, discriminative PVTs, size of
single conjunctive root causes, and size of disjunctive root causes.

7.4.3.1 Effect of Number of Attributes and PVTs

Figure 7.10(a) presents the effect of changing the number of attributes in the datasets

on the number of required interventions. DATAEXPOSERGRD requires fewer than 5 in-

terventions on average. In contrast, BugDoc and Anchor require orders of magnitude

more interventions. The number of interventions required by BugDoc grows linearly with

the number of attributes. At the same time, Anchor perturbs all PVTs to solve a multi-

armed bandit problem: the more PVTs affect the pipeline errors, the more interventions

are needed. Group-testing-based approaches also require more intervention than that of

DATAEXPOSERGRD, and grow logarithmically with the number of data attributes.

Figure 7.10(b) depicts the effect of the number of discriminative PVTs on the number

of required interventions. DATAEXPOSERGRD shows superior performance as it requires

fewer than 10 interventions even when the number of discriminative PVTs go beyond 100.

Here, we observe trends similar the one in Figure 7.10(a) for other baselines as the number

of PVTs are strongly and positively correlated to the number attributes.

7.4.3.2 Effect of Number of Root Causes and their Interactions

The pipelines presented in Figures 7.10(a) and 7.10(b) have a single PVT as the root

cause of the malfunction. In Figure 7.10(c), we fix the number of attributes to 15 and the

number of discriminative PVTs between the passing and the failing datasets to 136. We

also define the root cause to be a conjunction over a set of PVTs of varying cardinalities.
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We find that the cardinality of the root-cause set (length of the conjunctive cause) does not

impact the number of interventions as much as the number of attributes and the number

of discriminative PVTs do. However, having more than one cause for malfunction (i.e., a

disjunctive cause) requires more interventions for Anchor and the Group-Test techniques,

as shown in Figure 7.10(d). DATAEXPOSERGRD still needs orders of magnitude fewer

interventions than these other approaches, although the probability of failing to find any

feasible transformation, which decreases malfunctions scores, increases with the number

of possible root causes within the disjunction.

7.5 Summary and Future Work
We introduced the problem of identifying causes and fixes of mismatch between data

and systems that operate on data. To this end, we presented DATAEXPOSER, a framework

that reports violation of data profiles as causally verified root causes of system malfunc-

tion and reports fixes in the form of transformation functions. We demonstrated the effec-

tiveness and efficacy of DATAEXPOSER in explaining the reason of mismatch in several

real-world and synthetic data-driven pipelines, significantly outperforming the state of the

art. In future, we want to extend DATAEXPOSER to support more complex classes of data

profiles. Additionally, we plan to investigate ways that can facilitate automatic repair of

both data and the system guided by the identified data issues.
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

In summary, this thesis targets fundamental problems in data platforms and analytics:

example-driven techniques complement traditional task specification mechanisms in vari-

ous data platforms; conformance constraints have a broad range of applications, including

trusted machine learning; explanation frameworks offer support in debugging various com-

ponents of complex data systems. The results of this work are foundational for data systems

to become more accessible and transparent to a much broader set of users in all data plat-

forms. The work presented in this thesis has inspired other work in various areas such as

data systems democratization [168], querying relational databases without SQL [22, 267],

use of causality in debugging [189, 191] and so on.

There are many possible directions one can follow from the work presented here. Par-

ticularly, providing support in debugging complex data-driven system is still an underde-

veloped area of research. The main challenge in black-box data-driven systems is lack

of interpretability and explainability, which, in turn, makes debugging these systems diffi-

cult. There is also a growing concern related to trust and fairness in data-driven systems,

as systems are being more and more data-dependent. Finally, enhancing usability of data

systems, and systems in general, remains a challenging task for both the systems and HCI

community. We hope the work presented in this thesis will help in the areas of enhanc-

ing usability, understandability, and explainability of a wide variety of systems, leading

towards democratization of systems for common good.
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APPENDIX A

EXAMPLE-DRIVEN INTENT DISCOVERY

A.1 SQUID: Contrast with Prior Work
We provide a summary of prior work in the data management community to contrast

with SQUID in the comparison matrix of Figure A.1. We proceed to explain the compari-

son metrics and highlight the key differences among different classes of query by example

techniques and their variants. We organize the prior work into three categories: QBE (query

by example), QRE (query reverse engineering), and DX (data exploration). Furthermore,

we group QBE methods into two sub-categories, methods for relational databases, and

methods for knowledge graphs. All QRE and DX methods that we discuss are developed

on relational databases. We first describe our comparison metrics:

• Query class encodes the expressivity of a query. We use four primitive SQL op-

erators (join, projection, selection, and aggregation) as comparison metrics. While

data retrieval mechanisms (e.g., graph query, SPARQL) for knowledge graphs do not

directly support all these operators, they support similar expressivity through alter-

native equivalent operators.

• Semi-join is a special type of join which is particularly useful for QBE systems. A

system is considered to support semi-join if it allows inclusion of relations in the out-

put query that have no attribute projected in the input schema (e.g., in Example 3.1,

no attribute of research appears in the input tuples, but Q2 includes research).

While knowledge-graph-based systems do not directly support semi-join as defined

in the relational database setting, they support same expressivity through alternative

mechanism.
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QFE [203]    user feedback
TALOS [312]       

D
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l. AIDE [74]    user feedback

REQUEST [117]    user feedback

Figure A.1: SQUID captures complex intents and more expressive queries than prior work.

• Implicit property refers to the properties that are not directly stated in the data (e.g.,

number of comedies an actor appears in). In SQUID, we compute implicit properties

by aggregating direct properties of affiliated entities.

• Scalability characterizes how the system scales when data increases. While deciding

on scalability of a system, we mark a system scalable only if it either had a rigorous

scalability experiment, or was shown to perform well on real-world big datasets.

Thus, we do not consider approaches as scalable if the dataset is too small (e.g.,

contains 100 cells).

• Open-world assumption states that what is not known to be true is simply unknown.

In QBE and related work, if a system assumes that tuples that are not in the examples

are not necessarily outside of user interest, it follows the open-world assumption. In

contrast, closed-world assumption states that when a tuple is not specified in the user

example, it is definitely outside of user interest.
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• Apart from the aforementioned metrics, we also report any additional requirement

of each prior art. We briefly discuss different types of additional requirements here:

User feedback involves answering any sort of system generated questions. It ranges

from simply providing relevance feedback (yes/no) to a system-suggested tuple to

answering complicated questions such as “if the input database is changed in a cer-

tain way, would the output table change in this way?” Another form of requirement

involves providing negative tuples along with positive tuples. Provenance input re-

quires the user to explain the reason why they provided each example. Some systems

require the user to provide the example tuples sorted in a particular order (top-k), aim-

ing towards reverse engineering top-k queries. Schema-knowledge is assumed when

the user is supposed to provide provenance of examples or sample input database

along with the example tuples.

A.2 Proof of Theorem 3.1
Proof. We prove Theorem 3.1 by contradiction. Suppose that Ï is the optimal set of filters,

i.e., QÏ is the most likely query. Additionally, suppose that Ï is the minimal set of filters for

obtaining such optimality, i.e., @ÏÕ such that |ÏÕ
| < Ï · Pr(QÏÕ

| E) = Pr(QÏ
| E). Now

suppose that, Algorithm 1 returns a sub-optimal query QÏÕ , i.e., Pr(QÏÕ
| E) < Pr(QÏ

|

E). Since QÏÕ is suboptimal, ÏÕ
”= Ï; therefore at least one of the following two cases must

hold:

Case 1: ÷„ such that „ œ Ï · „ ”œ ÏÕ. Since Algorithm 1 did not include „, it must be the

case that include„ Æ exclude„. Therefore, we can exclude „ from Ï to obtain Ï ≠ {„}

and according to Equation 3.5, Pr(QÏ≠{„}
| E) Ø Pr(QÏ

| E) which contradicts with our

assumption about the optimality and minimality of Ï.

