
Rapidash: Efficient Detection of Constraint Violations
Zifan Liu

University of Wisconsin-Madison
zifan@cs.wisc.edu

Shaleen Deep
Microsoft

shaleen.deep@microsoft.com

Anna Fariha
University of Utah
afariha@cs.utah.edu

Fotis Psallidas
Microsoft

Fotis.Psallidas@microsoft.com

Ashish Tiwari
Microsoft

ashish.tiwari@microsoft.com

Avrilia Floratou
Microsoft

Avrilia.Floratou@microsoft.com

ABSTRACT

Denial Constraint (DC) is a well-established formalism that cap-
tures a wide range of integrity constraints commonly encountered,
including candidate keys, functional dependencies, and ordering
constraints, among others. Given their significance, there has been
considerable research interest in achieving fast detection of DC
violations, especially to support activities related to data explo-
ration and preparation. Despite the significant advancements in
the field, prior work exhibits notable limitations when confronted
with large-scale datasets: the current state-of-the-art algorithm
demonstrates a quadratic (worst-case) time and space complexity
relative to the dataset’s number of rows. In this paper, we establish
a connection between orthogonal range search and DC violation
detection. We then introduce Rapidash, a novel algorithm that
demonstrates near-linear time and space complexity, representing
a theoretical improvement over prior work. To validate the effec-
tiveness of our algorithm, we conduct comprehensive evaluations
on both open-source and real-world production datasets, with our
production datasets notably being an order of magnitude larger
than the datasets employed in prior studies. Our results reveal that
Rapidash achieves up to 84× faster performance compared to state-
of-the-art approaches while also exhibiting superior scalability.

PVLDB Reference Format:

Zifan Liu, ShaleenDeep, Anna Fariha, Fotis Psallidas, Ashish Tiwari, andAvrilia
Floratou. Rapidash: Efficient Detection of Constraint Violations. PVLDB,
17(1): 2009-2021, 2024.

1 INTRODUCTION

Integrity constraints play a pivotal role in a wide range of data
analysis tasks such as data exploration [3, 18], data cleaning and
repair [21, 38], data synthesis [19], and query optimization [30]. By
enforcing integrity constraints, organizations can ensure reliability,
consistency, and accuracy of their data, enabling them to make
informed decisions, derive meaningful insights, and extract maxi-
mum value from their datasets. One class of constraints that is of
particular interest is Denial Constraints (DCs) [15]. DCs are appeal-
ing as they are expressive enough to capture many useful integrity
constraints such as functional dependencies, ordering constraints,
unique column combinations [4, 40], etc.

Example 1. Table 1 shows a sample of a tax dataset that contains

information about tax rates for people in different US states. The

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org.

Table 1: Tax rates for people in different states in the USA.

SSN Zip Salary FedTaxRate State StateCode

𝑡1 100 10108 3000 20% New York 01
𝑡2 101 53703 5000 15% Wisconsin 02
𝑡3 102 53703 6000 20% Wisconsin 02
𝑡4 103 53703 4000 22% Wisconsin 02

following two rules are true about this dataset: 𝐶1 : SSN column is a

candidate key;𝐶2 : Zip→State is a functional dependency. However,
the rule𝐶3 : “for all people in the same state, if person𝐴 has an equal

or larger salary than person 𝐵, then 𝐴 should have an equal or larger

tax rate than 𝐵”—is not true since the tuples 𝑡2 and 𝑡3 have a higher
value for Salary than the tuple 𝑡4 but have tax rates lower than 22%

(15% and 20%, respectively). Each of these rules can be expressed as

DCs as we will see in Section 2.

We focus on the detection of DC violations on a given dataset.
The process involves verifying whether a given DC is satisfied on a
specific dataset (we refer to this task as DC verification in Section 2),
and is particularly valuable during data exploration, where analysts
aim to quickly ascertain the presence or absence of specific patterns
within the dataset. For example, a data analyst, while exploring a
dataset for the first time, might want to quickly detect which of
the constraints (rules) presented in Example 1 hold on the dataset.
Additionally, in case a constraint does not hold on the dataset,
the analyst might want to enumerate a few tuples that violate the
constraint (see violation enumeration in Section 2). In Example 1,
there are two violationswith respect to𝐶3: (𝑡2, 𝑡4) and (𝑡3, 𝑡4). These
violations can be fed into upstream data cleaning tools [17, 20, 38],
which can be used to repair data inconsistencies. Thus, DC violation
detection serves as a valuable tool in assessing dataset quality [18].

Limitations of existing work. In recent years, substantial ad-
vancements have happened in the field of DC violation detec-
tion [35, 36]. However, our practical experience in applying some
of these approaches to real-world production datasets has unveiled
noteworthy limitations of existing methods (refer to Section 5 for
comprehensive details). In particular, the best-known algorithm,
Facet [35], has a worst-case time and space complexity Ω(|R|2)
on a given relation R with cardinality |R| (number of rows), which
makes it infeasible for large-scale datasets.

Our approach. In this work, we make the connection between the
problem of DC violation detection and orthogonal range search [10,
11]. Given a set of multidimensional points, orthogonal range search
allows efficient searching of all points that lie within an axis-aligned,
multidimensional rectangle. The key insight of our work is that

1

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

range search can be utilized by modeling the tuples in the relation
as multidimensional points. We illustrate this with an example.

Example 2. Consider the rule𝐶3 from Example 1 and the three tuples

with State=Wisconsin (𝑡2, 𝑡3, and 𝑡4) from Table 1. The three tuples

can be visualized as two-dimensional points when considering the

columns Salary and FedTaxRate (Figure 1a), which are of interest

for rule𝐶3. Let us fix our attention on tuple 𝑡4 that has Salary = 4000
and FedTaxRate = 22. According to 𝐶3, all tuples that have Salary
≥ 4000, must also have a FedTaxRate ≥ 22. In other words, if we are

able to find a tuple that has Salary ≥ 4000 but a strictly smaller tax

rate than 22, we will have found a pair that violates the rule 𝐶3. The
shaded rectangular area in Figure 1b encodes precisely this criteria:

the shaded rectangular area represents the region with Salary ≥ 4000
but FedTaxRate < 22. In our example, both 𝑡2 and 𝑡3 lie in the shaded
region and thus violate 𝐶3 with respect to 𝑡4.

To leverage this observation, we would need to employ a data
structure that allows fast searching of points for any given multidi-
mensional axis-parallel rectangle. This is precisely the orthogonal
range search problem [10, 11] for which there exist practical data
structures. Making the connection between DC violation detec-
tion and orthogonal range search opens up new possibilities in
addressing this challenge, potentially surpassing the capabilities of
state-of-the-art methods in violation detection.

In this work, we take the first step in exploring the relationship
between these two domains. We demonstrate that there are various
challenges in realizing our vision. First, taking an arbitrary DC
(formally defined in Section 2) and translating it into an instance
of the orthogonal range search problem is not trivial. The com-
plexity arises from having to support constraints with complex
structures. Our work is the first one to show how different classes
of denial constraints can be mapped into instances of the orthog-
onal range search problem. Furthermore, we show that directly
applying vanilla range search data structures (i.e. without any of
the optimizations proposed in this work) leads to poor performance.
Figure 2 shows the total running time of verifying four practical
DCs from [37] on the TPC-H dataset that has been used by several
prior works related to DCs1. We find that using vanilla range search
is 30× worse than Facet (the state-of-the-art) and 100× worse than
Rapidash (our system).

In light of these issues, a principled study to design algorithms
and optimizations that translate theoretical models for orthogonal
range search into tangible performance improvements is imperative.
In this work, we propose novel optimizations that provably reduce
the time complexity over vanilla range search.

Our contributions. Our key contributions are the following:

(1) Making the connection between orthogonal range search and
violation detection and taking the first step in exploring the
interplay between these two domains.

(2) A novel DC violation detection algorithm. We perform a fine-
grained classification of DCs and show how they can bemapped
to the orthogonal range search problem. We present a near-
optimal algorithm Rapidash for verifying a given DC on a
dataset R by leveraging foundational research in the domain of
orthogonal range search [10, 32, 42]. Our proposed algorithm

1See Section 5 for a more detailed analysis of the constraints.

Fe
dT

ax
Ra

te

Salary
4000 5000 6000

10

15

20
t4 = (4000, 22)

t2 = (5000, 15)

t3 = (6000, 20)

(a)

Fe
dT

ax
Ra

te

Salary
4000 5000 6000

10

15

20
t4 = (4000, 22)

t2 = (5000, 15)

t3 = (6000, 20)

(b)

Figure 1: Geometric representation of the data for Example 2.

(a) Salary and FedTaxRate for tuples with State = Wisconsin
in table Tax. (b) The shaded area contains the tuples violating

𝐶3 with Salary ≥ 𝑡4 .Salary and FedTaxRate < 𝑡4 .FedTaxRate.

104 105

Time in milliseconds

Vanilla
range search

Facet

Rapidash

Figure 2: Total time for verification of four DCs on TPC-H
dataset (see Table 3) using different approaches.

has a time complexity of𝑂 (|R| log𝑓 (𝜑) |R|), where 𝑓 (𝜑) is a pa-
rameter that is dependent only on the characteristics of the DC
𝜑 and not on the input dataset R. This represents a significant
improvement over the best-known verification algorithm [35],
which has a worst-case quadratic complexity (both time and
space). We also show that in certain scenarios, Rapidash can
run in linear space while still achieving provably sub-quadratic
running time.

(3) Experimental evaluation. We conduct an extensive empirical
evaluation over both open-source and production datasets, no-
tably the latter being an order of magnitude larger than the
datasets employed in prior studies. We show that Rapidash
achieves up to 84× speedup over the state-of-the-art [35] for
DC violation detection. Additionally, our findings show that
Rapidash exhibits better scalability over previous work.

2 BACKGROUND AND PROBLEM STATEMENT

Relations. LetR be the input relation and vars(R) denote the finite
set of attributes (i.e. the columns). We use |R| to denote the cardi-
nality (number of tuples) of R. We will use A, B to denote attributes,
s and t to denote tuples, and t.A to denote the value of attribute A
of tuple t. Throughout the paper, we assume bag semantics where
the relation can have the same tuple present multiple times.

Denial Constraints (DCs). DCs express predicate conjunctions
to determine conflicting combinations of column values. They gen-
eralize other integrity constraints, including unique column com-
binations, functional dependencies, and order dependencies. We
define a predicate 𝑝 as the expression s.A op t.B where s, t ∈ R,
op ∈ {=,≠, ≥, >, ≤, <} and A,B ∈ vars(R). We will refer to ≠ as dis-
equality and ≥, >, ≤, < as inequalities. All operators except equality

2

will be collectively referred to as non-equality operators. A DC 𝜑 is
a conjunction of predicates of the following form:

∀s, t ∈ 𝑅, 𝑠 ≠ 𝑡 : ¬(𝑝1 ∧ · · · ∧ 𝑝𝑚)

A tuple pair (s, t) is said to be a violation if all predicates in 𝜑
evaluate to true.Wewill say that𝜑 holds onR if there is no violation,
i.e., the DC is exact. An exact DC is said to be minimal if no proper
subset of its predicates forms another exact DC. A predicate is said
to be homogeneous if it is of the form s.A op t.A or s.A op s.B, i.e.
it is either defined over a single column 𝐴 or it is defined over a
single tuple 𝑠 , but two different columns; and heterogeneous if it
is of the form s.A op t.B. We will refer to s.A op t.A as row-level
homogeneous predicate since it is comparing across two rows.

