
A Sliding Window-Based Algorithm for Detecting Leaders
from Social Network Action Streams

Quazi Marufur Rahman∗, Anna Fariha∗, Amit Mandal∗, Chowdhury Farhan Ahmed∗, and Carson K. Leung†
∗Department of Computer Science and Engineering, University of Dhaka, Bangladesh

Email: maruf.csdu@gmail.com, anna@cse.univdhaka.edu, amitducse17@gmail.com, farhan@cse.univdhaka.edu
†Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada

Email: kleung@cs.umanitoba.ca

Abstract—Influential users or leaders in a social network
play important roles in viral marketing by spreading news
quickly to a large number of people. Hence, various orga-
nizations aim to discover these leaders as campaign targets
for advertisement so as to maximize customer reachability.
Existing approaches detect leaders from a static social network.
However, as social networks are evolving, detecting leaders
from dynamic streams of social network data is in demand. In
this paper, we propose a sliding window-based leader detection
(SWLD) algorithm for discovering leaders from streams of
user actions in social networks. Experimental results show that
SWLD is accurate, requires short runtime and a small amount
of memory space.

Keywords-Web intelligence; social network mining; data
stream mining

I. INTRODUCTION

Social network (SN) services (e.g., Facebook, Google+,

Twitter) are the platforms to build social community among

users who share common interests or real-life connections

(e.g., friendships). These services allow users to interact with

each other as friends. These users and their connections can

be captured in an undirected graph G = (V,E)—where

(i) V captures users and (ii) E captures their connections—

in which Big social network analytics and mining [7], [9],

[10], [13] can be applied for finding useful patterns.

When a user u shares some interesting information in a

social network, some of his friends (say, users v1 and v2)

may then share the same information (e.g., v1 and v2 may

retweet u’s tweets). In this action, the user (e.g., u) who

influences other users in the network can be considered as a

leader. Finding these leaders from the social network is in

demand because they play a vital role in real-life marketing

campaigns by distributing news in the network within a short

time span. Common techniques to find these leaders include

influence path mining, which also mines how influences

propagate in a social network. Specifically, for users u and

v connected in a social network, if a user v performs an

action a after u performing A, then u is considered to be

influential as he influences v to perform a. In such a case,

a directed edge u
a→ v denotes the the influence path from

u to v for that particular action a. A user is considered to

be a leader in a network if he influences more than a user-

specified number of users.

A recent algorithm [12] for leader discovery uses a static
social network graph, together with a static user action

log. However, as social networks keep evolving, it is more

realistic to use a dynamic graph. Hence, our key contribution

of this paper is our proposal of a new algorithm called

SWLD, which uses a sliding window for leader detection

from dynamic streams of user actions.

The remainder of this paper is organized as follows. The

next section presents related works. Section III describes

our sliding window-based leader detection algorithm. Ex-

perimental results and conclusions are given in Sections IV

and V, respectively.

II. RELATED WORKS

Regarding works related to our proposal of a sliding
window-based algorithm for leader detection from dynamic
streams of user actions in a social network, Matsumura and

Sasaki [14] discovered leadership behaviors from human in-
fluence networks. Song et al. [6] proposed the InfluenceRank

algorithm to detect opinion leaders from blogs; they also

found the importance of the propagated information spread

through the network. Goyal et al. [2] used a sliding window-

based algorithm to discover leaders from community actions.

Bodendorf and Kaiser [1] used a text mining approach to

detect leaders based on the shared text data in the network.

Esslimani et al. [4] detected reliable leaders from behavioral
networks by considering the high connectivity and influence

propagation potential of users in the network. Lee et al.

[8] proposed a network-flow based influence propagation

model for static social networks. Braun et al. [3] proposed a

tree-based algorithm for mining diverse users from a social

network. Leung et al. [11] interactively mined influential

friends from social networks that are updated incrementally
(than from dynamic streams of user actions). Duan et al. [15]

applied a user clustering and sentiment analysis technique
to identify opinion leaders. Fariha et al. [5] focused on

mining frequent interaction patterns (than users). Recently,

the Apriori Probabilistic Path Mining (APPM) algorithm

[12] was proposed to mine a static social network graph and

2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-1-4673-9618-9/15 $31.00 © 2015 IEEE

DOI 10.1109/WI-IAT.2015.24

133

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 27,2020 at 04:22:46 UTC from IEEE Xplore. Restrictions apply.

Figure 1. A propagation graph of 11 users who perform the same action
in a social network.