Case 2: ÷„ such that „ ”œ Ï · „ œ ÏÕ. Since Algorithm 1 included „, it must be the

case that include„ > exclude„. Therefore, we can add „ to Ï to obtain Ï fi {„} and
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ID Task J S #Result
IQ1 Entire cast of Pulp Fiction 3 1 113
IQ2 Actors who appeared in all of The Lord of the Rings trilogy 8 7 20
IQ3 Canadian actresses born after 1970 3 4 1531
IQ4 Sci-Fi movies released in USA in 2016 5 3 1374
IQ5 Movies Tom Cruise and Nicole Kidman acted together 5 2 12
IQ6 Movies directed by Clint Eastwood 4 2 36
IQ7 All movie genres 1 0 35
IQ8 Movies by Al Pacino 4 2 71
IQ9* Indian actors who acted in at least 15 Hollywood movies 6 4 23
IQ10* Actors who acted in more than 10 Russian movies after 2010 6 4 84
IQ11 Hollywood Horror-Drama movies in 2005 – 2008 7 5 291
IQ12 Movies produced by Walt Disney Pictures 3 1 394
IQ13 Animation movies produced by Pixar 5 2 57
IQ14 Sci-Fi movies acted by Patrick Stewart 6 3 22
IQ15 Japanese Animation movies 5 2 2512
IQ16* Walt Disney Pictures movies with more than 15 American cast members 5 3 207

* Includes GROUP BY and HAVING clauses

Figure A.2: Benchmark queries for the IMDb dataset. J and S denote the number of joins
and selection predicates, respectively.

ID Task J S #Result
DQ1 Authors who collaborated with both U Washington and Microsoft Research

Redmond
5 2 30

DQ2* Authors with at least 10 SIGMOD and at least 10 VLDB publications 8 4 52
DQ3 SIGMOD publications in 2010 – 2012 3 3 468
DQ4 Publications Jiawei Han, Xifeng Yan, and Philip S. Yu published together 7 3 15
DQ5 Publications between USA and Canada 5 2 336

* Includes GROUP BY, HAVING, and INTERSECT

Figure A.3: Benchmark queries for the DBLP dataset. J and S denote the number of joins
and selection predicates, respectively.

according to Equation 3.5, Pr(QÏfi{„}
| E) > Pr(QÏ

| E) which again contradicts with

our assumption about the optimality of Ï.

Hence, QÏÕ cannot be suboptimal and this implies that Algorithm 1 returns the most

likely query.

In a special case where include„ = exclude„, Algorithm 1 drops the filter using

Occam’s razor principle to keep the query as simple as possible. However, this does not

return any query that is strictly less likely than the best query.
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SQL Query #Result
SELECT DISTINCT name FROM adult WHERE education = ‘Bachelors’ AND
occupation = ‘Craft-repair’ AND hoursperweek >= 36 AND hoursperweek
<= 40 AND age >= 46 AND age <= 47

8

SELECT DISTINCT name FROM adult WHERE race = ‘White’ AND sex =
‘Female’ AND nativecountry = ‘United-States’ AND relationship =
‘Other-relative’ AND occupation = ‘Machine-op-inspct’ AND workclass
= ‘Private’

11

SELECT DISTINCT name FROM adult WHERE occupation = ‘Craft-repair’
AND workclass = ‘Private’ AND age >= 65 AND age <= 68 AND
relationship = ‘Husband’

12

SELECT DISTINCT name FROM adult WHERE maritalstatus = ‘Divorced’ AND
capitalgain >= 7298 AND capitalgain <= 10520 AND hoursperweek >=
40 AND hoursperweek <= 44 AND relationship = ‘Not-in-family’

14

SELECT DISTINCT name FROM adult WHERE capitalgain >= 4101 AND
capitalgain <= 4650 AND workclass = ‘Private’ AND age >= 41 AND
age <= 44

14

SELECT DISTINCT name FROM adult WHERE occupation = ‘Protective-serv’
AND hoursperweek >= 45 AND hoursperweek <= 48

44

SELECT DISTINCT name FROM adult WHERE education = ‘10th’ AND race =
‘White’ AND fnlwgt >= 334113 AND fnlwgt <= 403468

48

SELECT DISTINCT name FROM adult WHERE nativecountry =
‘United-States’ AND hoursperweek >= 43 AND hoursperweek <= 45 AND
race = ‘White’ AND fnlwgt >= 106541 AND fnlwgt <= 118876

126

SELECT DISTINCT name FROM adult WHERE race = ‘White’ AND
education = ‘Bachelors’ AND nativecountry = ‘United-States’ AND
capitalgain >= 6097 AND capitalgain <= 7688 AND maritalstatus =
‘Married-civ-spouse’ AND relationship = ‘Husband’

128

SELECT DISTINCT name FROM adult WHERE education = ‘Bachelors’ AND
capitalloss >= 1848 AND capitalloss <= 1980

182

Figure A.4: First 10 benchmark queries for the Adult dataset.

A.3 Benchmark Queries, Source of Datasets, and Additional Dataset

Details for Evaluation SQUID
Figures A.2– A.5 show the benchmark queries used to evaluate SQUID. For obtaining

a downsized database sm-IMDb, we dropped persons with less than 2 affiliated movies

and/or who have too many semantic information missing, and movies that have no cast

information. We produced two upsized databases: one with dense associations bd-IMDb,

and the other with sparse associations bs-IMDb. The database bd-IMDb contains dupli-

cate entries for all movies, persons, and companies (with different primary keys), and the

associations among persons and movies are duplicated to produce more dense associations.

For example, if person P1 appeared in movie M1 in IMDb, i.e., (P1,M1) exists in IMDb’s
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SQL Query #Result
SELECT DISTINCT name FROM adult WHERE sex = ‘Male’ AND nativecountry
= ‘United-States’ AND capitalloss >= 1848 AND capitalloss <= 1887

203

SELECT DISTINCT name FROM adult WHERE education = ‘Doctorate’
AND maritalstatus = ‘Married-civ-spouse’ AND nativecountry =
‘United-States’

223

SELECT DISTINCT name FROM adult WHERE education = ‘HS-grad’ AND
workclass = ‘Private’ AND hoursperweek >= 45 AND hoursperweek <=
46 AND relationship = ‘Husband’

241

SELECT DISTINCT name FROM adult WHERE capitalgain >= 7688 AND
capitalgain <= 8614

343

SELECT DISTINCT name FROM adult WHERE education = ‘Bachelors’
AND maritalstatus = ‘Never-married’ AND workclass = ‘Private’ AND
hoursperweek >= 40 AND hoursperweek <= 43 AND race = ‘White’

563

SELECT DISTINCT name FROM adult WHERE education = ‘HS-grad’ AND
nativecountry = ‘United-States’ AND occupation = ‘Machine-op-inspct’
AND race = ‘White’

777

SELECT DISTINCT name FROM adult WHERE nativecountry =
‘United-States’ AND age >= 60 AND age <= 62

798

SELECT DISTINCT name FROM adult WHERE fnlwgt >= 271962 AND fnlwgt
<= 288781

912

SELECT DISTINCT name FROM adult WHERE maritalstatus =
‘Married-civ-spouse’ AND fnlwgt >= 221366 AND fnlwgt <= 259301

1340

SELECT DISTINCT name FROM adult WHERE maritalstatus =
‘Never-married’ AND fnlwgt >= 185624 AND fnlwgt <= 211177

1404

Figure A.5: Last 10 benchmark queries for the Adult dataset.

castinfo, we added a duplicate person P2, a duplicate movie M2, and 3 new associa-

tions, (P1,M2), (P2,M2), and (P2,M1), to bd-IMDb’s castinfo. For bs-IMDb,

we only duplicated the old associations, i.e., we added P2 and M2 in a similar manner, but

only added (P2,M2) in castinfo.

A.4 SQUID Parameters
We empirically evaluate how the parameters of SQUID contribute to its performance.

Figure A.9 lists the four most important parameters of the system, along with brief descrip-

tions. We proceed to discuss our observations regarding the impact of these parameters.

⇢. The base filter prior parameter fl defines SQUID’s tendency towards including filters.

Small fl makes SQUID less likely to include a filter, which prevents overfitting and favors

recall. In contrast, large fl makes SQUID more likely to include a filter, which may result

in overfitting but will result in higher precision. A low fl helps eliminate coincidental

filters—which prevents overfitting—particularly with very few example tuples. However,
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Title Source
IMDb dataset https://datasets.imdbws.com/
DBLP dataset https://data.mendeley.com/datasets/3p9w84t5mr
Adult dataset https://archive.ics.uci.edu/ml/datasets/adult
Physically strong actors https://www.imdb.com/list/ls050159844/
Top 1000 Actors and Actresses* http://www.imdb.com/list/ls058011111/
Sci-Fi Cinema in the 2000s http://www.imdb.com/list/ls000097375/
Funny Actors https://www.imdb.com/list/ls000025701/
100 Random Comedy Actors https://www.imdb.com/list/ls000791012/
BEST COMEDY ACTORS https://www.imdb.com/list/ls000076773/
115 funniest actors https://www.imdb.com/list/ls051583078/
Top 35 Male Comedy Actors https://www.imdb.com/list/ls006081748/
Top 25 Funniest Actors Alive https://www.imdb.com/list/ls056878567/
the top funniest actors in hollywood today https://www.imdb.com/list/ls007041954/
Google knowledge graph: Actors: Comedy https://www.google.com/search?q=funny+actors
The Best Movies of All Time* https://www.ranker.com/crowdranked-list/the-best-movies-of-all-time
Top H-Index for Computer Science & Electronics* http://www.guide2research.com/scientists/

Figure A.6: Source of datasets and lists used in this work. * denotes the lists that are used
as popularity mask.

with sufficient example tuples, coincidental filters are naturally removed, as with more

examples, it is unlikely to keep observing a coincidental similarity. Therefore, the effect of

fl diminishes, i.e., any value of fl works just as well, when the number of examples is large.