Since most DCs of interest contain only row-level homogeneous
predicates (such as ordering dependencies [40], functional depen-
dencies, candidate keys, etc.), for simplicity, we will use the term
homogeneous DC to refer a DC that contains only row-level ho-
mogeneous predicates. A heterogeneous DC can contain all types
of predicates. Without loss of generality, we will assume that each
column of R participates in at most one predicate of a homoge-
neous DC. We will use varsop (𝜑) to denote the set of columns in a
homogeneous DC that appear in some predicate with the operator
op. A DC may also contain column-level homogeneous predicates
of the form s.A op s.B. However, in the interest of space, we do not
discuss them in this paper given that they are not very common in
practice2 and we defer the interested reader to [2].

Example 3. Continuing from Example 1, each constraint can be

expressed using a DC as follows: (1) 𝜑1 : ¬(s.SSN = t.SSN); (2)
𝜑2 : ¬(s.Zip = t.Zip ∧ s.State ≠ t.State); (3) 𝜑3 : ¬(s.State =

t.State ∧ s.Salary ≤ t.Salary ∧ s.FedTaxRate > t.FedTaxRate).
The universal quantification is left implicit. Let us fix our attention

to 𝜑3. Note that vars= (𝜑3) = {State}, vars≤ (𝜑3) = {Salary}, and
vars> (𝜑3) = {FedTaxRate}. All the DCs except 𝜑3 hold on the rela-

tion Tax defined in Table 1 and are minimal exact DCs.

We are now ready to state the problem considered in the paper.
Problem Statement. Given a relation R and a DC 𝜑 , determine:
(1) whether 𝜑 holds on R (DC verification).
(2) enumerate all the tuple pairs that violate the constraint (viola-

tion enumeration).
All complexity results in this paper are based on the standard

RAM model [24] of computation.

3 LIMITATIONS OF EXISTING SOLUTIONS

We now discuss the limitations of Facet for the problems we aim
to address. In Section 5, we experimentally demonstrate some of
these limitations using real-world datasets.

We begin by giving a brief description of the key ideas underly-
ing Facet [35], the state-of-the-art system for DC violation de-
tection. Let tids denote a set of tuple identifiers. All tuples in
relation R can be represented as tidsR = {t1, . . . , t |R | }. An or-
dered pair (tids1, tids2) represents all tuple pairs (s, t) such that
s ∈ tids1, t ∈ tids2, s ≠ t. Facet processes one predicate of the DC
at a time, taking a set of ordered pairs (tids1, tids2) as input and

2None of the experimental evaluations in [34–37] contain a DC with column-level
homogeneous predicates.

generating another set of ordered pairs (tids′1, tids
′
2) that represent

tuple pairs that satisfy the predicate as the output. This process is
known as refinement and Facet refines each predicate using spe-
cialized algorithms for each operator. The output of a refinement is
consumed as the input for refining the next predicate. At the end
of processing all the predicates, we get all tuple pairs that satisfy
all the predicates, and, thus, represent the violations.

Example 4. Consider the DC𝜑3 : ¬(s.State = t.State∧s.Salary ≤
t.Salary∧ s.FedTaxRate > t.FedTaxRate). The refinement of predi-

cate𝑝1 : s.State = t.State produces the set {({𝑡2, 𝑡3, 𝑡4} , {𝑡2, 𝑡3, 𝑡4})}
with a single ordered pair. This ordered pair represents the set of tu-

ple pairs: (𝑡2, 𝑡3), (𝑡2, 𝑡4), (𝑡3, 𝑡2), (𝑡3, 𝑡4), (𝑡4, 𝑡2), (𝑡4, 𝑡3) since each
of them satisfy 𝑝1. Next, this singleton set is provided as input to

predicate 𝑝2 : s.Salary < t.Salary which produces a new set

{({𝑡4}, {𝑡2, 𝑡3}), ({𝑡2}, {𝑡3})} since the Salary for 𝑡4 is smaller than

both 𝑡2 and 𝑡3 but Salary for 𝑡2 is smaller than 𝑡3 only. Finally, we
process predicate 𝑝3 : (s.FedTaxRate > t.FedTaxRate). The output
of the refinement by predicate 𝑝3 would be {({𝑡4}, {𝑡2, 𝑡3})} which
represents the two violations of 𝜑3: (𝑡4, 𝑡2) and (𝑡4, 𝑡3).

Facet contains algorithms that are custom-designed for the differ-
ent predicate structures. We now highlight the three key sources
of inefficiency in Facet:
(1) Complexity of IEJoin. Facet uses IEJoin [29] as the algorithm
for processing inequalities. The algorithm is designed to process
two inequalities at a time and operates on two sets of tuple pairs
simultaneously. The runtime complexity of IEJoin is𝑂 (|𝑅 | · |𝑆 |) for
processing inequality joins between two relations 𝑅 and 𝑆 (although
its space complexity is only 𝑂 (|𝑅 | + |𝑆 |)). As noted in [35], IEJoin
is severely under-performing for predicates of low selectivity.
(2) Complexity of Hash-Sort-Merge. Since IEJoin is designed
for at least two predicates with inequality, Facet proposed two
novel optimizations to process DCs with a single inequality pred-
icate: Hash-Sort-Merge (HSM) and Binning-Hash-Sort-Merge
(BHSM). However, it can be shown that both HSM and BHSM still
require a quadratic amount of running time and space in the worst-
case. Similarly, processing of predicates containing disequality also
requires quadratic time and space in the worst-case. In the experi-
mental evaluation, we will demonstrate that this is not just a theo-
retical argument but manifests itself in reality even for constraints
with as few as two predicates.
(3) Since Facet processes one predicate at a time, it needs to make
at least one full pass over the dataset. As we will see later, this is
not always necessary for DC verification. Even for enumeration,
we will show there exists efficient ways to process the constraints.

4 RAPIDASH DESIGN AND ANALYSIS

In this section, we describe the general ideas underlying Rapidash
followed by specific improvements and optimizations. Our algo-
rithm builds appropriate data structures to store the input data
(leveraging existing work on orthogonal range search), and issues
appropriate queries to detect violations of a given DC. For ease of
exposition and aiding readability, we will focus on the problem of
DC verification throughout this section (item (1) in our problem
statement in Section 2). At the end of the section, we point out how
our main algorithm can be readily modified in a minimal way to

3

Algorithm 1: DC verification for homogeneous con-
straints with eqality predicates
Input :Relation R, Homogeneous DC 𝜑 with only equality

predicates.
Output :True/False

1 𝐻 ← empty hash table
2 foreach 𝑡 ∈ R do

/* Project tuple 𝑡 on the columns participating in

equality predicates */

3 𝑣 ← 𝜋
vars= (𝜑) (𝑡)

4 if 𝑣 ∉ 𝐻 then

5 𝐻 [𝑣] ← 0
6 𝐻 [𝑣] ← 𝐻 [𝑣] + 1
7 if 𝐻 [𝑣] > 1 then

/* Hash collision – violation detected */

8 return False

9 return True

support violation enumeration (item (2) in the problem statement).
We defer a detailed description to the Appendix in [2].

4.1 Foundation

Before we delve into the details of our proposed algorithm and
its relationship to orthogonal range search, we will provide some
intuition behind the design of the algorithm taking as an exam-
ple the simplest scenario: homogeneous constraints with equality
predicates only. The constraint 𝜑1 : ¬(s.SSN = t.SSN) presented
in the previous section is a qualifying constraint. The verification
algorithm should return True over a relation R, when SSN is a can-
didate key. If at least one pair of tuples in R shares the same SSN
value, then the algorithm should return False.

To evaluate whether such a tuple exists, we can incrementally
populate a hash table tuple-by-tuple. The intuition is that if two
tuples fall in the same hash partition then they have the same SSN
value, and thus, we have identified a violation. The steps are pre-
sented in Algorithm 1. For each new tuple, we extract the SSN value
and check whether it already exists in the hash table. If not, then we
create a new entry with an associated count of 1. If there is already
an entry then we increase the count by 1. If the count becomes
greater than 1, we have identified two tuples with same SSN value
and we return False. For example, in Table 1, the algorithm would
create 4 hash table entries (one per SSN value), each with count
1, and thus, the constraint would evaluate to True. The algorithm
works similarly with constraints having more than one equality
predicates. This algorithm is straightforward and easy to under-
stand, yet it grows more complex with the inclusion of non-equality
predicates. It is at this juncture that orthogonal range search be-
comes relevant. Before we dive deeper into these scenarios, we will
first provide some background on orthogonal range search.

4.2 Orthogonal Range Search

In this section, we present some background on orthogonal range
search [10, 11]. Given a totally ordered domain N, let 𝐴 ⊆ N𝑘 ,
for some 𝑘 ≥ 1, be a set of size 𝑁 . Let L = (ℓ1, . . . , ℓ𝑘) and U =

(𝑢1, . . . , 𝑢𝑘) be such that L,U ∈ N𝑘 and ℓ𝑖 ≤ 𝑢𝑖 for all 𝑖 ∈ [𝑘].

Algorithm 2: DC verification for homogeneous con-
straints with ineqality predicates
Input :Relation R, Homogeneous DC 𝜑 with inequalities.
Output :True/False

1 𝑘 ← #number of columns appearing in inequality predicates
2 𝐻 ← empty hash table
3 foreach 𝑡 ∈ R do

/* Project tuple 𝑡 on the columns participating in

equality predicates */

4 𝑣 ← 𝜋
vars= (𝜑) (𝑡)

5 if 𝑣 ∉ 𝐻 then

6 𝐻 [𝑣] ← new OrthogonalRangeSearchTree(𝑘)
/* Project tuple 𝑡 on the columns participating in

inequality predicates */

7 𝑧 ← 𝜋
vars(𝜑)\vars= (𝜑) (𝑡)

8 if ¬𝐻 [𝑣] .isEmpty() then
/* Evaluate violations through two range search

queries */

9 L,U, L′,U′ ← CreateRangeSearchQueries(z, 𝜙)
10 if 𝐻 [𝑣] .booleanRangeSearch(L,U) ∨

𝐻 [𝑣] .booleanRangeSearch(L′,U′) then

/* Violation detected */

11 return False

/* Insert 𝑧 into the range tree */

12 𝐻 [𝑣] .insert(𝑧)
13 return True

14 procedure CreateRangeSearchQueries(𝑡 , 𝜑)
/* L and U are indexed by the non-equality predicates 𝑝𝑖.

Both are of size k */

15 L← (−∞, . . . , −∞),U← (∞, . . . ,∞)
/* Create range search query (L, U) */

16 foreach inequality predicate 𝑝𝑖 ∈ 𝜑 do

17 if 𝑝𝑖 .op is < or ≤ then

18 U𝑖 ← 𝜋𝑝𝑖 .col (𝑡)
19 if 𝑝𝑖 .op is > or ≥ then

20 L𝑖 ← 𝜋𝑝𝑖 .col (𝑡)
/* Create inverted range search query (L′, U′) */

21 U′ ← L, L′ ← U
22 flip −∞ to∞ and∞ to −∞ in U′ and L′ respectively
23 return L,U, L′,U′

Definition 1. An orthogonal range search query is denoted by

(L,U), and its evaluation over 𝐴 consists of enumerating the set

𝑄 (𝐴) = {𝑎 ∈ 𝐴 |
⋀︂
𝑖∈[𝑘]

ℓ𝑖 op1 𝑎𝑖 op2 𝑢𝑖 }

where op1, op2 ∈ {=, <, ≤}.

In other words, L and U form an axis-aligned hypercube in 𝑘
dimensions, and 𝑄 (𝐴) reports all points in 𝐴 that lie on/within the
hypercube. The Boolean version of the orthogonal range search
problem consists of determining if 𝑄 (𝐴) is empty or not.