Table I
LENGTH-2 & LENGTH-3 INFLUENTIAL PATHS INVOLVING USER F

2-length paths 3-length paths
1. A → B → F 1. A → B → F → G
2. B → F → G 2. A → B → F → I
3. B → F → I 3. A → B → F → J
4. B → F → J 4. B → F → G → H
5. C → F → G 5. B → F → J → K
6. C → F → I 6. C → F → G → H
7. C → F → J 7. C → F → J → K
8. D → E → F 8. D → E → F → G
9. E → F → G 9. D → E → F → I
10. E → F → I 10. D → E → F → J
11. E → F → J 11. E → F → G → H
12. F → G → H 12. E → F → J → K
13. F → J → K

a dynamic user action log to detect leaders. However, these

aforementioned related works do not use sliding window nor

do they handle dynamic streams of user actions in the social

network.

III. OUR SLIDING WINDOW-BASED LEADER

DETECTION (SWLD) ALGORITHM

Our sliding window-based leader detection (SWLD) algo-

rithm discovers leaders from (i) a social network represented

in an undirected graph G = (V,E) and (ii) an action log

capturing streams of user actions chronologically in the

form 〈u, a, t〉 (which represents that a user u performs an

action a at time t). Based on the contents of this action log, a

propagation graph can be formed. Specifically, for a directed

edge (u1 → u2) ∈ E from user u1 to u2 in the social

network represented in G = (V,E), any pair 〈u1, a, t1〉 and

〈u2, a, t2〉 from the action log such that t1 < t2 represent

that u1 performs an action a at time t1 and u2 performs

the same action a at a later time t2. By considering all

possible pairs of the same action, we obtain a propagation

graph. A length-n influence path can be formed by selecting

a connected path involving (n+1) vertices in the propagation

graph. Then, a leader u is a length-n influential user who

(i) has led Ln(u) ≥ θ out of Nn(u) propagations and (ii) has

had a leading degree count Dn(u) =
Ln(u)
Nn(u)

≥ δ > 0, where

(i) Ln(u) is the frequency of length-n influence paths such

that u starts the propagation, (ii) Nn(u) is the frequency of

length-n influence paths such that involving u, and (iii) θ
and δ are user-specified thresholds.

Example 1: F → G → H is one of the 13 2-length

influence paths involving 3 vertices in Figure 1. See Table I.

Among all 11 users, user F involves in all length-2 influence

paths and leads L2(F)=2 of them (namely, F → G → H

and F → J → K). So, D2(F)= 2
13 . Similarly, A → B →

F → G is one of the 12 length-3 influence paths involving

4 vertices. User B involves in five length-3 influence paths

and leads L3(B)=2 of them (namely, B → F → G → H
and B → F → J → K). So, D3(B)= 2

5 .
Our SWLD algorithm consists of two phases. In the first

phase, regardless of the size of the stream of the action

log, SWLD captures contents of the action log in a sliding

window of size π. Hence, SWLD ensures there are at least

M user actions to be kept in the sliding window, where

M is a user-specified threshold. As SWLD uses a sliding

window, it requires much smaller memory space than that

for the entire action log.
In the second phase, SWLD calculates the leading degree

count Dn(u). To speed up the mining process, SWLD avoids

enumerating all influence paths by scanning the propagation

graph once to detect both forward neighbors FN(u) & back-

ward neighbors BN(u) and compute their associated forward

result FR[u][n] & backward result BR[u][n] for each user u.

Here, for a directed edge u → v in the propagation graph,

(i) v is a forward neighbor of u (i.e., v ∈ FN (u)) and

(ii) u is a backward neighbor of v (i.e., v ∈ BN (u)).
The forward result FR[u][n] is a 2-dimensional structure

capturing Ln(u), i.e., frequency of length-n influence paths

such that user u starts the propagation paths; the backward

result BR[u][n] is a similar 2-dimensional structure except

that it captures the frequency of length-n influence paths

such that user u ends the propagation paths. Here, FR[u][1]

= |FN (u)| and BR[u][1] = |BN (u)|.
Example 2: In Figure 1, FN (F) = {G, I, J} and

BN (F) = {B,C,E}. Hence, L1(F) = FR[F][1] = 3 and

BR[F][1] = 3. Similarly, as BN (I) = {F}, BR[I][1] = 1.
After computing FR[u][1] and BR[u][1] without generat-

ing and storing any influence paths, the remaining entries

in these two structures can be computed by summing the

frequencies of length-(n− 1) paths as follows:

Ln(u) = FR[u][n] =
∑

vi∈FN (u)

FR[vi][n− 1]; (1)

BR[u][n] =
∑

vi∈BN (u)

BR[vi][n− 1]. (2)

Afterwards, Nn(u) can then be computed as follows:

Nn(u) = FR[u][n] + BR[u][n]

+
n−1∑

i=1

(BR[u][i]× FR[u][n− i]). (3)

Example 3: Continue with Example 2. As FN (F) =
{G, I, J}, (i) FR[G][1] = 1, (ii) FR[I][1] = 0, and

(iii) FR[J][1] = 1. So, L2(F) = FR[F][2] = 1+0+1 = 2.