Figure A.10(a) shows the effect of varying the value of fl for a few benchmark queries on

the IMDb dataset. While a low fl favors some queries (e.g., IQ2 and IQ16), it causes

accuracy degradation—due to underfitting or overgeneralization—for other queries (e.g.,

IQ3, IQ4, and IQ11), particularly when the number of examples are very few. A high

fl works better for IQ3, IQ4, and IQ11; but with very few example tuples, it overfits for

other queries (e.g., IQ2).

In general, there is a natural tradeoff between overfitting (high value for fl) and over-

generalization (low value for fl), and we found empirically that a moderate value of fl (e.g.,

0.1) works best on average, especially with small number of examples. When we observe

sufficient examples, then all fl values eventually converge to the same level of accuracy.

�. The domain coverage penalty parameter “ specifies SQUID’s leniency towards

filters with large domain coverage. Low “ reduces the penalty on filters with large domain

coverage, and a high “ increases the penalty. Figure A.10(b) shows the effect of varying

“. Very low value for “ favors some queries (IQ3, IQ4, IQ11) but also causes accuracy

degradation for some other queries (IQ2, IQ16), where a high “ works better. Like fl, it is
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IMDb & variations
IMDb bd-IMDb

DB size 633 MB DB size 1926 MB
#Relations 15 #Relations 15
Precomputed DB size 2310 MB Precomputed DB size 5971 MB
Precomputation time 150 min Precomputation time 370 min
person 6,150,949 person 12,301,898

Relation movie 976,719 movie 1,953,438
Cardinality castinfo 14,915,325 castinfo 59,661,300

bs-IMDb sm-IMDb
DB size 1330 MB DB size 75 MB
#Relations 15 #Relations 15
Precomputed DB size 4831 MB Precomputed DB size 317 MB
Precomputation time 351 min Precomputation time 14 min
person 12,301,898 person 65,865

Relation movie 1,953,438 movie 335,705
Cardinality castinfo 29,830,650 castinfo 1,364,890

Figure A.7: Description of different variations of the IMDb dataset.

DBLP Adult
DB size 22 MB DB size 4 MB
#Relations 14 #Relations 1
Precomputed DB size 98 MB Precomputed DB size 5 MB
Precomputation time 42 min Precomputation time 3 min
author 126,094

Relation publication 148,521 adult 32,561
Cardinality authortopub 416,445

Figure A.8: Description of the DBLP and the Adult datasets.

also a tradeoff, and, empirically, we found moderate values of “ (e.g., 2) to work well on

average.

⌧a. The association strength threshold ·a is required to define the association strength

impact –(„) (Section 3.3.2.2). Figure A.10(c) illustrates the effect of different values of ·a

on the benchmark query IQ5 on the IMDb dataset. With very few example tuples, high ·a

is preferable, since it helps discard filters with coincidentally strong associations. Similar

to other parameters, with increased number of example tuples, the effect of ·a diminishes,

as it is unlikely for a coincidental filter to survive the association strength threshold if it is

not intended after all. In general, it is advised to not set ·a to a very high value as some

intended similarities might have weak associations (e.g., find all actors who occasionally
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Parameter Default Value Description
fl (Base filter prior parameter) 0.1 Controls SQUID’s tendency towards in-

cluding a filter.
“ (Domain coverage penalty parameter) 2 Penalizes filters with large domain cover-

age.
·a (Association strength threshold) 5 Eliminates filters with weak associations

with other entities.
·s (Skewness threshold) 2.0 Identifies skewed distributions, which

contain interesting filters as outliers.

Figure A.9: List of SQUID parameters with description.
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Figure A.10: Effect of system parameters on SQUID’s performance for a few benchmark
queries over the IMDb dataset.

appear in comedies); in such cases, having a very high value of ·a will discard the desired

filter with a relatively weak association strength. Ultimately, with sufficient examples, even

the lowest possible value for ·a, which is 0, would work just as well.

⌧s. The skewness threshold ·s is required to classify an association strength distribution

as skewed or not (Section 3.3.2.2). Figure A.10(d) illustrates the effect of different values of

·s on the benchmark query IQ1 (Find the entire cast of the movie Pulp Fiction) on the
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IMDb dataset. ·s = N/A refers to the experiment where outlier impact was not taken into

account (i.e., ⁄(„) = 1 for all filters). In this query, there were a number of unintended de-

rived filters involving movie certificate (e.g., PG, G, R, X, etc.) for different coun-

tries, and a high ·s helped SQUID get rid of those. We also found a high ·s to be very useful

when we could not use a high ·a due to the nature of the query intent that requires filters

with low association strengths (e.g., IQ3). However, too high value for ·s is also not desir-

able, since it will underestimate some moderately skewed distributions and discard intended

filters. Empirically, we found that moderate ·s (e.g., 2 and 4) to work well on average.

Key Takeaway. The key takeaway from the experiments on parameter sensitivity is that

SQUID’s dependency on parameters diminishes as the number of examples increases. One

interesting point to note is that unlike other approaches that require hyperparameter tuning

for specific workloads (e.g., machine learning models), SQUID does not depend heavily

on the parameter values and its dependency on the parameters diminishes as the number

of examples increases. The purpose of gauging SQUID’s sensitivity to different parameter

values is to demonstrate how the specific parameter values have little to no impact even

with a moderate number of example tuples (e.g., 15). Nevertheless, this analysis presents

a guideline on how to tune SQUID’s parameters when the workload is expected to contain

only a small number of example tuples for each user intent, where overfitting must be

prevented to allow for generalization. Otherwise, it is safe to set all the parameters to

values that encourage overfitting when sufficient example tuples can be expected.

A.5 Study Design
A.5.1 Dataset and Baseline

In our comparative user studies, we studied how users perceive SQUID, compared to

the traditional SQL querying mechanism, over a variety of subjective and objective data

exploration tasks.
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Figure A.11: Complete schema of the IMDb database with 8 main rela-
tions: movie, person, genre, language, country, company, role,
and certificate; and 7 connecting relations that associate the main re-
lations: castinfo, movietogenre, movietolanguage, distribution,
movietocountry, movietocertificate, and production.

SQuID User Guide About

Enter example actors

Instruction Pre-Survey Tutorial Task 1 Task 2 Task 3 Task 4 Post-Survey

Find funny actors

Bruno would like to lighten his mood during the quarantine. He would like to find a list of funny actors so he can
follow their Twitter feeds. Can you help him compile such a list?

Robin Williams

Jim Carrey

Eddie Murphy

Clear All

Task Time remaining: 9:35

Adam Sandler

Alan Cumming

Alec Baldwin

Generate Results

List of input examples: Results generated based on input examples:

Andy Dick

Ben Stiller

Bill Murrey

Instruction Pre-Survey Tutorial Task 1 Task 2 Task 3 Post-SurveyTask 4

Figure A.12: The graphical user interface of SQUID used in our user study. The task
description is at the top. The left panel allows the users to provide examples with an auto-
completion feature. SQUID infers the user’s intended query from the examples, executes it,
and shows the results in the right panel. We only show the first five results (alphabetically).
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We now provide an overview of the dataset we used in our studies and a brief description

of SQL, the baseline which we compare SQUID against.

A.5.2 Dataset

For our comparative user studies, our goal was to emulate data exploration tasks in a

controlled experiment setting. Generally, people explore data they are interested in and

within a domain they are somewhat familiar with. Moreover, data exploration with QBE

expects some basic domain familiarity, as users need to be able to provide examples. There-

fore, our goal in selecting a dataset was to identify a domain of general interest, where most

study participants can be expected to have a basic level of domain familiarity. Furthermore,

the dataset needs to be sufficiently large to emulate the practical challenges that users face

during data exploration. We selected the IMDb database (discussed in Section 3.6.1), which

satisfies these goals, as the IMDb website has over 83 million registered users and about

927 million yearly page visits.1

A.5.3 Structured Query Language (SQL)

The traditional way to query a relational database is to write a query in structured query

language (SQL). SQL is one of the most widely used programming languages for handling

structured data (54.7% developers use SQL [214]). It is specifically designed to query rela-

tional databases and has been used for over 50 years. SQL is a declarative query language

and is primarily based on relational algebra. The SQL language consists of several ele-

ments such as clauses, expressions, predicates, statements, integrity constraints, etc. SQL

has been implemented by different developers—such as Oracle, Microsoft SQL, MySQL,

PostgreSQL, etc.—slightly differently; however, fundamentally, they all work the same

way. For our comparative user studies, we picked PostgreSQL, which is a free and open-

source relational database management system.