Example 5. Consider the Table Tax from Example 1. Let 𝐴 be the

set of two-dimensional points obtained by projecting Tax on Salary
and FedTaxRate. Let L = (3500, 5) and U = (4500, 25). Then, the
orthogonal range query (L,U) is asking for all points such that the

Salary is between 3500 and 4500, and the FedTaxRate is between 5
and 25. In Table Tax, only t4 satisfies the criteria (its values of Salary

4

Fe
dT
ax
Ra
te

Salary
4000 5000 6000

10

15

20
t4 = (4000, 22)

t2 = (5000, 15)

t3 = (6000, 20)

Figure 3: Salary and FedTaxRate for each tuple in Tax. The
grey (upper left quadrant centered at 𝑡2) and blue shaded

areas (lower right quadrant centered at 𝑡2) show the regions

where the tuples that could form a violation with 𝑡2 lie.

and FedTaxRate are 4000 and 22 respectively). Thus, the result of
the orthogonal range search query (L,U) is {(4000, 22)}.

The two most celebrated data structures for orthogonal range
search are range trees and kd-trees [10]. We will review their com-
plexity and trade-offs when analyzing the complexity of our specific
algorithm.

4.3 Verification Algorithm

In this section, we present our verification algorithm that leverages
prior work on orthogonal range search. The algorithm builds on
top of the ideas behind Algorithm 1 but extends them to cover for
homogeneous constraints that contain both equalities and inequal-
ities. Without loss of generality, we will assume that none of the
predicates contain disequality. This assumption will be removed
later. Finally, we assume that the categorical columns in R have
been dictionary-encoded to integers, a standard assumption in line
with prior work [34, 36].

The algorithm preserves the core concepts of Algorithm 1, namely
the use of a hash table and early termination in case of violations.
The primary modification involves incorporating orthogonal range
search indexes to identify violations stemming from inequality
predicates. The algorithm is presented in Algorithm 2.

We first compute the number 𝑘 of columns in inequality pred-
icates (we assume 𝑘 > 0 as Algorithm 1 covers the case where
𝑘 = 0). We then proceed similarly as before: project each tuple on
the columns participating in equality predicates (𝑣 on line 4) and
evaluate whether the resulting tuple has been seen before (line 5).
If not, we create a new hash table entry whose value now, instead
of being an integer counter, is a range search tree of 𝑘 dimensions
(line 6). This tree will be used to index the k-dimensional tuples
containing the columns participating in inequality predicates and
identify violations. Before we further delve into the pseudocode,
we explain the main intuition through an example.

Example 6. Consider the relation Tax from Example 1 and the DC

𝜙3 : ¬(s.State = t.State∧s.Salary ≤ t.Salary∧s.FedTaxRate >

t.FedTaxRate), which contains one equality and two inequality pred-
icates (𝑘 = 2). For simplicity, we will omit the details of how range

search works in this example but instead present it later. Algorithm 2

will first start with the equality predicate, and place t1 in a hash

partition by hashing t1 .State = New York and initiatialize a 2-

dimensional range search tree for that partition (line 6). Since this tree

Table 2: Data structure parameter on input of size 𝑛 [32]. 𝑘 is

the number of dimensions of the points inserted in the tree.

DS Insertion 𝐼 (𝑛) Answering𝑇 (𝑛) Space 𝑆 (𝑛)

Range tree 𝑂 (log𝑘 𝑛) 𝑂 (log𝑘 𝑛) 𝑂 (𝑛 · log𝑘−1 𝑛)
kd-tree 𝑂 (log𝑛) 𝑂 (𝑛1−

1
𝑘) 𝑂 (𝑛)

is empty, we do not perform any violation detection (line 8) and we

insert (t1 .Salary, t1 .FedTaxRate) = (3000, 20) in the tree (line 12).

Next, we process t2, which is placed in a different hash partition

since t2 .State = Wisconsin and we initialize a new range tree for

this partition. As in the previous step, we then insert (t1 .Salary,
t1 .FedTaxRate) = (5000, 15) in the tree (call this step A○). When t3
is processed, it is placed in the same partition as t2 since they have

the same State value.

At this point, we have two tuples in the same hash partition, and

thus we need to consider the inequality predicates in the DC to estab-

lish whether there is a DC violation. This is where the orthogonal

range search tree is leveraged. Such a violation would occur in two sce-

narios: (1) if any tuple in the tree (𝑡2 in this case) has Salary less than
t3 .Salary = 6000 but FedTaxRate more than t3 .FedTaxRate = 20,
or (2) if any tuple in the tree has Salary more than t3 .Salary but

FedTaxRate less than t3 .FedTaxRate.
To identify whether any of the two scenarios above is true, we

perform two orthogonal range search queries using the values of

𝑡3 to probe the index. More specifically, we perform a search with

L = (−∞, 20) and U = (6000,∞) (scenario 1). Then, we also search
in the inverted range L′ = (6000,−∞) and U′ = (∞, 20) (scenario 2).
Since t2 does not lie in the desired range, both range searches return

false. Figure 3 visualizes this result. Since there is no violation, we

insert 𝑡3 (6000, 20) in the tree (call this step B○)

Finally, t4 (highlighted in red in Figure 3) is processed and placed in
the same partition as t2 and t3 because of same value in State column.

We again initiate two range search queries based on 𝑡4 Salary = 4000
and FedTaxRate = 22. The queries would be L = (−∞, 22),U =

(4000,∞) and L′ = (4000,−∞),U′ = (∞, 22). Then, t2 and t3 form a

violation wrt. t4 since both the points represent a higher salary than

4000 but a lower tax rate than 22, and Line 11 returns False.

Algorithm 2 formalizes the process described in the example
above. When it comes to evaluating inequality predicates, we gen-
erate two appropriate range queries based on the values of the
current tuple and the operator type in the inequality predicates
(line 9) and then search the range tree (line 10). If any of the range
search queries returns True, a DC violation is detected and the
algorithm terminates (line 11). Otherwise, the tuple is inserted in
the tree (line 12), and the algorithm continues with the next tuple
in the relation.

Seminal work by Overmars [32] showed that using range trees
and kd-trees, one can design an algorithm with the parameters as
shown in Table 2. We now demonstrate an example of how range
trees are used by Algorithm 2 when performing step A○ and step
B○ in Example 6.

Example 7. In Figure 4, we illustrate insertion and search in a range

tree. The tree is two-dimensional and stores (Salary, FedTaxRate)
points. We show the process of inserting t2, t3 (i.e. performing step A○

5

5000 15
5000 15 6000 20

6000 20

2015

4000 22 5000 15

5000 22

2215

6000 20

2215

22206000 20

I

II III
Insert

(6000, 20)
Insert

(5000, 15)
Insert

(4000, 22)

step B�
<latexit sha1_base64="t8h7yI/v1nztA5+41eEuvug1RG0=">AAACJnicdVDLSgMxFM34rPVVHztBg0VwIWWmanVZdONSwarQGUomva2hmQfJHbEMs/RfBLcKfoU7EXfu3fgJpq2CzwNJDvec3Ms9fiyFRtt+toaGR0bHxnMT+cmp6ZnZwtz8iY4SxaHGIxmpM59pkCKEGgqUcBYrYIEv4dTv7Pf00wtQWkThMXZj8ALWDkVLcIam1CispK5kqg3URbhELhSX0ExdHTAp6V6WNQpFu7RZ3t7dqtDfxCnZfRSri6PL90evV4eNwpvbjHgSQIhcMq3rjh2jlzKFwrTO8m6iIWa8w9pQNzRkAWgv7S+Suf2nrtq+l/ZmVDa+3BldM/4mbUXKnBBp3/y1X8oCrbuBb5wBw3P9U+sV/9LqCbZ2vVSEcYIQ8sGgViIpRrSXGW0KBRxl1xDGlTCbUH7OFONoks2biD5zoP+Tk3LJ2SyVj5xidZsMkCNLZJWsE4fskCo5IIekRji5IjfkltxZ19aD9Wg9DaxD1sefBfIN1ss7jrWmuw==</latexit>

B�
<latexit sha1_base64="t8h7yI/v1nztA5+41eEuvug1RG0=">AAACJnicdVDLSgMxFM34rPVVHztBg0VwIWWmanVZdONSwarQGUomva2hmQfJHbEMs/RfBLcKfoU7EXfu3fgJpq2CzwNJDvec3Ms9fiyFRtt+toaGR0bHxnMT+cmp6ZnZwtz8iY4SxaHGIxmpM59pkCKEGgqUcBYrYIEv4dTv7Pf00wtQWkThMXZj8ALWDkVLcIam1CispK5kqg3URbhELhSX0ExdHTAp6V6WNQpFu7RZ3t7dqtDfxCnZfRSri6PL90evV4eNwpvbjHgSQIhcMq3rjh2jlzKFwrTO8m6iIWa8w9pQNzRkAWgv7S+Suf2nrtq+l/ZmVDa+3BldM/4mbUXKnBBp3/y1X8oCrbuBb5wBw3P9U+sV/9LqCbZ2vVSEcYIQ8sGgViIpRrSXGW0KBRxl1xDGlTCbUH7OFONoks2biD5zoP+Tk3LJ2SyVj5xidZsMkCNLZJWsE4fskCo5IIekRji5IjfkltxZ19aD9Wg9DaxD1sefBfIN1ss7jrWmuw==</latexit>

 step A�
<latexit sha1_base64="HUOxMhJgkj2MoKn7VSx7+7HP2RI=">AAACJ3icdVDLSgMxFM34tr7qYydIsAgupMxUrV1W3LhUsCp0hpJJb2to5kFyRyzDLPVfBLeKf+FOdOnajZ9g2ir4PJDkcM/Jvdzjx1JotO1na2h4ZHRsfGIyNzU9MzuXn1841lGiONR4JCN16jMNUoRQQ4ESTmMFLPAlnPidvZ5+cg5Kiyg8wm4MXsDaoWgJztCUGnmaupKpNlAX4QK5UFxCM3V1wKSku1lGG/mCXdwsbVe2yvQ3cYp2H4Xq0ujK/eHr5UEj/+Y2I54EECKXTOu6Y8fopUyhML2znJtoiBnvsDbUDQ1ZANpL+5tkbv+pq7bvpb0Z5Y0vd0bXjL9JW5EyJ0TaN3/tl7JA627gG2fA8Ez/1HrFv7R6gq2Kl4owThBCPhjUSiTFiPZCo02hgKPsGsK4EmYTys+YYhxNtDkT0WcO9H9yXCo6m8XSoVOobpMBJsgyWSXrxCE7pEr2yQGpEU6uyA25JXfWtfVgPVpPA+uQ9fFnkXyD9fIO8vKm5A==</latexit>

A�
<latexit sha1_base64="HUOxMhJgkj2MoKn7VSx7+7HP2RI=">AAACJ3icdVDLSgMxFM34tr7qYydIsAgupMxUrV1W3LhUsCp0hpJJb2to5kFyRyzDLPVfBLeKf+FOdOnajZ9g2ir4PJDkcM/Jvdzjx1JotO1na2h4ZHRsfGIyNzU9MzuXn1841lGiONR4JCN16jMNUoRQQ4ESTmMFLPAlnPidvZ5+cg5Kiyg8wm4MXsDaoWgJztCUGnmaupKpNlAX4QK5UFxCM3V1wKSku1lGG/mCXdwsbVe2yvQ3cYp2H4Xq0ujK/eHr5UEj/+Y2I54EECKXTOu6Y8fopUyhML2znJtoiBnvsDbUDQ1ZANpL+5tkbv+pq7bvpb0Z5Y0vd0bXjL9JW5EyJ0TaN3/tl7JA627gG2fA8Ez/1HrFv7R6gq2Kl4owThBCPhjUSiTFiPZCo02hgKPsGsK4EmYTys+YYhxNtDkT0WcO9H9yXCo6m8XSoVOobpMBJsgyWSXrxCE7pEr2yQGpEU6uyA25JXfWtfVgPVpPA+uQ9fFnkXyD9fIO8vKm5A==</latexit>

Boolean Range Query:
L = (4000,�1),U = (1, 22)