To a further extent, L3(B) = FR[B][3] = FR[F][2] = 2

because FN (B) = {F}.
Similarly, (i) FR[F][3] = 0, (ii) BR[F][1] = 3,

(iii) BR[F][2] = 2, and (iv) BR[F][3] = 0. So,

134

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 27,2020 at 04:22:46 UTC from IEEE Xplore. Restrictions apply.

(a) Frequency of actions for SWLD with 5 different sliding window sizes.

(b) Action frequency for APPM vs. average action frequency for SWLD.

Figure 2. Frequency of actions for APPM vs. SWLD.

N3(F) = FR[F][3] + BR[F][3] + (BR[F][1]×FR[F][2] +

BR[F][2]×FR[F][1]) = 0 + 0 + (3×2 + 2×3) = 12.

Finally, our SWLD algorithm computes the leading degree

count Dn(u) = Ln(u)
Nn(u)

for each available user u in the

current sliding window based on the information stored in

FR[u][n] and BR[F][n]. After taking an average of the

leading degree counts over all potential length n, users with

a high leading degree count is considered to be influential,

i.e., to be a leader. These leaders are detected and return as

an output of our SWLD algorithm.

IV. EXPERIMENTAL RESULTS

To evaluate our SWLD algorithm implemented in C++,

we compared ours with the existing APPM algorithm

[12] using a movie recommendation dataset named Movie-

Lens1—which contains 100000 ratings by 943 users on

1682 movie collected in a period of seven months from

the MovieLens website users—as an action log. Each movie

rating in this dataset is of the form 〈user ID, movie ID, rat-

ing, timestamp〉, where timestamps are UNIX seconds since

1/1/1970 UTC. Each user is assumed to be able see other

user actions (of performing a movie rating). Experiments

were run on an Intel Core i5 machine with 3.20 GHz CPU,

8 GB of RAM, and 64-bit Windows 7 OS. We varied the

size π of the sliding window from 4 hours to 6, 8, 10 and

12 hours.

Figure 2(a) shows the frequency of actions for each sliding

window size π—where π ∈ {4, 6, 8, 10, 12 hours}—for

1http://grouplens.org/datasets/movielens/

Figure 3. Execution time of APPM vs. SWLD.

first 30 days of the MovieLens data containing 179624 in-

teractions among 157 users. We observed that frequency

of entries (i.e., actions) in a sliding window for SWLD

was proportional to the window size. The larger the sliding

window size, the higher was the frequency of actions in

the window. As shown in Figure 2(b), the frequency of

actions for SWLD was observed to be smaller than that

for APPM because APPM operated on the entire dataset

whereas SWLD operated on fewer π hours of data at any

given time. Hence, SWLD required much less memory space

than APPM.

Besides memory consumption, we also compared the

execution time of APPM with that of SWLD using the five

aforementioned different window sizes. The result shown in

Figure 3 reveals that SWLD performed faster than APPM

because APPM operated on the entire dataset whereas

SWLD operated on fewer π hours of data. Moreover, SWLD

effectively relies on FR[u][n] and BR[u][n] to compute the

influence counts without explicitly enumerating all influence

paths as in APPM. Hence, the execution time of SWLD was

shorter than that of APPM. As the window size increased,

we chose 2, 3, 4, 5 and 6 as minimum entries (or actions)

for the window sizes π=4, 6, 8, 10 and 12 hours, respec-

tively. During the execution of π=12 hours, SWLD pruned

out all windows having less than 6 actions. Consequently,

SWLD with π=12 hours operated on fewer windows due to

pruning. It required shorter execution time than SWLD with

π=4 hours.

In addition to memory consumption and execution time,

we also measured the accuracy of our SWLD algorithm.

Specifically, we measured the precision (i.e., fraction of

retrieved users being influential) and recall (i.e., fraction of

influential users have been retrieved). Figure 4(a) shows the

precision of SWLD with five different window sizes when

using an influence probability threshold 2.7% in detecting

length-1 influential users. The results show that SWLD

with π=12 hours led to higher precision than that with

π=4 hours when detecting length-1 influential users (i.e.,

length-1 leaders) because the larger the window size, the

higher was the number of influential users captured in the

same window. Similar comments apply to the detection

of length-2 influential users (i.e., length-2 leaders). See

Figure 4(b). Moreover, as shown in Figure 4(c), SWLD with

π=12 hours led to higher recall than that with π=4 hours

135

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 27,2020 at 04:22:46 UTC from IEEE Xplore. Restrictions apply.