1IMDb.com Analytics: www.similarweb.com/website/imdb.com/
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Relational databases usually organize data in a normalized form, to avoid redundancy.

This is in contrast with the flat data format where all attributes of an entity are stored to-

gether within the same row. For example, the detailed schema of the IMDb database, split

in 15 relational tables, is shown in Figure A.11. Here, the relation movie contains only

three attributes about movies: a numerical record id (called primary key), a text attribute

specifying the title of the movie, and the production year of the movie. However,

information about associated genres of a movie is not present in the movie table. To figure

out the genres of a movie, one would need to write a SQL query to JOIN the tables movie,

movietogenre, and genre. The query would also need to specify the logic behind this

join, i.e., which rows in the genre table are relevant to a particular movie in the movie

table. SQL is a relatively simple language with a limited set of operators (e.g., SELECT,

PROJECT, JOIN, etc.). While this simplicity enables the users to learn quickly how to

express easy intents using SQL (e.g., the SQL query SELECT title FROM movie

would retrieve all movie titles), it comes at the cost that complex intents are hard to express

in SQL. Specifically, the restrictions in the data organization (normalized schema) and the

simplicity of the SQL operators make complex tasks harder to translate in SQL: it re-

quires the users to specify the entire data retrieval logic. Overall, writing a successful SQL

query for a data exploration tasks requires several skills: (1) familiarity with the database

schema, (2) understanding of the table semantics, (3) understanding of the SQL operators,

(4) knowledge of the SQL syntax, and (5) expertise in translating task intents to SQL.

A.5.4 Study Design

In our user studies, our goal was to quantitatively compare the efficacy and efficiency of

SQUID and SQL over a variety of data exploration tasks, while also gathering qualitative

feedback from users regarding their experiences with the systems. To this end, we opted for

two separate comparative user studies: (1) a controlled experiment study, with a fixed set of

tasks, over a group of participants of sufficient size to support quantitative evaluation; (2) an
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interview study, with a flexible set of tasks, over a small group to gather qualitative user

feedback. Due to the situation caused by the ongoing COVID-19 pandemic, both studies

were conducted online: the controlled experiment was conducted through a website, hosted

on our university servers, and the interview study was conducted over Zoom.

For both studies, we provided the database schema (Figure A.11) and a graphical user

interface with a text box, where the participants could write SQL queries to interact with

a PostgreSQL database. For SQUID, we provided a graphical user interface to allow the

participants to interact with the system (Figure A.12). We now proceed to describe the

settings, design choices, and methods of our comparative user studies. We first describe our

controlled experiment study over a user group of 35 participants, followed by our interview

study with a smaller group of 7 interviewees.

A.5.4.1 Study 1: Controlled Experiment Study

Participants. For our controlled experiment study, we recruited students who were en-

rolled in an undergraduate computer science course on Data Management Systems at our

university during the Spring 2020 semester. The course offers an introduction to data man-

agement systems and the SQL language. This ensured that our study participants would

have basic familiarity with SQL, which is required to compare the two systems: SQUID

and SQL. We invited all 89 students enrolled in this course to take part in the study and 35

of them agreed to participate. We offered extra credit for study participation; students who

opted to not participate were given alternative opportunities for extra credit. We labeled

these participants P1–P35. The average grade the participants achieved in the course was

86.3 (out of 100), with a minimum grade of 45, and a maximum grade of 100; the standard

deviation of the grades was 9.87. This indicates a broad range in our participants’ SQL

skills, which was one of our goals. While all of them had prior experience and exposure,

some had only very basic skills (and failed the class) and some achieved advanced skills.
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(a) Movie-watching frequency. (b) Overall knowledge of movies and actors.

Figure A.13: Domain knowledge of the participants.

The distribution of self-reported movie-watching frequency among the participants of

our controlled-experiment study is shown in Figure A.13(a), with the most common re-

sponse being ‘once or twice a month’, followed by ‘once or twice every few months’. The

responses regarding actor and movie familiarity are summarized in Figure A.13(b): a vast

majority of the participants (25 out of 35) reported that they were ‘somewhat’ familiar

with movies and actors. This validates our choice of the IMDb database for conducting

the study, as indeed, we observed sufficient domain knowledge among the participants.

Regarding SQL expertise, all 35 participants reported being very familiar with easy SQL

queries and 34 reported being very familiar with moderately complex SQL queries. When

asked regarding familiarity with complex SQL queries, 27 participants reported being very

familiar, 6 were unsure, and 2 were not familiar.

Tasks and task-assignment mechanism. We designed 4 data exploration tasks over the

IMDb database. Our goal was to observe what challenges a set of diverse tasks poses

to the participants and how the challenges vary based on the subjectivity of the tasks

and the mechanism (SQUID or SQL) used to solve the tasks. To this end, we designed

two objective tasks: (1) to find Disney movies and (2) to find Marvel movies; and two

subjective tasks: (1) to find funny actors and (2) to find strong and muscular actors. We

provided a detailed description for each task to the study participants. Each participant

was assigned all of the four tasks in the sequence: Disney, Marvel, funny, and strong. This
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order was enforced to ensure that they perform easier, objective tasks first, and then move

to more complex, subjective tasks. Our randomized task-system pairings made sure that

for each task, about half of the participants use SQUID while the other half use SQL. For

each user, we randomized which system (SQUID or SQL) they are allowed to use for each

task. Everyone did the tasks—Disney, Marvel, funny, strong—in that order, but there were

two possible system assignment orders: (a) SQUID, SQL, SQUID, SQL, or (b) SQL,

SQUID, SQL, SQUID. Each participant was randomly given one of these assignments.

This resulted in randomized task-system pairings, with the constraint that each participant

must solve one objective and one subjective task using SQL and the remaining two tasks

(also one objective and one subjective) using SQUID. This mechanism also eliminated

any potential order bias with respect to the treatment system as half of the participants

interacted with SQUID before SQL, while the other half interacted with SQL before

SQUID. Each participant used either SQUID or SQL to solve each task, but never both.

Study procedure. This study was conducted online and the participants took the study

over the Internet on a specific website, hosted on our university servers. We sent out the

URL of the website during recruitment. At the beginning of the study, participants were

asked a series of questions about their familiarity with SQL. The questions asked the

participants to provide answers using a 5-point Likert-scale ranging from “Not familiar

(1)” to “Very familiar (5)”. Next, there was a question asking them at what frequency they

watch movies, followed by a questions about overall movie and actor familiarity where

participants could select multiple options. After this survey, participants were given an

interactive tutorial, which was divided into two sections, walking them through the steps

to obtain results with both SQUID and SQL. The tutorial took about 2–5 minutes to

complete. After the tutorial, the participants started the tasks. They had 10 minutes for

each task, but could finish before the time was up if they chose. Participants were asked

to avoid using Internet search, but if they did, they were encouraged to report it. After

each task, the participants were asked to answer a post-task survey with two questions:
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the first one was about the difficulty of the task where the participants had to provide

answers using a 5-point Likert-scale ranging from “Very difficult (1)” to “Very easy (5)”;

and the second one was about their satisfaction with the results where the participants

had to provide answers using a 5-point Likert-scale ranging from “Very unsatisfied (1)” to

“Very satisfied (5)”. After completing all four tasks, the participants were asked to answer

four survey questions: the first one was regarding their preferences between SQUID and

SQL where the participants had to provide answers using a 5-point Likert-scale ranging

from “Definitely SQL (1)” to “Definitely SQUID (5)”; the second one was about usability

comparison between SQL and SQUID where the participants had to provide answers

using a 5-point Likert-scale ranging from “SQL was a lot easier (1)” to “SQUID was a

lot easier (5)”; the third one was about satisfaction with results obtained using SQUID

where the participants had to provide answers using a 5-point Likert-scale ranging from

“Very unsatisfied (1)” to “Very satisfied (5)”; and the fourth one was about accuracy of the

results obtained using SQL where the participants had to provide answers using a 5-point

Likert-scale ranging from “Very inaccurate (1)” to “Very accurate (5)”.