<latexit sha1_base64="Rvbvu/Q1OHL3PYItulxKu9wL50A=">AAACPXicdVBPSyMxHM34Z1errl3Fk5dgFRTGkknVuoeFghcPHhS2KnSGkkkzNTSTGZKMUIZ+AT+DH2PvC3tdv4AfwJuIN69mpiuo6A9CHu+95PF7YSq4NgjdOhOTU9Nfvs7MVubmF74tVr8vneokU5S1aSISdR4SzQSXrG24Eew8VYzEoWBn4eCg0M8umdI8kb/MMGVBTPqSR5wSY6ludc+PibkIo/xoBH/CzR2EkAu3fS4jM9xyX8R2KY5ZF2K81a3WUP3H/h7exRDVEWrihlcA3NzBDehZpphaa2Vw5d/9Xj/uVh/9XkKzmElDBdG646HUBDlRhlPBRhU/0ywldED6rGOhJDHTQV7uN/LLq6P6YZCXqW4Z6ZZ5I7hh/T0YJcoeaWBpfv1fTmKth3FoncU6+r1WkB9pncxE+0HOZZoZJuk4KMoENAksqoQ9rhg1YmgBoYrbTSC9IIpQYwuv2IpeeoCfg1Nc9xp1fOLVWrtgPDNgFayBTeCBJmiBQ3AM2oCCa/AX/AM3zh/nzrl3HsbWCef/m2XwZpynZywDrK4=</latexit>

L = (4000,�1),U = (1, 22)
<latexit sha1_base64="Rvbvu/Q1OHL3PYItulxKu9wL50A=">AAACPXicdVBPSyMxHM34Z1errl3Fk5dgFRTGkknVuoeFghcPHhS2KnSGkkkzNTSTGZKMUIZ+AT+DH2PvC3tdv4AfwJuIN69mpiuo6A9CHu+95PF7YSq4NgjdOhOTU9Nfvs7MVubmF74tVr8vneokU5S1aSISdR4SzQSXrG24Eew8VYzEoWBn4eCg0M8umdI8kb/MMGVBTPqSR5wSY6ludc+PibkIo/xoBH/CzR2EkAu3fS4jM9xyX8R2KY5ZF2K81a3WUP3H/h7exRDVEWrihlcA3NzBDehZpphaa2Vw5d/9Xj/uVh/9XkKzmElDBdG646HUBDlRhlPBRhU/0ywldED6rGOhJDHTQV7uN/LLq6P6YZCXqW4Z6ZZ5I7hh/T0YJcoeaWBpfv1fTmKth3FoncU6+r1WkB9pncxE+0HOZZoZJuk4KMoENAksqoQ9rhg1YmgBoYrbTSC9IIpQYwuv2IpeeoCfg1Nc9xp1fOLVWrtgPDNgFayBTeCBJmiBQ3AM2oCCa/AX/AM3zh/nzrl3HsbWCef/m2XwZpynZywDrK4=</latexit>

Boolean Range Query:
L = (�1, 20),U = (7000,1)

<latexit sha1_base64="vdMxMgaqZOfe2qN2ue52parKg/A=">AAACPnicdVDLSgMxFM34tr6q4spNsAoKtWRGpHUhFNy4cKFgVegMJZNm2tBMZkgyQhn6A/6Df+EHCG71A/wA3YkuXZqZKqjohSSHc87N5R4/5kxphB6tkdGx8YnJqenCzOzc/EJxcelMRYkktEEiHskLHyvKmaANzTSnF7GkOPQ5Pfd7B5l+fkmlYpE41f2YeiHuCBYwgrWhWsWqG2Ld9YP0aAD34ea2y0Sg+2XooK0y/NIauVZFCBkuN2y1iiVUMQSqIpgBu4YysLdXc3YQtHMJoVJ9pXflPt2sH7eKb247IklIhSYcK9W0Uay9FEvNCKeDgpsoGmPSwx3aNFDgkCovzRccuPnTlB3fS/Op5ex2yvm8Adww/jYMImmO0DA3f/8vxaFS/dA3zmwh9VvLyL+0ZqKDmpcyESeaCjIcFCQc6ghmWcI2k5Ro3jcAE8nMJpB0scREm8QLJqKvHOD/4Myp2DsV58Qu1XfBsKbAKlgDm8AGVVAHh+AYNAAB1+AO3IMH69Z6tl6s16F1xPrsWQY/ynr/AHJprL4=</latexit>

L = (�1, 20),U = (7000,1)
<latexit sha1_base64="vdMxMgaqZOfe2qN2ue52parKg/A=">AAACPnicdVDLSgMxFM34tr6q4spNsAoKtWRGpHUhFNy4cKFgVegMJZNm2tBMZkgyQhn6A/6Df+EHCG71A/wA3YkuXZqZKqjohSSHc87N5R4/5kxphB6tkdGx8YnJqenCzOzc/EJxcelMRYkktEEiHskLHyvKmaANzTSnF7GkOPQ5Pfd7B5l+fkmlYpE41f2YeiHuCBYwgrWhWsWqG2Ld9YP0aAD34ea2y0Sg+2XooK0y/NIauVZFCBkuN2y1iiVUMQSqIpgBu4YysLdXc3YQtHMJoVJ9pXflPt2sH7eKb247IklIhSYcK9W0Uay9FEvNCKeDgpsoGmPSwx3aNFDgkCovzRccuPnTlB3fS/Op5ex2yvm8Adww/jYMImmO0DA3f/8vxaFS/dA3zmwh9VvLyL+0ZqKDmpcyESeaCjIcFCQc6ghmWcI2k5Ro3jcAE8nMJpB0scREm8QLJqKvHOD/4Myp2DsV58Qu1XfBsKbAKlgDm8AGVVAHh+AYNAAB1+AO3IMH69Z6tl6s16F1xPrsWQY/ynr/AHJprL4=</latexit>

i

ii iii

Figure 4: An illustration of insertion and search in a 2D range tree that stores (Salary, FedTaxRate). The primary tree with

rectangle nodes stores Salary, and the secondary trees with circle nodes store FedTaxRate. The Roman numbers denote the

visiting order during the search.

and step B○ from Example 6) and a range search for points whose

Salary ≥ 4000 and FedTaxRate < 22. In the range tree, both the pri-
mary tree (which stores Salary) and the secondary tree (which stores
FedTaxRate) are binary search trees. Leaf nodes store the inserted

data, and each internal node stores the smallest value in its right sub-

tree. Each node in the primary tree is linked to a secondary tree, which

stores the FedTaxRate value of all the points present in the subtree

rooted at this node. When we insert each point, we find the insert posi-

tion in the primary tree, create a leaf node to store the inserted value,

and an internal node to connect the new leaf node and the leaf node

at the insert position. We also update all the secondary trees for nodes

in the path from the root to the insert position. When we perform the

range search, we look for nodes whose values lie in the range by pre-

order traversal. For instance, the search L = (4000,−∞),U = (∞, 22)
is performed by going from root node i to the left child node ii. Since

the Salary value stored in node ii is in the range, we go to the sec-

ondary tree linked to it. Finally, we find node iii whose FedTaxRate
value is less than 22 and return true for the query.

As another example, suppose we also insert t4 in the tree and search
for a point where Salary ≤ 7000 and FedTaxRate > 20. At node II,
we go to its secondary tree directly instead of traversing its descen-

dants since all the points stored in the subtree rooted at node II have

Salary ≤ 5000, which are within the search range for Salary. At
node III, we return true since the minimum FedTaxRate stored in its

right subtree is 22, which is greater than 20.

Due to space limitation, we establish the correctness of Algo-
rithm 2 and show the analysis of time/space complexity in our tech
report [2]. We state our main result as follows.

Theorem 1. Algorithm 2 runs in time𝑂 (|R| · (𝐼 (|R|) +𝑇 (|R|))) and
uses space 𝑆 (|R|) when using range tree or kd-tree with parameters

as shown in Table 2.

With range trees, the running time is 𝑂 (|R| · log𝑘 |R|) and
space usage is 𝑂 (|R| log𝑘−1 |R|); for kd-trees, the running time
is 𝑂 (|R|2−

1
𝑘) and space requirement is 𝑂 (|R|).

Comparison with Facet. Our approach is superior to Facet in
three respects. First, we use polynomially less space and time in
the worst-case. Second, there exist instances where our algorithm
saves a significant amount of time and space by early termination3.

3In this paper, we use the term early termination to mean that the algorithm can avoid
scanning the entire relation for some instances.

Proposition 1. For every homogeneous DC 𝜑 with at least one non-

equality predicate, there exists a relation R such that Algorithm 2

takes 𝑂 (1) time and Facet requires Ω(|R|) time.

Although Proposition 1 may seem like an obscure theoretical
argument, the behavior is commonly observed in the real world. We
empirically demonstrate this in our experiments. The third aspect
concerns the space usage. It turns out that the space requirement
of Facet is relation-dependent, with no way of predicting how
much memory will actually be needed, an artifact of the lack of
nontrivial provable bounds on its time and space requirement. If the
machine has only limited amount of memory, Facet will be unable
to complete the refinements and fail. On the other hand, our solution
allows verification with linear space using kd-trees. This flexibility
is important for resource-constrained production scenarios.

4.4 Heterogeneous Predicates

In this section, we present adjustments to Algorithm 2 to handle
heterogeneous predicates.

Example 8. Continuing our study of Tax from Table 1, consider the

following constraint:𝜓2 : ¬(𝑠 .Salary < 𝑡 .FedTaxRate) which says

that all values of the Salary column must be greater than or equal

to any value of FedTaxRate column.

This is an example of a heterogeneous predicate that cannot be
handled by Algorithm 2 (notice that both 𝑠 and 𝑡 are referenced and
the columns are different). Along the same lines, heterogeneous
comparison constraints over date-related columns have also been
found to be useful in our production settings. For example, over
the TPC-H schema, [37] identified the heterogeneous constraint
¬(𝑠 .Receiptdate ≥ 𝑡 .Shipdate ∧ 𝑠 .Shipdate ≤ 𝑡 .Receiptdate)
which represents the business logic that a new order is shipped
only after all the previously shipped orders are received, i.e., the
[Shipdate, Receiptdate] intervals of the orders never overlap.
These real-world scenarios underscore the need for going beyond
simple homogeneous constraints considered in the previous section.

We now discuss how our algorithm can be extended to handle
heterogeneous predicates of the form s.A op t.B, where op is =, <, ≤
, > or ≥. We note that an equality predicate s.A = t.B is equivalent
to s.A ≤ t.B ∧ s.A ≥ t.B and by supporting inequalities, we can
support heterogeneous equality predicates as well.

Now, let’s look at how to handle heterogeneous inequality pred-
icates. Suppose that 𝜑 has a predicate 𝑠 .𝐶 < 𝑡 .𝐷 . If 𝐶 = 𝐷 , then

6

Algorithm 3: Generalized range search qery gener-
ation that covers both homogeneous and heteroge-
neous predicates with ineqalities
Input :A tuple 𝑟 from relation R, DC 𝜑

Output :Two range search queries (normal and inverted)
1 procedure CreateRangeSearchQueries(𝑟 , 𝜑)
2 L, L′ ← (−∞, . . . , −∞),U,U′ ← (∞, . . . ,∞) /* L,U, L′,U′

are indexed by attributes of 𝑅 that appear in inequality

predicates */

3 foreach inequality predicate 𝑠.𝐶 op 𝑡 .𝐷 in 𝜑 do

4 if op is < or ≤ then

5 U.𝐶 ← 𝑟 .𝐷

6 L′ .𝐷 ← 𝑟 .𝐶

7 if op is > or ≥ then

8 L.𝐶 ← 𝑟 .𝐷

9 U′ .𝐷 ← 𝑟 .𝐶

10 return L,U, L′,U′

the predicate is homogeneous and building a 1-dimensional range
search data structure is enough. However, when𝐶 ≠ 𝐷 , we need to
index in 2 dimensions (𝐶 and 𝐷). Additionally, we need to adjust
our procedure for computing the two search range queries (L,U),
(L′,U′) to consider the different attributes present in the predicate.
Let us look at an example.