(a) Precision for length-1 influential users. (b) Precision for length-2 influential users.

(c) Recall for length-1 influential users. (d) Recall for length-2 influential users.

Figure 4. Precision and recall.

when detecting length-1 influential users. Figure 4(d) shows

the recall for detecting length-2 influential users. The results

show that the recall for SWLD with π=12 hours was almost

the twice that for SWLD with π=4 hours.

V. CONCLUSIONS

In this paper, we proposed an algorithm called SWLD,

which uses a sliding window for leader detection. Specif-

ically, SWLD detects the most influential users, who can

initiate and participate in lots of influence paths, from

dynamic streams of actions performed by users in a social

network. The algorithm avoids the expensive enumeration

of all possible influence paths by using a dynamic program-

ming approach to compute frequency counts of length-n
influential users based on those of length-(n− 1) influential

users and capturing the results in two 2-dimensional struc-

tures. Experimental results show that SWLD is accurate,

requires short runtime and a small amount of memory space.

ACKNOWLEDGMENT

This project is partially supported by NSERC (Canada) and
University of Manitoba.

REFERENCES

[1] F. Bodendorf & C. Kaiser, “Detecting opinion leaders and
trends in online social networks,” in Proc. ICDS 2009, pp. 65–
68.

[2] F. Bonchi, L.V.S. Lakshmanan, & A. Goyal, “Discovering
leaders from community actions,” in Proc. ACM CIKM 2008,
pp. 499–508.

[3] P. Braun, A. Cuzzocrea, C.K. Leung, R.K. MacKinnon, &
S.K. Tanbeer, “A tree-based algorithm for mining diverse
social entities,” Procedia Computer Science, 35: 223–232,
2014.

[4] A. Brun, A. Boyer, & I. Esslimani, “Detecting leaders in
behavioral networks,” in Proc. ASONAM 2010, pp. 281–285.

[5] A. Fariha, C.F. Ahmed, C.K. Leung, M. Samiullah, S. Pervin,
& L. Cao, “A new framework for mining frequent interaction
patterns from meeting databases,” Engineering Applications
of Artificial Intelligence, 45: 103–118, 2015.

[6] K. Hino, B. Tseng, X. Song, & Y. Chi, “Identifying opinion
leaders in the blogosphere,” in ACM CIKM 2007, pp. 971–
974.

[7] C. Hou, X. Yuan, C. Chen, & D. Wu, “Exploiting social media
for stock market prediction with factorization machine,” in
Proc. IEEE/WIC/ACM WI-IAT 2014, vol. 1, pp. 142–149.

[8] W. Lee, C.K. Leung, J.J. Song, & C.S.-H. Eom, “A network-
flow based influence propagation model for social networks,”
in Proc. CGC (SCA) 2012, pp. 601–608.

[9] C.K. Leung, “Big data mining and analytics,” in Encyclopedia
of business analytics and optimization, pp. 328–337, 2014.

[10] C.K. Leung & F. Jiang, “Big data analytics of social networks
for the discovery of ‘following’ patterns,” in Proc. DaWaK
2015, pp. 123–135.

[11] C.K. Leung, S.K. Tanbeer, & J.J. Cameron, “Interactive
discovery of influential friends from social networks,” Social
Network Analysis and Mining, 4(1): art. 154, 2014.

[12] Z.-L. Lin, A.L.P. Chen, M.F-. Tsai, & C.-W. Tzeng, “Discov-
ering leaders from social network by action cascade,” Social
Network Analysis and Mining, 4(1):art. 165, 2014.

[13] Y. Long, V.O.K. Li, & G. Niu, “Temporal behavior of
social network users in information diffusion,” in Proc.
IEEE/WIC/ACM WI-IAT 2014, vol. 2, pp. 150–157.

[14] N. Matsumura & Y. Sasak, “Understanding leadership behav-
ior in human influence network,” in Proc. IEEE/WIC/ACM
WI-IAT 2006, pp. 95–102.

[15] J. Zeng, B. Luo, & J. Duan, “Identification of opinion leaders
based on user clustering and sentiment analysis,” in Proc.
IEEE/WIC/ACM WI-IAT 2014, vol. 2, pp. 377–383.

136

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 27,2020 at 04:22:46 UTC from IEEE Xplore. Restrictions apply.