Data collection and analysis. During the study, we collected all survey responses and

all inputs the participants provided to the systems. Specifically, for SQL, we collected all

their queries, including any intermediate queries that they used to reach their final query;

for SQUID, we collected all the examples they provided, along with the revision history

(addition or removal of examples). We stored all this information in JSON format. During

our data analysis, we extracted the JSON data programmatically through Python scripts

and implemented custom functions to programmatically analyze the data. To quantitatively

evaluate the tasks performed by the participants, we compared their results against the

ground-truth results. We collected the ground-truth data from publicly available lists on

the IMDb website. For the objective tasks (Marvel and Disney), we determined the ground

truth by selecting one list for each. For the subjective tasks (funny and strong), we compiled

a list by combining seven different lists for each. We selected lists that meet the following
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Interviewee ID Gender Country of origin Program level SQL expertise Area of specialization
I1 Female Greece 2nd year PhD Medium Data management
I2 Male India 3rd year PhD Low Natural language processing
I3 Male Hong Kong 2nd year MS High Systems
I4 Female China 5th year PhD High Data privacy
I5 Male India 4th year PhD High Theory and data management
I6 Female Japan 2nd year PhD Medium Data privacy
I7 Male USA 4th year PhD High Data privacy

Figure A.14: Demographic and experience details of the interviewees who participated in
our interview study.

criteria: (1) they have a number of entries that is representative of the task (e.g., there are

more than five Marvel movies, thus the list should contain more than five entries), (2) they

are frequently viewed, and (3) they contain entries that match the task objectives. For

instance, we collected a list of 300 funny actors, which was compiled from 7 shorter lists

of funny actors. One of these lists, titled “Funny Actors”, has over 400,000 views, and

includes 60 well-known comedians including Jim Carrey, Robin Williams, Eddie Murphy,

Mel Brooks, and Will Ferrell [110].

A.5.4.2 Study 2: Interview Study

We conducted a comparative interview study to gain richer insights on users’ behavior,

their preferences, and any issues they faced while solving the data exploration tasks using

both systems.

Interviewees. We recruited 7 interviewees for this study by targeting a diverse set of com-

puter science graduate students directly working or collaborating with the data management

research lab at our university. Out of the 7 interviewees, 4 were male and 3 were female; 6

of them were international students; and their ages ranged from 25 to 30 years old. All of

them had experience using SQL for at least one year; however, their expertise varied from

moderate to expert. We label the interviewees I1–I7. We provide details on the interviewees

who participated in our interview study in Figure A.14.

Tasks. For this study, we asked the interviewees to pick one objective task from the

following list: (1) Disney movies, (2) Marvel movies, (3) animation movies, (4) sci-fi
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movies, (5) action movies, (6) movies by an actor of their own choice, or (7) movies by

a country of their own choice. We also asked them to select one subjective task form this

list: (1) funny actors, (2) physically strong actors, or (3) serious actors. The variety of

tasks allowed interviewees to pick tasks based on their interests and enabled us to observe

how the two systems compare over a variety of data exploration tasks. This study was

within-subject, i.e., all of the interviewees were required to use both the mechanisms

(SQUID and SQL) to solve each task.

Study procedure. For each interview, two of our research team members were present,

one as primary to lead the interview and ask questions and another as secondary to take

notes and ask potential follow-up questions. At the beginning of the study, we provided

them the URL of the study website over the chat feature of Zoom. During the study, the

interviewees first completed an interactive tutorial and then they were asked to pick two

tasks. The interviewees were then asked to solve each task using both SQUID and SQL,

so that they can directly contrast the two systems. We asked them to complete each task

first using SQUID and then using SQL, so that the examples they would provide while

using SQUID would be free from biases due to observing the results from their SQL query

outputs. We did not expose the query that SQUID generates through the SQUID interface,

and, thus, avoided biases when the interviewees were completing the SQL tasks. The

interviewees followed a think-aloud protocol and shared their screen over Zoom during the

study. They were observed by two interviewers who also asked open-ended questions to

the interviewees on completion of each of the two tasks using both systems. The questions

were intended to gather information on which of the two systems the interviewees prefer,

under what circumstances they prefer one over the other, and the justification of why they

do so. They were also asked what challenges they faced while using the systems and

whether some particular task exacerbated these challenges. Finally, they were asked what

type of results they prefer during data exploration: specific or generic.
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Data collection and analysis. We conducted the interviews over a video conferencing tool

and recorded the sessions. The 7 interviews summed to 467 minutes. On average, each

interview lasted about 67 minutes, with the shortest interview lasting 43 minutes and the

longest one lasting 77 minutes. Upon completion, we replayed the interview recordings,

manually transcribed the responses, and stored them as plain text in a spreadsheet, result-

ing in 119 responses in total. We thematically analyzed the responses using our coding

software (spreadsheet). Two independent coders from our team independently coded the

data. The following six themes emerged after several rounds of analysis: (1) struggle in

task understanding, (2) struggle in familiarizing oneself with the schema while using SQL,

(3) difficulties with writing syntactically correct SQL queries, (4) struggle with solving

vague/subjective tasks using SQL, (5) struggle due to lack of domain familiarity while us-

ing SQUID, and (6) preference between precision and recall of the results. There was a

98% match between the two researchers’ theme assignments.

A.6 Detailed Qualitative Feedback from Interview Study
We now report the results of our interview study and describe six main themes that

emerged from our analysis.

Studying the schema is challenging, even for SQL experts. All seven of our intervie-

wees from the interview study commented that it was difficult to become acquainted with

the database schema. “As a user, I have to explore the schema”, I1 said. I1 continued, “The

query itself was not complicated. It was time consuming to get familiar with the schema

itself. Even for experienced users, reading through the schema and getting acquainted to

[it] . . . takes time.” When asked about the comparison in difficulty between writing the

SQL query and understanding the schema, I3 said “Looking at the schema diagram was

harder. I kept going back and forth trying to understand it.” Understanding the schema may

be complicated not only because it can be difficult to learn what keys connect the tables,
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but also because it may be hard to interpret the structure of the individual tables. I5 said, “I

think it was pretty hard because I was not sure where to look for comedy based on actors. I

was thinking that [the] Role [table] might have the attribute, but it didn’t. Then I had to go

through joining five tables!”

SQL requires stricter syntax, which makes writing queries difficult. All interviewees

struggled to a varying degree to write a SQL query because of different issues; e.g., some

of them could not figure out the correct spelling of attributes. For instance, one queried

for the genres ‘scifi’ and ‘comedic’, neither of which exist in the database. I4 said, “The

difficult part was to get the accurate predicate for the query, and I had to [explore the

database] for that.” SQL requires strict string matching, which can be extremely difficult

to overcome for someone who is unfamiliar with the database constants and SQL syntax.

While it is possible to query a table and view its content to see how the names are spelled,

very few interviewees did this. It appears that the ability to write a SQL query is based

on experience and recent exposure to SQL. Interviewees noted that they do not use SQL

on a daily basis—some even said they had not used SQL in months—thus, it was difficult

to recall specific syntactic rules. For instance, two of the interviewees—who had relatively

lower SQL expertise—could not remember the requirements for joining tables. I7 had to

use Google to help with this syntax, and I2 did not recall that SQL could join more than

two tables. I5 said, “I was making a lot of mistakes about where to have the underscores,

where to not have underscores, and for those things I had to look through the [schema]

multiple times.” An interesting note, I6 spent the vast majority (over 9 minutes) attempting

to find the name ‘Japan’ in the database, and spent less than 1 minute writing the actual

query. SQUID reduces the need to recall exact spelling by providing an auto-completion

feature as the user types examples. Although it does not provide an auto-correct if the

name is misspelled, the auto-completion feature allows the users to type what they know

and scroll through the suggestions until they find the intended name. We observed several

of our interviewees initially spelled a movie name incorrectly, but they were helped by the
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auto-completion feature. For example, I2 initially typed ‘Spiderman’ in the search bar, but

the title is spelled ‘Spider-Man’ in the database. I2 was able to correct the spelling when he

typed ‘Spider’ in the search box and autocomplete showed the entire title. The search bar

also helped I5 who noted, “If I was missing some spellings, there were some suggestions.”

SQL requires parameter tuning for subjective tasks; SQUID alleviates this. Some

exploration tasks can be subjective and inherently vague, e.g., defining a “funny” actor

precisely. How many comedies, exactly, does an actor have to star in before they are con-

sidered funny? These questions have no clear answers, and such parameters can vary from

person to person and from day to day. In practice, it may be very difficult, if not impossible,

to think of objective measures for a subjective concept, which makes subjective tasks very

complicated to specify with SQL. I2 said, “Even if I forget about syntax . . . figuring out

how to go about writing the pseudocode query for funny actors [is difficult]”. One of the

most common blunders of interviewees who used SQL to find “funny” actors was to query

all actors who had been in some comedy movie. I3 was the first to acknowledge this. “I had

to play around with a lot of smaller queries,” he said, “to get the one that I eventually had,

which I was still not satisfied with. It seems like I pulled many actors and actresses that

happened to be in some comedy.” I3 elaborated, “Vague tasks are generally a lot more open

to interpretation. Coding up a query that meets someone’s vague specifications [is] hard

. . . It was very hard to nail down what the correct definition of funny is.” I4 also recognized

that vague tasks are difficult to define. She even said, “This probably isn’t a query that I

should write in SQL!” She continued, “strong and muscular are very vague descriptors,

and SQL needs clear rules. I have to use genre as a proxy, and that makes the query very

nasty.”