Example 9. Consider the DC𝜓2 from Example 8 that checks that all

the Salary values must be greater than any FedTaxRate value. We

will create one 2-dimensional range search data structures in which we

will store value of (Salary, FedTaxRate). Suppose we are processing
tuple 𝑡2 with Salary = 5000 and FedTaxRate = 15. We first do a

range search to check if there is a tuple with Salary that is less than

𝑡2 .FedTaxRate denoted as L = (−∞,−∞),U = (15,∞). Additionally,
we check whether there is a tuple with FedTaxRate that is larger

than 𝑡2 .Salary denoted as L′ = (−∞, 5000),U′ = (∞,∞). If any of

the two range search queries return True, we have found a violation.

Given this example, it becomes clear that we can easily extend
Algorithm 2 to account for heterogeneous predicates by simply
adjusting the procedure to create the two range search queries that
are used to detect violations. Algorithm 3 shows the updated query
generation procedure. The main idea is that if 𝜑 has a predicate
𝑠 .𝐶 < 𝑡 .𝐷 , then when we process a new tuple 𝑟 , the upper-bound
for attribute 𝐶 is set to 𝑟 .𝐷 in the forward check, and the lower-
bound for attribute 𝐷 is set to 𝑟 .𝐶 in the inverted check (because
we are comparing attribute 𝐶 of 𝑠 with attribute 𝐷 of 𝑡 in the
predicate). It is worth noting that this algorithm can be applied
for homogeneous constraints as well. Note that, when 𝐶 = 𝐷 , we
recover our original procedure presented in Algorithm 2. Thus, we
can safely handle both types of constraints by simply replacing the
CreateRangeSearchQueries function in Algorithm 2 with the one
presented here. Finally, we also note that the new generalization
also extends our algorithm to handle the case when attributes occur
in more than one predicate.

4.5 Supporting disequalities

So far, we have discussed how to support homogeneous and hetero-
geneous predicates with equalities or inequalities. In this section,

we show that it is possible to apply orthogonal range search tech-
niques to support disequalities as well. This type of operator is quite
important as it is required for specifying functional dependencies.
We demonstrate that with the below example.

Example 10. Consider the constraint: 𝜓2 : ¬(𝑠 .Zip = 𝑡 .Zip ∧
𝑠 .StateCode ≠ 𝑡 .StateCode). This DC represents the functional de-

pendency Zip→StateCode. The constraint contains a disequality

predicate which cannot be handled by any of our previous algorithms.

We now discuss how we can support verification of such predi-
cates. Any predicate s.A ≠ t.B can be written as a union of two
predicates: (s.A < t.B)∨ (s.A > t.B). Therefore, a DC containing ℓ
predicates with op as ≠ can be equivalently written as a conjunction
of 2ℓ DCs containing no disequality operator.

If the original homogeneous DC contains no inequality predicate,
then it is possible to reduce the number of equivalent DCs from 2ℓ
to 2ℓ−1. The idea is that a violation (s, t) is symmetric (i.e. (t, s) is
also a violation) if the DC contains only equality and disequality
predicates. Therefore, when converting a DC to only have inequali-
ties, it suffices to expand (s.𝐴 ≠ t.𝐴) to just (s.𝐴 < t.𝐴) for one
last disequality predicate instead of (s.𝐴 < t.𝐴) ∨ (s.𝐴 > t.𝐴).

Proposition 2. Given a homogeneous DC 𝜑 with only equality and

ℓ disequality predicates, there exists an equivalent conjunction of 2ℓ−1
DCs that contain only equality and inequality predicates.

4.6 Optimizations

In the previous sections, we have presented how we can support
verification of both homogeneous and heterogeneous constraints
with equalities, inequalities and disequalities. We now present op-
timizations for specific type of constraints that can improve the
overall performance.

Optimization for a single inequality. If a DC has row homoge-
neous equality predicates and at most one predicate (homogeneous
or heterogeneous) containing an inequality, then the verification
can be done in linear time. The key idea is that for predicate contain-
ing inequality 𝑠 .𝐴 op 𝑡 .𝐵, it is enough to keep track of the running
minimum and maximum values for values seen in columns 𝐴 and
𝐵 respectively as we process the relation. To illustrate the idea, we
use an example.

Example 11. Consider the functional dependency 𝜓1 from Exam-

ple 10 and the Tax table. Based on proposition (2), we can convert

the disequality predicate into inequality to get the DC ¬(𝑠 .Zip =

𝑡 .Zip ∧ 𝑠 .StateCode < 𝑡 .StateCode). Since both columns in the in-

equality predicate are the same (StateCode), we have 𝐴 = 𝐵. Let us

focus on rows of Tax with Zipcode=53703. We will keep track of the

min and max value of StateCode for each of these rows. When 𝑡2 is
processed, we set min = max = 𝑡2 .Zipcode = 02. For 𝑡3, we observe
that since 𝑡3 also has StateCode=02, the predicate 𝑡2 .StateCode <

𝑡3 .StateCode is false and thus no violation is found. The values ofmin
andmax remain unchanged. Finally, for 𝑡4, we also do not find a viola-
tion since 𝑡4 .StateCode = 02. However, if there was a different row 𝑡 ′4
such that 𝑡 ′4 .Zip = 53703 and 𝑡 ′4 .StateCode = 03, 𝑡2 .StateCode <

𝑡 ′4 .StateCode would become true and thus, we would have found a

violation since all predicates are true for a tuple pair.

7

Algorithm 4: DC verification for DCs with row-
homogeneous eqality and one ineqality predicate
Input :Relation R, DC 𝜑 containing equality predicates of form

s.C = t.C (for some𝐶) and one inequality predicate 𝑝 of
form s.A op t.B

Output :True/False
1 𝐻 ← empty hash table
2 foreach 𝑡 ∈ R do

3 𝑣 ← 𝜋
vars= (𝜑) (𝑡)

4 if 𝑣 ∉ 𝐻 then

5 𝐻 [𝑣] ← (+∞, +∞, −∞, −∞) /* four-tuple represents

(minA,minB,maxA,maxB) for 𝑣 */

6 if (𝑝.op ∈ {<, ≤} ∧𝐻 [𝑣] .minA op 𝑡 .B) ∨ (𝑝.op ∈ {>, ≥}
∧𝐻 [𝑣] .maxA op 𝑡 .B) then

7 return false

8 if (𝑝.op ∈ {<, ≤} ∧ 𝑡 .A op 𝐻 [𝑣] .maxB) ∨ (𝑝.op ∈ {>, ≥}
∧ 𝑡 .A op 𝐻 [𝑣] .minB) then

9 return false

10 𝐻 [𝑣] .minA ← min{𝐻 [𝑣] .minA, 𝑡 [A] } /* modify minA */

11 𝐻 [𝑣] .minB ← min{𝐻 [𝑣] .minB, 𝑡 [B] } /* modify minB */

12 𝐻 [𝑣] .maxA ← max{𝐻 [𝑣] .maxA, 𝑡 [A] } /* modify maxA */

13 𝐻 [𝑣] .maxB ← max{𝐻 [𝑣] .maxB, 𝑡 [B] } /* modify maxB */

14 return true

Algorithm 4 shows the algorithm. Like the previous algorithms,
we begin by partitioning the input into a hash table based on the
equality predicates. Let the inequality predicate be s.A op t.B. The
main idea is to maintain the running minimum and maximum
values for the Columns A and B for each partition of the input.
Since the comparison is one-dimensional, it is sufficient to compare
against the minimum (or maximum) value. The algorithm makes
only one pass over the entire dataset and the overall time complex-
ity is 𝑂 (|R|). While this optimization is simple, it has important
implications. In particular, popular constraints such as functional
dependencies (FD) are DCs that contain exactly one inequality pred-
icate. Algorithm 4 recovers the standard linear time algorithm to
verify FDs [25]. However, it is unclear that Facet, in its present
form, can achieve the same provable guarantee.

4.7 Enumerating violations

In this section, we discuss violation enumeration ((2) in our problem
statement). Recall that the Algorithm 2 with minor modifications
already supports the enumeration of the violations. In this section,
we describe an optimization that improves the time and space
complexity of enumerating the DC violations. The first observation
we make is that, unlike verification, enumeration usually requires
examining every tuple of the relation. Therefore, we can make use
of sort-based optimizations. We demonstrate with an example.

Example 12. Consider 𝜑3 : ¬(s.State = t.State ∧ s.Salary ≤
t.Salary ∧ s.FedTaxRate > t.FedTaxRate) from Example 3 and

the rows in table Tax with State=Wisconsin. The first step is to

sort the three rows in increasing order of Salary, which creates the

ordering 𝑡4, 𝑡2, 𝑡3. The key observation here is that once sorting has

been performed, it is guaranteed that any tuple can only form a

violation (wrt. the Salary predicate) with a tuple that appears after it
in the sort order. At this point, the Salary attribute can be completely

removed from consideration as the corresponding predicate will always

be satisfied. We can now resume our usual processing by constructing

a one dimensional binary search tree on FedTaxRate attribute. We

first insert 𝑡4 .FedTaxRate = 22 into the tree. For the next tuple in the

order 𝑡2, which has 𝑡2 .FedTaxRate = 15, we ask the tree to enumerate

all tuples that have value greater than 15, a standard operation on

a binary search tree. We find the 𝑡4 is such a tuple and thus report

(𝑡4, 𝑡2) as a violation to the user. Then, we insert 𝑡2 .FedTaxRate in the
tree. Finally, 𝑡3 is processed and we search for all values in the tree that
with FedTaxRate greater than 20 and report (𝑡4, 𝑡3) as a violation.

A detailed description of this optimization and the correspond-
ing enumeration algorithm is presented in [2]. We also have the
following complexity result.

Theorem 2. Let 𝑘 be the number of columns that occur in predicates

containing an inequality. Then, our enumeration algorithm runs in

time 𝑂 (|R| · (𝐼 (|R|) + 𝑇 (|R|) + log |R|) + 𝐾) to enumerate 𝐾 vio-

lations and uses space 𝑆 (|R|) when using range tree or kd-tree with
parameters as shown in Table 2 with the number of dimensions as𝑘−1.

4.8 Discussion

So far, we saw how we can leverage orthogonal range search to
support DC constraint verification and enumeration. Our approach
relies on creating classes of constraints (homogeneous with equal-
ities, homogeneous with both equalities and inequalities, hetero-
geneous) and devising specialized algorithms and optimizations
for each class of constraints. An alternative approach would be to
create a 𝑘-dimensional range search index, where 𝑘 is the distinct
number of column in all predicates (as opposed to inequality predi-
cates only in Rapidash). We could then use this index to perform
appropriate range search queries and detect violations. We call this
approach vanilla range search and we experimentally compare it
with Rapidash in Section 5.

The main advantage of our techniques over vanilla range search
is that they reduce the dimensionality of the range search tree (value
of 𝑘) which results in significant savings in performance and space.
As shown in Table 2, although range search data structures in their
most efficient form only add a (log |R|)𝑘 term in the time complexity,
the factor is multiplicative. Thus, even for relatively small datasets
containing 1𝑀 ∼ 220 rows and a DC with 𝑘 = 1 homogeneous
predicates (such as an FD), we will have (log2 220)1 = 20 as a
multiplicative factor which leads to a blowup in both space usage
and time in the worst-case. Thus, reducing the value of 𝑘 whenever
possible, can lead to improved performance and allow scaling to
larger datasets. This intuition based on the theoretical properties
of range search trees is further validated in our experiments.