On the other hand, SQUID can interpret complex parameters without any involvement

from the user, sparing them the mental burden of defining and implementing a complex

query. I4 also said, “In order to write a SQL query, you need to understand the schema

well, know your data well, and know your question well . . . But if the task is exploratory
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and you only have a vague idea in mind, like ‘strong actors’ . . . it would be very hard, if not

impossible, to write a SQL query.” Indicating how SQUID helped in the subjective tasks,

I3 said “SQUID is a lot more user-oriented. You could just put in some actor names and it

would infer what you really want.”

SQUID produces precise results, which is preferred for data exploration. We asked

interviewees whether they would prefer a long list that includes all relevant names, but may

also include many irrelevant names (high-recall) or a shorter list that includes exclusively

relevant names with very few irrelevant names, but may miss some relevant names (high-

precision). Six out of seven interviewees reported that they would prefer having a shorter

list with higher precision, while one interviewee had no preference. “I think I’m okay with

not having all Marvel movies listed here,” I2 said, “but I definitely don’t want anything

outside of Marvel movies. It’s fine that [the results] are missing some Thor movies. I

wouldn’t have liked it if there were movies from DC [Comics] in here.” Comparing the

SQL results to the SQUID results, I5 said, “I think the [SQUID ] results were not too few

but not too many. It was easily understandable, and I could actually see if these were actors

I was looking for . . . The [SQL ] results were just too many, and most of the names I didn’t

know, so it was not easy to find the names that I was looking for.” I6 said, “I prefer a shorter

list because if there are too many movies listed, then probably, it would be overwhelming

and I could not say if the results are right.”

SQUID’s interactivity helps users to enrich examples. Three interviewees mentioned

that the results produced by SQUID helped them think of more examples in an iterative

process. I6, who struggled to think of examples, was able to think of only three sci-fi

movies, but when she saw ‘Avatar’ in the list of results, many other ideas came to her mind.

Even if the intermediate results (the first or second round of results generated) were not all

intended, some of them were useful in reminding the interviewees of relevant examples.

For instance, I2 said, “SQUID was [nice] because it was slightly interactive. I could look
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at the results and update my examples.” During a task, I7 said, “[The results are] useful

because now I can use Guardians of the Galaxy.” I7 later added, “I think when I gave

the first few examples, it gave me some results and that helped me think of more that I

was looking for, and it eventually did complete the task.” SQUID’s results reminded the

interviewees of examples that had not been on their mind, but were nonetheless relevant. I3

said, “I saw the movie Transformers, and that’s something I had in my mind, but it did not

occur to me when I was entering the examples. There were a bunch of other movie names

[like that].” Since SQUID can provide serendipitous, but helpful, intermediate results, the

user’s lack of domain familiarity can still be alleviated to some extent.

Domain familiarity is crucial to evaluate the results, for both SQUID and SQL.

Since SQUID requires a basic familiarity with the domain, for those who struggle to think

of even one relevant example, like I6, SQUID presents a unique challenge. All intervie-

wees could easily think of a few examples that fit the task, but they struggled beyond that.

I7 said, “It was very easy to come up with two or three, but the more examples I had to give

the harder it became”. Two interviewees suggested that SQUID adopt an interactive system

where it would ask the user whether or not a particular result was relevant on a case-by-case

basis. This could alleviate some of the difficulty of thinking of relevant examples.

Furthermore, users who possess very little knowledge of the domain may be unable

to recognize the results, and thus would be incapable of verifying them. But this is true

for both SQUID and SQL. It was not uncommon for the interviewees to tell us that they

could hardly recognize the names in the results, especially for SQL. I1, for instance, said,

“Honestly, I don’t recognize any of the results.” This, apparently, was partly due to the

large number of results returned by SQL, where there is a high chance that there will be

unfamiliar names. Most people are only familiar with a relatively small subset of actors,

rather than the entirety of the IMDb database. This made it difficult for the users to evaluate

the results produced by both SQUID and SQL.

244



A.6.1 Discussion

We summarize significant findings from the quantitative and qualitative analysis of our

comparative user studies below:

SQUID alleviates SQL pain points: schema complexity, semantic translation, and

syntax. From our interviews, we identified three key pain points of the traditional SQL

querying mechanism, all of which are removed when using SQUID:

Schema complexity. One significant difficulty that we observed during the use of SQL

was the requirement of schema understanding. To issue a SQL query over a relational

database, the user must first familiarize themselves with the database schema [22, 294]. The

schema is often complex, like the IMDb schema shown in Figure A.11, and understanding

it requires significant effort. The user also needs to correctly specify the constant values

(e.g., Comedy and not Comedic), name of the relations (e.g., movietogenre and not

movie_to_genre), and name of the attributes (e.g., id and not movie_id) in the SQL

query. Moreover, some attributes reside in the main relation (e.g., person.name) while

others reside in a different relation (e.g., names of a movie’s genres reside in the relation

genre and not in the relation movie). From a closer look at some of the user-issued

SQL queries, we observed futile efforts to guess keywords, incorrectly trying values such

as “comedic”, “superhero comics”, and “funny”, which do not exist in the database and

result in syntax or semantic errors. In structured databases, if one does not know the exact

keywords, they end up issuing an incorrect SQL query, which returns an empty result. In

contrast, SQUID frees the user from this overhead as it leverages the database content and

schema and associates it automatically with the user-provided examples.

Semantic translation. After studying the schema, the next task was to translate the task’s

semantics formally to a language (e.g., SQL) that computational systems understand.

While this is relatively easy for objective tasks (e.g., finding all movies produced by

Disney), the same is not true for subjective tasks (e.g., finding all “funny” actors). As our
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qualitative feedback indicates, expressing subjective or vague tasks is hard in any formal

language, not only in SQL. For example, for the task of finding all “funny” actors, even

the SQL experts struggled to encode the concept “funny” in SQL. Many participants

wrote a SQL query to retrieve all actors who appeared in at least one movie whose

genre is Comedy. However, upon observing the output of such an ill-formed query,

they were not satisfied with the results. This is because appearing in only one comedy

movie does not necessarily make an actor funny. Usually, actors who appear in “many”

comedy movies are considered funny. The key struggle here is to figure out what is the

right threshold for “many”, i.e., in how many comedy movies should an actor appear to

be considered “funny”. In contrast, SQUID is able to discover these implicit constants

from the user-provided examples. For retrieving funny actors, SQUID learns from the

user-provided examples what is the usual number of comedy movies all the example

actors appeared in, and subsequently, uses that number to define the notion of “many”.

For instance, for Example 3.3, SQUID inferred that appearing in 40 comedy movies is

sufficient for an actor to be considered funny. This parameter (40) was automatically

inferred based on the user-provided examples: SQUID automatically discovered that each

example actor appeared in 40 or more comedy movies in the IMDb database.

Language syntax. SQL is a programming language with several operators and keywords,

and similar to all programming languages, SQL also requires strict syntax. While issuing

a SQL query, even a minor syntactic error will result in complete failure and will return

no result. Moreover, the syntax error messages that the SQL engine provides are often

ambiguous and confusing to novice users. We observed that one of our interviewees could

not recall the correct syntax of the JOIN operation. This stringent requirement of syntax

poses significant hurdles to novice and even intermediate SQL users. In contrast, SQUID

completely bypasses SQL, eliminating this challenge.

SQUID is generally more effective than SQL and boosts efficiency. In our controlled

experiments, we noted that SQUID is generally more effective than SQL in deriving ac-
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curate results. For objective tasks, we found that SQUID outperforms SQL in all three

correctness metrics—precision, recall, and F1 score. However, it is important to highlight

that our interviewees noted that SQUID is particularly useful and preferable to SQL for

subjective tasks. This does not contradict our quantitative analysis. While SQL has higher

recall than SQUID for subjective tasks, SQUID achieves much higher F1 scores, because

SQL’s precision for these tasks is close to 0. This is because an extremely general SQL

query (e.g., one that returns all the data) may have very high recall, but it will not be useful

for the exploration task that expects targeted results. Furthermore, SQUID significantly

boosts the user’s efficiency in data exploration. This was confirmed by our controlled ex-

periment study where we found that participants achieved their goal much faster (in about

200 fewer seconds) and with less effort (with about 4 fewer attempts) while using SQUID

compared to SQL.

SQUID’s pain point and remedies: lack of domain expertise. Lack of domain knowl-

edge is a handicap for SQUID, as it requires at least a few initial examples for its infer-

ence. This is a general issue with all query-by-example mechanisms [124, 294]. How-

ever, even when the user lacks domain knowledge, they can use alternative mechanisms—

such as keyword search, Internet search, or very basic SQL queries (when the user has

some SQL familiarity)—to come up with some initial examples. In contrast, when a user

does not know SQL, learning it from scratch takes significant time and effort. While

SQUID’s by-example paradigm can help both expert and novice users alike, in general,

programming-by-example systems are most beneficial when domain knowledge outweighs

technical knowledge and experience [284]; otherwise, a hybrid system is more desirable.

However, lack of domain knowledge is a problem for SQL as well. Without basic knowl-

edge over the data domain (e.g., what are the entities and what are their properties), un-

derstanding the schema can be harder. Furthermore, without sufficient domain knowledge,

debugging SQL queries, i.e., validating whether the user-issued SQL queries are correct

or not, based on the results, is also challenging.
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SQUID promotes serendipitous discovery, aiding users in data exploration. SQUID

is interactive in a sense that the users can revise their examples based on the results and

even use some of the results as examples in the next iteration. A number of interviewees

mentioned that by looking at the results that SQUID generated from their initial examples,

they were able to come up with new examples. Moreover, when their examples contained

some unintentional bias—e.g., while retrieving Disney movies, they only provided exam-

ples of recent movies—they were able to receive implicit feedback of that bias by SQUID

as the results SQUID generated reflected the same bias. This feedback mechanism helped

them revise their examples accordingly. In contrast, SQL does not offer such interactivity

or feedback mechanism. While some interviewees used subqueries of the main query to

view some intermediate results, this was just for the purpose of verifying the correctness

of the main query. In contrast, SQUID’s natural interaction and feedback mechanism of-

fers additional help to the users. This makes SQUID particularly suitable for the task of

data exploration. SQUID often promotes serendipity in the results—providing a good bal-

ance between exploration (serendipitous, surprising, and novel discovery) and exploitation

(similar to the examples)—which is a desired property during data exploration.

SQUID is particularly useful for solving complex and subjective tasks. The specific

properties of SQUID, specifically interactivity, providing feedback, and promoting

serendipitous discovery, make it a significantly better choice for solving subjective

tasks that are usually ambiguous and vague, and are very hard to solve using SQL. For

example, in our studies, we used “strong actors” or “funny actors” as two examples of

subjective tasks. Participants of both our controlled experiment study and interview study

found thinking of examples easier than expressing their intent using SQL, especially for

subjective tasks. Our results indicate that SQUID provides an easier mechanism for data

retrieval and helps users overcome the difficulty of writing overly complex SQL queries

for subjective tasks. In contrast, for objective tasks, we found both SQUID and SQL

equally effective, given the user has basic SQL expertise.
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Trust on a system depends on prior exposure, expertise, type of the tasks, and system

explainability. During our controlled experiment, we wanted to measure how much the

participants trust the mechanism that produces the results by asking the questions: “how

well do you think SQUID did in generating the desired results?” and “how accurate were

the SQL results?” While some participants reported that they were more satisfied with the

results produced by SQUID than SQL, interestingly, many of them reported that they prefer

SQL over SQUID even though they generally did better with SQUID (Figure 3.20(d)).

This result is in line with prior work that compared a PBE tool against traditional shell-

scripting and found that despite performing better using the PBE tool, users tend to trust

the traditional shell-scripting more [284]. We validated this by checking against ground-

truth results where SQUID groups achieved results with higher precision (more specific)

and F1 score (more accurate), as shown in Figure 3.16.

Since the participants performed better when using SQUID compared to SQL, we

interpret their preference for SQL to be due to three possible sources of bias: (1) Famil-

iarity: The participants were at the time taking a course on relational databases and SQL,

which may have artificially increased their confidence in their SQL skills. They had prior

experience with SQL, but were experiencing SQUID for the first time through the study.

(2) Explainability: SQL exposes the precise mechanism (the code) that produces the

results, while we did not provide participants with an explanation of the inner workings of

SQUID nor exposed the query it produces. (3) Domain expertise: Low domain expertise

poses a hurdle in producing examples for SQUID; we posit that the users may consider

SQL a more versatile mechanism for such circumstances.

We further investigated the issue of trust during our interview study by asking all our

interviewees the question: “Which of these two systems, SQUID or SQL, do you trust

more?” We expected SQL experts to trust SQL more, but did not observe any strong trend.

Rather, the interviewees mentioned that for objective tasks, they were more confident

about the SQL queries they wrote, and hence, they trusted SQL more. In contrast, for
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the subjective tasks, they reported that they trusted the results produced by SQUID more,

as for the subjective tasks, the most common complaint was that SQL produced too

many results (less specific) and perhaps retrieved the entire database content. Ultimately,

SQUID can also provide explanations, by exposing the SQL query it synthesizes in order

to generate the results and the underlying mechanism used to synthesize the query. We

shed more light on this in the future work.

SQUID is easy to learn. A desired property for any system is learnability: how easy

it is to get used to the system. From our study, we found that it was very easy for the

participants to learn how to use SQUID almost instantly. SQUID’s interface is intuitive and

both novices and experts learned how to use it, just by observing its behavior. In contrast,

when participants did not know how to write certain classes of SQL queries, they simply

gave up and mentioned that they cannot express their logic in SQL. This is particularly

significant considering that all our study participants and interviewees had prior exposure

to and experience with SQL, while this was their first experience using SQUID.
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APPENDIX B

CONFORMANCE CONSTRAINTS

B.1 Proof of Lemma 5.2
Proof. Pick —1, —2 s.t. —2

1 + —2
2 = 1 and the following equation holds:

sign(flF1,F2)—1‡(F1(D)) + —2‡(F2(D)) = 0 (B.1)

Let t be any tuple that is incongruous w.r.t. ÈF1, F2Í. Now, we compute how far t is from

the mean of the projection F on D:

|�F (t)| = |F (t) ≠ µ(F (D))|

= |—1F1(t) + —2F2(t) ≠ µ(—1F1(D) + —2F2(D))|

= |—1�F1(t) + —2�F2(t)|

= |—1�F1(t)| + |—2�F2(t)|

The last step is correct only when —1�F1(t) and —2�F2(t) are of same sign. We prove this

by cases:

(Case 1). flF1,F2 Ø
1
2 . In this case, —1 and —2 are of different signs due to Equation B.1.

Moreover, since t is incongruous w.r.t. ÈF1, F2Í, �F1(t) and �F2(t) are of different signs.

Hence, —1�F1(t) and —2�F2(t) are of same sign.

(Case 2). flF1,F2 Æ ≠
1
2 . In this case, —1 and —2 have the same sign due to Equation B.1.

Moreover, since t is incongruous w.r.t. ÈF1, F2Í, �F1(t) and �F2(t) are of same sign.

Hence, —1�F1(t) and —2�F2(t) are of same sign.
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Next, we compute the variance of F on D:

‡(F (D))2= 1
|D|

ÿ

tœD

(—1�F1(t)+—2�F2(t))2

=—2
1‡(F1(D))2+—2

2‡(F2(D))2

+2—1—2flF1,F2‡(F1(D))‡(F2(D))

=—2
1‡(F1(D))2+—2

1‡(F1(D))2
≠2—2

1 |flF1,F2|‡(F1(D))2

=2—2
1‡(F1(D))2(1 ≠ |flF1,F2|)

Hence, ‡(F (D)) =
Ò

2(1 ≠ |flF1,F2|)|—1|‡(F1(D)), which is also equal to
Ò

2(1 ≠ |flF1,F2|)|—2|‡(F2(D)). Since
Ò

2(1 ≠ |flF1,F2|)| Æ 1, and since |—k| < 1, we con-

clude that ‡(F (D)) < ‡(Fk(D)). Now, we compute |�F (t)|
‡(F (D)) next using the above derived

facts about |�F (t)| and ‡(F (D)).

|�F (t)|
‡(F (D)) >

|—1�F1(t)|Ò
2(1 ≠ |flF1,F2|)|—1|‡(F1(D))

= |�F1(t)|Ò
2(1 ≠ |flF1,F2 |)‡(F1(D))

Ø
|�F1(t)|
‡(F1(D))

The last step uses the fact that |flF1,F2 | Ø
1
2 . Similarly, we also get |�F (t)|

‡(F (D))>
|�F2(t)|
‡(F2(D)) . Hence,

„F is stronger than both „F1 and „F2 on d, using Lemma 5.1. This completes the proof.