Our approach categorizes constraints and comes up with ap-
proaches to reduce (or even eliminate) 𝑘 . This is achieved by: 1)
leveraging hash tables for homogeneous equality predicates and
only pairing them with range trees when inequalities are present, 2)
reducing dimensions in the presence of disequalities when possible
(see Proposition (2)), completely eliminating range search trees for
constraints with singe inequalities (such as FDs) and leveraging
running min and max values instead, 3) reducing dimensionality
through sorting for violation enumeration.

8

Table 3: List of denial constraints used in experiments for each dataset.

Dataset Cardinality #Columns DC number Denial constraint

Tax 1M 12 𝑐1 ¬(𝑠 .AreaCode = 𝑡 .AreaCode ∧ 𝑠 .Phone = 𝑡 .Phone)
Tax 1M 12 𝑐2 ¬(𝑠 .ZipCode = 𝑡 .ZipCode ∧ 𝑠 .City ≠ 𝑡 .City)
Tax 1M 12 𝑐3 ¬(𝑠 .State = 𝑡 .State ∧ 𝑠 .HasChild = 𝑡 .HasChild ∧ 𝑠 .ChildExemp ≠ 𝑡 .ChildExemp)
Tax 1M 12 𝑐4 ¬(𝑠 .State = 𝑡 .State ∧ 𝑠 .Salary > 𝑡 .Salary ∧ 𝑠 .Rate < 𝑡 .Rate)
TPC-H 1M 12 𝑐5 ¬(𝑠 .Customer = 𝑡 .Supplier ∧ 𝑠 .Supplier = 𝑡 .Customer)
TPC-H 1M 12 𝑐6 ¬(𝑠 .Receiptdate ≥ 𝑡 .Shipdate ∧ 𝑠 .Shipdate ≤ 𝑡 .Receiptdate)
TPC-H 1M 12 𝑐7 ¬(𝑠 .ExtPrice > 𝑡 .ExtPrice ∧ 𝑠 .Discount < 𝑡 .Discount)
TPC-H 1M 12 𝑐8 ¬(𝑠 .Qty = 𝑡 .Qty ∧ 𝑠 .Tax = 𝑡 .Tax ∧ 𝑠 .ExtPrice > 𝑡 .ExtPrice ∧ 𝑠 .Discount < 𝑡 .Discount)
NCVoter 1M 67 𝑐9 ¬(𝑠 .countyid = 𝑡 .countyid ∧ 𝑠 .countydesc ≠ 𝑡 .countydesc)
NCVoter 1M 67 𝑐10 ¬(𝑠 .ageatyearend > 𝑡 .birthyear)
NCVoter 1M 67 𝑐11 ¬(𝑠 .statuscd = 𝑡 .statuscd ∧ 𝑠 .voterdesc = 𝑡 .voterdesc ∧ 𝑠 .reasoncd ≠ 𝑡 .reasoncd)
NCVoter 1M 67 𝑐12 ¬(𝑠 .mailzipcode = 𝑡 .zipcode ∧ 𝑠 .statecd ≠ 𝑡 .mailstate)

𝐷1 50M 28 𝜑1,1 ¬(𝑠 .𝐴 = 𝑡 .𝐴 ∧ 𝑠 .𝐵 = 𝑡 .𝐵 ∧ 𝑠 .𝐶 ≠ 𝑡 .𝐶 ∧ 𝑠 .𝐷 ≠ 𝑡 .𝐷)
𝐷1 50M 28 𝜑1,2 ¬(𝑠 .𝐶 = 𝑡 .𝐶 ∧ 𝑠 .𝐸 = 𝑡 .𝐸 ∧ 𝑠 .𝐹 = 𝑡 .𝐹 ∧ 𝑠 .𝐺 ≠ 𝑡 .𝐺 ∧ 𝑠 .𝐻 ≠ 𝑡 .𝐻)
𝐷1 50M 28 𝜑1,3 ¬(𝑠 .𝐵 = 𝑡 .𝐵 ∧ 𝑠 .𝐼 = 𝑡 .𝐼 ∧ 𝑠 .𝐽 = 𝑡 .𝐽 ∧ 𝑠 .𝐾 ≠ 𝑡 .𝐾 ∧ 𝑠 .𝐿 ≠ 𝑡 .𝐿)
𝐷1 50M 28 𝜑1,4 ¬(𝑠 .𝐴 = 𝑡 .𝐴 ∧ 𝑠 .𝐼 = 𝑡 .𝐼 ∧ 𝑠 .𝑀 > 𝑡 .𝑀 ∧ 𝑠 .𝑁 ≠ 𝑡 .𝑁)
𝐷2 25M 28 𝜑2,1 ¬(𝑠 .𝐴 = 𝑡 .𝐴 ∧ 𝑠 .𝐵 = 𝑡 .𝐵 ∧ 𝑠 .𝐶 ≥ 𝑡 .𝐶 ∧ 𝑠 .𝐷 ≤ 𝑡 .𝐷 ∧ 𝑠 .𝐸 ≤ 𝑡 .𝐸 ∧ 𝑠 .𝐹 ≥ 𝑡 .𝐹 ∧ 𝑠 .𝐺 > 𝑡 .𝐺)
𝐷2 25M 28 𝜑2,2 ¬(𝑠 .𝐴 ≠ 𝑡 .𝐴 ∧ 𝑠 .𝐵 = 𝑡 .𝐵 ∧ 𝑠 .𝐻 ≤ 𝑡 .𝐻 ∧ 𝑠 .𝐹 ≥ 𝑡 .𝐹 ∧ 𝑠 .𝐺 ≥ 𝑡 .𝐺)
𝐷2 25M 28 𝜑2,3 ¬(𝑠 .𝐴 = 𝑡 .𝐴 ∧ 𝑠 .𝐼 ≠ 𝑡 .𝐼 ∧ 𝑠 .𝐷 ≤ 𝑡 .𝐷 ∧ 𝑠 .𝐺 ≥ 𝑡 .𝐺 ∧ 𝑠 .𝐽 = 𝑡 .𝐽)
𝐷2 25M 28 𝜑2,4 ¬(𝑠 .𝐶 ≤ 𝑡 .𝐶 ∧ 𝑠 .𝐷 ≤ 𝑡 .𝐷 ∧ 𝑠 .𝐾 = 𝑡 .𝐾)

Multi-constraint execution. In this work, we focus on single-core
and independent processing of DCs (i.e. no work sharing). Before
we end the subsection, we briefly comment on the multi-constraint
execution capabilities. Facet supports processing multiple DCs at
the same time and parallel processing. Our framework could also be
expanded to leverage common prefixes of two or more DCs. If the
prefixes are equality predicates, the hash table can be shared. For
tree-based data structures, the branching of the internal nodes of
the tree can be carefully controlled to reuse the nodes that are com-
mon to multiple DCs. Similarly, although range search structures
can use parallel processing capabilities [12] in theory, their behav-
ior in practice needs further investigation. Further, since Facet
performs processing in a columnar fashion but our algorithm is
row-oriented, the impact of the different design choices needs to be
explored rigorously.

5 EXPERIMENTAL EVALUATION

In this section, we report the results of our experimental evaluation.
In particular, we seek to answer the following questions:
(Q.1) How does Rapidash, FACET and vanilla orthogonal range

search compare in terms of performance?
(Q.2) What is the performance improvement (time and space)

of the Rapidash verification and enumeration algorithm
compared to Facet on open-source datasets used in prior
work [35]?

(Q.3) What is the performance and scalability of Rapidash and
Facet over large scale real-world production datasets with
complex constraints?

(Q.4) What is the impact of varying number of violations on Facet
and both variants of Rapidash?

5.1 Experimental Setting

Datasets, DCs, and Hardware. We perform experiments on both
open-source datasets and production datasets. For open-source
datasets, we use the Tax, TPC-H, and NCVoter, with a total of 12
DCs that were identified by prior works [34–36] to be representative
of what is usually seen in production settings (as defined by experts
or discovered from data). We also use two production datasets
(related to banking records and document shipping) from Microsoft
customers interested in applying DC verification on their data.
Each dataset contains a mix of categorical, numeric, and datetime
columns. For both production datasets, we pick 3 DCs by taking a
10% sample of each dataset and discover DCs that are true over the
sample. The fourth DC (denoted by 𝜑𝑖,4 for dataset 𝐷𝑖) holds over
the full dataset. Table 3 lists a total of 20 DCs over all datasets that
we use in our experiments4. Note that constraints 𝑐5, 𝑐6, 𝑐10, 𝑐12 are
examples of heterogeneous constraints. We ran all experiments
on an Intel(R) Xeon(R) W-2255 CPU @ 3.70GHz machine with
128GB RAM running Windows 10 Enterprise (version 22H2). All of
our experiments are executed over a single core and in the main
memory setting.
Evaluation Metrics. We perform experiments for both DC ver-
ification and enumeration ((1) and (2) in our problem statement
respectively) using Rapidash and Facet and report the end-to-end
running time and space consumption. For enumeration perfor-
mance, we report the total time to count and return the number of
all the violations (same approach as Facet [35]) to avoid output ma-
terialization cost and focus on understanding the intrinsic hardness.
All reported running times are the trimmed mean of five indepen-
dent executions after the dataset has been loaded in memory.

4The column names in the DCs have been omitted due to security and privacy concerns.

9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
DC number

100

102

104

T
im

e
in

m
s

Vanilla

Facet

Rapidash(⊥)

Figure 5: Running time for verification for vanilla range

search tree, Facet, and Rapidash(⊥).

Implementation. Similar to prior work, Rapidash is implemented
in Java. We use a standard implementation of orthogonal range
trees (referred to as Rapidash(⊥)) and kd-trees (referred to as Rap-
idash(kd)). Since we were unable to obtain the original Facet
source code from the authors of [35], we implemented Facet our-
selves in Java using the Metanome infrastructure from [13] and
[34], with all optimizations enabled as described in [35]. We man-
ually verified that the performance of our implementation is in
line with the numbers reported in [35] accounting for hardware
differences5. Further, to ensure an apples-to-apples comparison, for
DC verification, we ensure that Facet execution terminates as soon
as the first violation is found.

5.2 Facet vs. Rapidash vs Vanilla Range Search

In this section, we answer Q.1, i.e., what is the performance of Rap-
idash vs Facet vs vanilla range search (as described in Section 4.8)
for constraint verification. Results for constraint enumeration are
included in [2] and follow similar trend as verification.

Figure 5 shows the running time of using a range tree directly (i.e.
the vanilla approach)6, Facet, and Rapidash(⊥) on all 12 DCs over
the three open-source datasets. For 8 out of 12 DCs, directly apply-
ing range search was slower than Facet by up to 100×. While this
may seem surprising at first glance, it is explained by the blowup
due to logarithmic factors as described in Section 4.8, an observa-
tion that was also made in [41]. For the remaining 4 DCs, due to a
large number of violations, both Rapidash(⊥) and vanilla range
search tree terminated early and thus the running time is close.
We note here that Rapidash(⊥) still has an advantage because
our optimizations ensure that the data structure is created over a
smaller number of dimensions. For all DCs, Rapidash(⊥) was the
fastest out of all three. This result demonstrates that even after mak-
ing the connection between DC processing and orthogonal range
search, non-trivial optimizations are required to obtain competitive
performance through range search algorithms. In the subsequent
experiments, we exclude vanilla range search from the comparisons
because Rapidash already demonstrates superior performance. We
defer the interested reader to [2] for more experiments with vanilla
range search. Instead, we concentrate on comparing Rapidash
variants against the state-of-the-art algorithm, Facet.

5There is some deviation to be expected since the Tax dataset used in [35] has not been
publicly released. We could only obtain a different version of the dataset (available
at [1]) generated by a subset of the authors for a different publication.
6The results of using vanilla kd-trees is shown in the Appendix of [2] and is even
slower compared to vanilla range trees.