B.2 Proof of Theorem 5.1
Proof. First, we use Lemma 5.2 on Fi, Fj to construct F . We initialize I := {i, j}. Next,

we repeatedly do the following: We iterate over all Fk, where k ”œ I , and check if |flF,Fk
| Ø

1
2 for some k. If yes, we use Lemma 5.2 (on F and Fk) to update F to be the new projection

returned by the lemma. We update I := I fi {k}, and continue the iterations. If |flF,Fk
| < 1

2

for all k ”œ I , then we stop. The final F and index set I can easily be seen to satisfy the

claims of the theorem.
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B.3 Proof of Theorem 5.2
We first provide some additional details regarding the statement of the theorem. Since

standard deviation is not scale invariant, if there is no constraint on the norm of the linear

projections, then it is possible to scale down the linear projections to make their standard

deviations arbitrarily small. Therefore, claim (1) can not be proved for any linear projec-

tion, but only linear projections whose 2-norm is not too “small”. Hence, we restate the

theorem with some additional technical conditions.

Given a numerical dataset D, let F = {F1, F2, . . . , FK} be the set of linear projections

returned by Algorithm 2. Let ‡ú = minK
k ‡(Fk(D)). WLOG, assume ‡ú = ‡(F1(D))

where F1 = ĄT w̨ú. Assume that the attribute mean is zero for all attributes in D (call this

Condition 1). Then,

(1) ‡ú
Æ ‡(F (D)) for every possible linear projection F whose 2-norm is sufficiently

large, i.e., we require ||w̨|| Ø 1 for F = ĄT w̨. If we do not assume Condition 1,

then the requirement changes to ||w̨|| Ø ||w̨úe
|| ≠ µ(DT w̨)||. Here w̨úe is the vector

constructed by augmenting a dimension to w̨ú to turn it to an eigenvector of DeT De

where De = [̨1; D].

(2) ’Fj, Fk œ F s.t. Fj ”= Fk, flFj ,Fk
= 0. If we do not assume Condition 1, then the

correlation coefficient is close to 0 for those Fj, Fk whose corresponding eigenvalues

are much smaller than |D|.

Proof. The proof uses the following facts:

(Fact 1) If we add a constant c to each element of a set S of real values to get a new set S Õ,

then ‡(S) = ‡(S Õ).

(Fact 2) The Courant-Fischer min-max theorem [147] states that the vector w̨ that mini-

mizes ||Mw̨||/||w̨|| is the eigenvector of MT M corresponding to the lowest eigen-

value (for any matrix M ).
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(Fact 3) Since DÕ
N := [̨1; DN ], by definition: ‡(DN w̨) = ||DÕ

N
w̨Õ||

Ô
|D|

, where w̨Õ =
S

WU
≠µ(DN w̨)

w̨

T

XV

(Fact 4) By the definition of variance, ‡(S)2 = ||S||
2

≠ µ(S)2.

Let F = ĄT w̨ be an arbitrary linear projection. Since D is numerical, D = DN . Let

De denote DÕ
N . (We use the superscript e to denote the augmented vector/matrix).

‡(DT w̨)2

= ‡(DT w̨ ≠ 1̨µ)2 (Fact 1), µ = µ(DT w̨)

= ‡(DeT w̨e)2 where w̨e =

S

WU
≠µ

w̨

T

XV

= ||DeT w̨e||2
|D| (Fact 3)

Ø
||DeT w̨úe||2·||w̨e||2

|D|·||w̨úe||2 (Fact 2)

= (‡(DeT w̨úe)2 + b2) ·
||w̨e||2
||w̨úe||2 (Fact 4), b = µ(DeT w̨úe)

= (‡(DT w̨ú + c)2 + b2) ·
||w̨e||2
||w̨úe||2 Expand DeT w̨úe

= (‡(DT w̨ú)2 + b2) ·
||w̨e||2
||w̨úe||2 (Fact 1)

= (‡ú2 + b2) ·
||w̨e||2
||w̨úe||2 definition of ‡ú

Ø ‡ú2 by assumption ||w̨e||2
||w̨úe||2 Ø 1

For the last step, we use the technical condition that the norm of the extension of w̨ (ex-

tended by augmenting the mean over Dw̨) is at least as large as the norm of extension of w̨ú

(extended to make it an eigenvector of DeT De). When Condition 1 holds, ||w̨e
||

2 = ||w̨||
2

(because µ(F (D)) will be 0 and therefore, w̨e =

S

WU
0
w̨

T

XV), and ||w̨úe
||

2 = 1 (for the same

reason), and hence ||w̨e||2
||w̨úe||2 Ø 1.

For part (2) of the claim, let Fi = ĄT w̨i for all i, where w̨i are the coefficients of the

linear projection Fi. Let ci = µ(Fi(D)).

(Fact 5) If Condition 1 holds, ’i ci = 0.
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By construction of Fi’s, we know that wi can be extended to be an eigenvector

S

WU
di

w̨i

T

XV

of DeT De (with corresponding eigenvalue ⁄i). In general,

(Fact 6) It is easy to work out that di = ≠ci

1≠ ⁄i

|D|
.

Thus, we have:

flFj ,Fk

=
q

tœD
�Fj(t)�Fk(t)

|D|‡(Fj(D))‡(Fk(D)) (definition of fl)

= (Dw̨j≠cj 1̨)T (Dw̨k≠ck1̨)
|D|‡(Fj(D))‡(Fk(D))

= (Dew̨e

j
)T Dew̨e

k

|D|‡(Fj(D))‡(Fk(D)) we
i =

S

WU
≠ci

w̨i

T

XV

= w̨eT

j
DeT Dew̨e

k

|D|‡(Fj(D))‡(Fk(D))

= w̨eT

j
⁄kw̨e

k

|D|‡(Fj(D))‡(Fk(D)) (Fact 5,6), DeT Dew̨e
k = ⁄kw̨e

k

= 0 (eigenvectors are orthogonal)

When Condition 1 does not hold, Fact 5 would not hold, but Fact 6 continues to hold, and

hence by continuity, if |
⁄i

|D| | is close to 0, then di will be close to ≠ci, and flFj ,Fk
will be

close to 0.
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APPENDIX C

DEBUGGING DATA SYSTEMS

C.1 Proof of Theorem 6.1
Proof. After the first intervention, we get at least

3
log

1
N
D

2
≠ log

1
N≠S1

D

2
+ 1

4
bits of

information. Suppose that there are m interventions. Since after retrieving all information,

the remaining information should be Æ 0:

log
A

N

D

B

≠

mÿ

i=1

3
log

A
N≠(i≠1)S1

D

B

≠ log
A

N≠iS1
D

B

+ 1
4

Æ 0

=∆ log
A

N≠mS1
D

B

≠ m Æ 0

=∆ m Ø log (N≠mS1)!
D!(N≠mS1≠D)!

=∆ m Ø log (N≠mS1)D

D! [
(N≠mS1)!

(N≠mS1≠D)! ¥ (N ≠ mS1)D]

=∆ m Ø D log(N≠mS1) ≠ log(D!)

=∆ m Ø D log N(1 ≠
mS1
N

) ≠ log(D!)

=∆ m Ø D log N + D log(1 ≠
mS1
N

) ≠ log(D!)

Since log(1 ≠ x) ¥ ≠x for small x; we assume
mS1
N

to be small:

=∆ m Ø D log N ≠
mDS1

N
≠ log(D!)

=∆ m
3

1 + DS1
N

4
Ø D log N ≠ log(D!)

=∆ m
3

1 + DS1
N

4
Ø log ND

D!
=∆ m

3
1 + DS1

N

4
Ø log N !

D!(N ≠ D)! [ND
¥

N !
(N≠D)! ]

=∆ m Ø
log

1
N
D

2

1 + DS1
N
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C.2 Proof of Theorem 6.2
Proof. Since at least S2 predicates are discarded during each causal predicate discovery,

and there are D causal predicates, we compute the upper bound of the number of required

interventions:

Dÿ

i=1
log

3
N ≠ (i ≠ 1)S2

4

=
Dÿ

i=1
log

3
N

1
1 ≠

(i ≠ 1)S2
N

24

=
Dÿ

i=1
log N +

Dÿ

i=1
log

3
1 ≠

(i ≠ 1)S2
N

4

¥

Dÿ

i=1
log N ≠

Dÿ

i=1

(i ≠ 1)S2
N

[log(1 ≠ x) ¥ ≠x for small x]

=D log N ≠
D(D ≠ 1)S2

2N
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