5.3 Evaluation on Open-Source Datasets

In this section, we answer Q.2 by diving deeper into the trade-
offs between the two implementation of range trees and kd-trees.
Figure 6 shows the running time for Facet and Rapidash. Let us
fix our attention to Figure 6a. Our first observation is that for 𝑐1
and 𝑐5 DCs (which contain only equality and thus, both Facet and
Rapidash take a provably linear amount of time in theory), Rapi-
dash is faster by 2× for verification. This is because Facet requires
cardinality estimation for all columns involved in the predicates,
followed by creating the refinements which require iterating over
the dataset again. Rapidash requires no statistics and iterates over
the dataset only once. Constraints 𝑐6, 𝑐7, and 𝑐8 all have a large
number of violations (on the order of several hundred million). For
these constraints, both versions of Rapidash are up to 84× faster
than Facet. The performance gap is directly attributed to Proposi-
tion 1. Rapidash can find a violation after only looking at a few
tuples in the dataset while Facet requires expensive computation.
In fact, for 𝑐6 and 𝑐7, we observed that the size of all ordered pairs7
after just the first refinement (which are inequality predicates) is
1.2B and 3.6B respectively.

The speedup improvement obtained by Rapidash also extends
to the violation enumeration problem (Figure 6b). Although there is
no early termination possible for counting, Rapidash still performs
up to an order of magnitude better due to our improved algorithms.
Facet performance, on the other hand, degrades further since the
last refinement cannot be stopped early as Facet requires all re-
finements to be complete in order to begin counting. Note that both
Rapidash(⊥) and Rapidash(kd) have the same performance num-
bers since all constraints contain at most two inequality predicates
and thus, both range trees and kd-trees degenerate into a simple
binary search tree. For the NCVoter dataset (Figure 7c), we also
observe the same behavior. For all DCs, both variants of Rapidash
are 2 − 200× faster.

Figure 7 shows the space usage for both verification and viola-
tion enumeration. For Facet, space usage is calculated using the
cardinality (in millions) of cluster pairs constructed and we use the
number of nodes in the tree constructed for Rapidash(⊥) and Rap-
idash(kd). For every DC, Rapidash uses significantly lower space
compared to Facet. The high space usage of Facet is directly attrib-
uted to the size of ordered pairs generated after refining predicates.
The largest gap is observed for 𝑐6, 𝑐7, and 𝑐8, which is expected
since the DCs have a lot of violations, making refinement computa-
tion and storage expensive. On the other hand, for each constraint,
Rapidash(kd) requires only (provably) linear amount of memory
and this behavior can be directly observed in practice as well. For
NCVoter, Facet memory use ranges from 256MB to 384MB (max-
imum memeroy was used by 𝑐3 since it has 25B violations) and
Rapidash memory use was between 8MB to 71MB. We note that
for constraint 𝑐10, an example of a heterogeneous constraint, Rapi-
dash uses the inequality heterogenous predicate optimization from
Section 4.6 and constructs a tree on only birthyear instead of
both ageatyearend and birthyear, leading to a small memory
footprint of only 8MB for both variants of Rapidash compared to
256MB for Facet.

7Given an ordered pair (tids1, tids2) , its size is defined as |tids1 | + |tids2 |
10

c1 c2 c3 c4 c5 c6 c7 c8
DC number

101

103

T
im

e
in

m
s

Facet

Rapidash(⊥)

Rapidash(kd)

(a) Running time (in milliseconds) for DC

verification on Tax and TPC-H.

c1 c2 c3 c4 c5 c6 c7 c8
DC number

101

103

T
im

e
in

m
s

Facet

Rapidash(⊥)

Rapidash(kd)

(b) Running time (in milliseconds) for viola-

tion enumeration on Tax and TPC-H.

ϕ1,1 ϕ1,2 ϕ1,3 ϕ1,4 ϕ2,1 ϕ2,2 ϕ2,3 ϕ2,4

DC number

101

102

T
im

e
in

se
co

n
d

s

Facet Rapidash(⊥) Rapidash(kd)

(c) Running time (in seconds) for DC verifi-

cation on production datasets.

Figure 6: Running time for evaluation on different datasets.

c1 c2 c3 c4 c5 c6 c7 c8
DC number

100

102

S
iz

e
of

d
at

a
st

ru
ct

u
re

Facet

Rapidash(⊥)

Rapidash(kd)

(a) Space usage for DC verification on Tax
and TPC-H.

c1 c2 c3 c4 c5 c6 c7 c8
DC number

101

103

S
iz

e
of

d
at

a
st

ru
ct

u
re

Facet

Rapidash(⊥)

Rapidash(kd)

(b) Space usage for violation enumeration on

Tax and TPC-H.

c9 c10 c11 c12
DC number

100

102

104

T
im

e
in

m
s

Verification

c9 c10 c11 c12
DC number

100

102

104 Violation Enumeration
Facet

Rapidash(⊥)

Rapidash(kd)

(c) Running time (in milliseconds) for DC

verification on NCVoter.

Figure 7: (Left and middle) Space requirement (cardinality of ordered pairs for Facet and number of nodes in the trees for

Rapidash in millions) of different algorithms for DC verification on Tax and TPC-H; (Right) Running time (in milliseconds)

for DC verification and violation enumeration on NCVoter.

Constraints with near worst-case behavior. To demonstrate
that for Facet, even simple constraints on a small dataset can have
poor performance in practice (as promised in Section 3), we tested
the constraint 𝜙 = ¬(𝑠 .Tax ≠ 𝑡 .Tax ∧ 𝑠 .ExtPrice ≠ 𝑡 .ExtPrice) on
TPC-H dataset. For this constraint, Facet runs for a few minutes
and the program then crashes due to Java out-of-memory error due
to creation of trillions of ordered pairs when refining the second
predicate of the constraint. The materialization eventually con-
sumes the entire main memory. However, Rapidash can count the
number of violations within 5 seconds.

Table 4: Running time (in milliseconds) for violation enu-

meration on the TPC-H dataset with varying cardinality.

DC Dataset size Enumeration

Facet Rapidash(⊥) Rapidash(kd)

𝑐6

1M 5693 1075 1090
2M 11713 1818 1835
4M 24454 3739 3890

𝑐7

1M 6030 640 652
2M 13653 1408 1423
4M 34628 3053 3092

𝑐8

1M 5591 741 793
2M 17136 1098 1124
4M 34628 2772 2783

Scalability. Table 4 shows the behavior of the algorithms on the
TPC-H dataset with varying cardinality. Let us take constraint 𝑐8

(rightmost subfigure) as an example. As the cardinality increases,
the speedup obtained increases from 7.5× for 1M to 13.86× when
the dataset size is 4M. This suggests that the running time of Facet
grows at a non-constant rate compared to Rapidash which grows
in line with expectation.

Table 5: Running time (in milliseconds) of Facet and Rapi-

dash (R(⊥) and R(kd)) on DCs for Tax for varying number

of violations.

DC # vio
% rows
changed

Detection Enumeration

Facet R(⊥) R(kd) Facet R(⊥) R(kd)

𝑐1

138K 5% 347 1 1 812 294 294
264K 10% 352 1 1 835 251 251
482K 20% 373 1 1 904 262 262
920K 50% 406 1 1 1042 295 295

𝑐2

8.4M 5% 469 2 2 1196 104 104
15.7M 10% 566 1 1 1500 136 136
27M 20% 504 1 1 1500 114 114
43M 50% 492 2 2 1812 121 121

𝑐3

1.2B 5% 616 12 12 1014 160 160
2.2B 10% 585 10 10 991 162 162
3.6B 20% 615 4 4 1030 172 172
5.4B 50% 589 4 4 1812 133 133

𝑐4

0.8B 5% 1781 16 26 9008 544 544
1.5B 10% 1625 15 20 16656 630 630
2.6B 20% 1792 9 29 22094 621 621
4.1B 50% 1729 15 31 28280 705 705

11

ϕ1,1 ϕ1,2 ϕ1,3 ϕ1,4 ϕ2,1 ϕ2,2 ϕ2,3 ϕ2,4

DC number

101

102

T
im

e
in

se
co

n
d

s

Facet

Rapidash(⊥)

Rapidash(kd)

Figure 8: Running time (in seconds) for violation enumera-

tion on production datasets. Red (solid) bars for 𝜑2,1 and 𝜑2,2
denote an out-of-memory error.

5.4 Evaluation on Production Datasets

In this section, we answer Q.3. Figure 6c shows the running time
(in log scale) of Rapidash for all production datasets and DCs.
The speedup obtained by our algorithm is close to an order of
magnitude and up to 40×. Compared to Facet, both algorithms
perform significantly better on all DCs. Rapidash(⊥) performs
better than Rapidash(kd) on all DCs. This is not surprising since
using kd-trees for orthogonal range search is more expensive as
shown by their big-O time analysis. However, Rapidash(kd) is still
faster than Facet by up to 20×.

The speedup obtained by Rapidash can be attributed to two
reasons. First, Rapidash can terminate as soon as a violation is dis-
covered, as opposed to Facet, which cannot do early termination
in general (see Section 3). The second reason is that Rapidash does
not require any expensive materialization as opposed to the ordered
pair generation that is done by Facet. We also measured the space
usage of all systems. For Facet, the space usage is the cardinal-
ity of the cluster pairs generated at each stage of the refinement
pipelines. For Rapidash based algorithms, the space usage refers
to the number of points inserted in the tree. For all DCs, Facet
used 1.4−8×more space compared to Rapidash(⊥). Rapidash(kd)
was a further order of magnitude lower in its space requirement
compared to Rapidash(⊥). Interested reader can find the figure in
our technical report [2].

Figure 8 shows the running time for violation enumeration. For
most constraints, we observe a similar trend in the running time as
we saw for verification. The most interesting observation is that for
constraints 𝜑2,1 and 𝜑2,2, both Facet and Rapidash(⊥) fail to com-
plete due to Java out-of-memory error, as both constraints contain
a large number of inequality predicates. However, Rapidash(kd)
can finish the computation in about 10 minutes, thanks to its linear
memory use guarantee. In terms of space usage, we observed very
similar behavior as Figure 7. We also observed good scalability be-
havior on the production datasets. We omit the graphs due to space
limitations and refer the interested reader to the tech report [2].

5.5 Varying the Number of Violations

We conclude this section by answering Q.4. We analyze the per-
formance for a fixed set of DCs but modify the dataset to vary the
number of violations. We chose the Tax dataset for the experiment
since all four DCs have zero violations on the unperturbed data. To
introduce violations, we take the original table and modify a certain
fraction of the rows by replacing the values in the row with another
value from the domain of the column. Table 5 shows the number of

violations for each DC as we modify 5%, 10%, 20%, 50% of the dataset
and running time. For detection, Rapidash is up to two orders of
magnitude faster due to benefit of early termination. In the case
of enumeration, all systems need to perform more computation.
For Facet, we observe that as the number of violations increases,
the running time also increases. This behavior is attributed to the
cost of materializing cluster pairs which get large as the number
of violations increase. The effect is starkly visible for 𝑐4 where
the running time increase by over three times for 9s to 28s. The
performance of both variants of Rapidash is more robust to the
change in number of violations since tree based structures allow
efficient counting. The space usage of Rapidash was also observed
to be an order of magnitude smaller than Facet, in line with our
experimental results for other open-source and production datasets.

6 RELATEDWORK

DC Violation Detection. DCs as an integrity constraint language
was originally proposed by Chu et al. [15]. We refer the reader
to [4, 5] for a general overview. To the best of our knowledge,
Facet [35] is the state-of-the-art algorithm for DC violation de-
tection. Our proposed algorithm has better worst-case time/space
complexity than Facet, as well as methods that rely on DBMS to de-
tection violations [17, 20, 38], resulting in significant performance
improvements in practice.

DC Discovery. DC verification and enumeration are closely re-
lated to solutions for DC discovery (such as Hydra [13] and
DCFinder [34]). Both of these systems rely on the two-step process
of first building the evidence set, followed by enumerating the DCs.
The two-step approach is also been successfully used for other
dependency discovery algorithms [33, 39].

Range Searching. The connection between geometric algorithms
and general join query processing has been made by several prior
works [28, 31]. Specifically, range searching has been used for aggre-
gate query processing [27] and CQs involving comparisons [41, 42].
Optimizations introduced in this paper could also be applied to
certain subsets of queries considered in [41, 42] since DCs can be
expressed as CQs with "short" comparisons but with the added twist
that the query is a self-join. A further consideration in our work
(but not elaborated in the prior works) is that we have a significant
interest in making sure that our algorithms can run in linear space,
a requirement for production implementation. Range trees and their
variants have also been extensively used in geospatial information
systems (see [7–9, 14, 16, 22, 26] for an overview) and indexes for
database systems [23]. For an overview of the theoretical aspects
of range searching, we refer the reader to [6].

7 CONCLUSIONS

In this paper, we studied the problem of DC violation detection.
We presented Rapidash, a DC violation detection algorithm with
near-linear time complexity with respect to the dataset size that
leverages prior work on orthogonal range search. Through em-
pirical evaluation, we demonstrated that our algorithm is faster
than the state of the art by up to 84× on open-source datasets and
large-scale production datasets.

12

REFERENCES

[1] 2023. https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-
dc-algorithms.html. Accessed: 09/28/2023.

[2] 2024. Technical Report: Efficient Detection of Constraint Violations. https:
//aka.ms/rapidash.

[3] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F Ilyas,
Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-
tecting data errors: Where are we and what needs to be done? Proceedings of the

VLDB Endowment 9, 12 (2016), 993–1004.
[4] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2017. Data Profiling: A

Tutorial. In Proceedings of the 2017 ACM International Conference on Management

of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih
Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM,
1747–1751. https://doi.org/10.1145/3035918.3054772

[5] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.
2018. Data Profiling. Morgan & Claypool Publishers. Synthesis Lectures on Data

Management (2018).
[6] Pankaj K. Agarwal. 2004. Range Searching. In Handbook of Discrete and Compu-

tational Geometry, Second Edition, Jacob E. Goodman and Joseph O’Rourke (Eds.).
Chapman and Hall/CRC, 809–837. https://doi.org/10.1201/9781420035315.ch36

[7] Lars Arge, Mark de Berg, Herman Haverkort, and Ke Yi. 2008. The priority
R-tree: A practically efficient and worst-case optimal R-tree. ACM Transactions

on Algorithms (TALG) 4, 1 (2008), 1–30.
[8] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-tree: An efficient and robust access method for points and rectangles.
In Proceedings of the 1990 ACM SIGMOD international conference on Management

of data. 322–331.
[9] Norbert Beckmann and Bernhard Seeger. 2009. A revised R*-tree in compar-

ison with related index structures. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data. 799–812.
[10] Jon Louis Bentley and Jerome H Friedman. 1979. Data structures for range

searching. ACM Computing Surveys (CSUR) 11, 4 (1979), 397–409.
[11] Jon Louis Bentley and James B Saxe. 1980. Decomposable searching problems I.

Static-to-dynamic transformation. Journal of Algorithms 1, 4 (1980), 301–358.
[12] Pouya Bisadi and Bradford G Nickerson. 2011. Orthogonal Range Search using a

Distributed Computing Model.. In CCCG.
[13] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient denial

constraint discovery with hydra. Proceedings of the VLDB Endowment 11, 3
(2017), 311–323.

[14] King Lum Cheung and Ada Wai-Chee Fu. 1998. Enhanced nearest neighbour
search on the R-tree. ACM SIGMOD Record 27, 3 (1998), 16–21.

[15] Xu Chu, Ihab F Ilyas, and Paolo Papotti. 2013. Discovering denial constraints.
Proceedings of the VLDB Endowment 6, 13 (2013), 1498–1509.

[16] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars.
2008. Computational geometry: algorithms and applications, 3rd Edition. Springer.
https://www.worldcat.org/oclc/227584184

[17] Wenfei Fan, Chao Tian, YanghaoWang, and Qiang Yin. 2021. Parallel discrepancy
detection and incremental detection. Proceedings of the VLDB Endowment 14, 8
(2021), 1351–1364.

[18] Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, and Alexandra
Meliou. 2021. Conformance Constraint Discovery: Measuring Trust in Data-
Driven Systems. In SIGMOD ’21: International Conference on Management of Data,

Virtual Event, China, June 20-25, 2021. ACM, 499–512. https://doi.org/10.1145/
3448016.3452795

[19] Chang Ge, Shubhankar Mohapatra, Xi He, and Ihab F. Ilyas. 2021. Kamino:
Constraint-Aware Differentially Private Data Synthesis. Proc. VLDB Endow. 14,
10 (2021), 1886–1899. https://doi.org/10.14778/3467861.3467876

[20] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2020.
Cleaning data with Llunatic. The VLDB Journal 29 (2020), 867–892.

[21] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.
Cleaning denial constraint violations through relaxation. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data. 805–815.

[22] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA,

June 18-21, 1984. ACM Press, 47–57. https://doi.org/10.1145/602259.602266
[23] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. 1995. Generalized

Search Trees for Database Systems. Morgan Kaufmann. 562–573 pages. http:
//www.vldb.org/conf/1995/P562.PDF

[24] John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley.
[25] Toshihide Ibaraki, Alexander Kogan, and Kazuhisa Makino. 1999. Functional

dependencies in Horn theories. Artificial Intelligence 108, 1-2 (1999), 1–30.
[26] Kothuri Venkata Ravi Kanth, Siva Ravada, and Daniel Abugov. 2002. Quadtree

and R-tree indexes in oracle spatial: a comparison using GIS data. In Proceedings of
the 2002 ACM SIGMOD International Conference on Management of Data, Madison,

Wisconsin, USA, June 3-6, 2002. ACM, 546–557. https://doi.org/10.1145/564691.
564755

[27] Mahmoud Abo Khamis, Ryan R Curtin, Benjamin Moseley, Hung Q Ngo, Xuan-
Long Nguyen, Dan Olteanu, and Maximilian Schleich. 2020. Functional aggregate
queries with additive inequalities. ACM Transactions on Database Systems (TODS)

45, 4 (2020), 1–41.
[28] Mahmoud Abo Khamis, Hung Q Ngo, Christopher Ré, and Atri Rudra. 2016.

Joins via geometric resolutions: Worst case and beyond. ACM Transactions on

Database Systems (TODS) 41, 4 (2016), 1–45.
[29] Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti,

Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. 2015. Lightning Fast
and Space Efficient Inequality Joins. Proc. VLDB Endow. 8, 13 (2015), 2074–2085.
https://doi.org/10.14778/2831360.2831362

[30] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2022. Data dependen-
cies for query optimization: a survey. The VLDB Journal 31, 1 (2022), 1–22.

[31] Hung Q Ngo, Dung T Nguyen, Christopher Re, and Atri Rudra. 2014. Beyond
worst-case analysis for joins with minesweeper. In Proceedings of the 33rd ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 234–245.
[32] Mark H Overmars. 1983. The design of dynamic data structures. Vol. 156. Springer

Science & Business Media.
[33] Thorsten Papenbrock and Felix Naumann. 2016. A hybrid approach to functional

dependency discovery. In Proceedings of the 2016 International Conference on

Management of Data. 821–833.
[34] EduardoHMPena, Eduardo C deAlmeida, and Felix Naumann. 2019. Discovery of

approximate (and exact) denial constraints. Proceedings of the VLDB Endowment

13, 3 (2019), 266–278.
[35] Eduardo HM Pena, Eduardo C de Almeida, and Felix Naumann. 2021. Fast

detection of denial constraint violations. Proceedings of the VLDB Endowment 15,
4 (2021), 859–871.

[36] Eduardo HM Pena, Edson R Lucas Filho, Eduardo C de Almeida, and Felix Nau-
mann. 2020. Efficient detection of data dependency violations. In Proceedings of

the 29th ACM International Conference on Information & Knowledge Management.
1235–1244.

[37] Eduardo HM Pena, Fabio Porto, and Felix Naumann. 2022. Fast Algorithms for
Denial Constraint Discovery. Proceedings of the VLDB Endowment 16, 4 (2022),
684–696.

[38] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10,
11 (2017), 1190–1201. https://doi.org/10.14778/3137628.3137631

[39] Philipp Schirmer, Thorsten Papenbrock, Ioannis Koumarelas, and Felix Naumann.
2020. Efficient discovery of matching dependencies. ACM Transactions on

Database Systems (TODS) 45, 3 (2020), 1–33.
[40] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. 2012. Fundamentals of Order

Dependencies. Proc. VLDB Endow. 5, 11 (2012), 1220–1231. https://doi.org/10.
14778/2350229.2350241

[41] Qichen Wang and Ke Yi. 2022. Conjunctive Queries with Comparisons. In
Proceedings of the 2022 International Conference on Management of Data. 108–
121.

[42] Dan E Willard. 1996. Applications of range query theory to relational data base
join and selection operations. journal of computer and system sciences 52, 1 (1996),
157–169.

13

https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-dc-algorithms.html
https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-dc-algorithms.html
https://aka.ms/rapidash
https://aka.ms/rapidash
https://doi.org/10.1145/3035918.3054772
https://doi.org/10.1201/9781420035315.ch36
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1145/3448016.3452795
https://doi.org/10.1145/3448016.3452795
https://doi.org/10.14778/3467861.3467876
https://doi.org/10.1145/602259.602266
http://www.vldb.org/conf/1995/P562.PDF
http://www.vldb.org/conf/1995/P562.PDF
https://doi.org/10.1145/564691.564755
https://doi.org/10.1145/564691.564755
https://doi.org/10.14778/2831360.2831362
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/2350229.2350241
https://doi.org/10.14778/2350229.2350241

Algorithm 5: DC Processing
Input :Relation R, Homogeneous DC 𝜑 , 𝑓 ∈ {booleanRangeSearch, count, enumerate}

1 k← |vars(𝜑) \ vars= (𝜑) |, 𝑐 ← 0
2 𝐻 ← empty hash table
3 foreach 𝑡 ∈ R do

4 𝑣 ← 𝜋
vars= (𝜑) (𝑡)

5 if 𝑣 ∉ 𝐻 then

6 if k ≠ 0 then
7 𝐻 [𝑣] ← new OrthogonalRangeSearch()
8 else

9 𝐻 [𝑣] ← ∅
10 if k ≠ 0 then
11 L,U← SearchRange(t) /* From Algorithm 2 */

12 L′,U′ ← InvertRange(L,U)
13 process(t, v, false)
14 𝐻 [𝑣] .insert(𝜋

vars(𝜑)\vars= (𝜑) (𝑡))
15 else

16 process(t, v, true)
17 𝐻 [𝑣] ← 𝐻 [𝑣] ∪ 𝑡
18 procedure process(t, v, isEqual)
19 if 𝑓 = booleanRangeSearch then

20 if isEqual then

21 return true if |𝐻 [𝑣] | > 1
22 else

23 return true if 𝐻 [𝑣] .booleanRangeSearch(L,U) ∨𝐻 [𝑣] .booleanRangeSearch(L′,U′)
24 if 𝑓 = count then

25 if isEqual then

26 𝑐 ← 𝑐 + |𝐻 [𝑣] | − 1
27 else

28 𝑐 ← 𝑐 +𝐻 [𝑣] .count(L,U) +𝐻 [𝑣] .count(L′,U′)
29 if 𝑓 = enumerate then

30 if isEqual then

31 output (𝑠, 𝑡) for each 𝑠 ∈ 𝐻 [𝑣]
32 else

33 output (𝑠, 𝑡) for each 𝑠 ∈ 𝐻 [𝑣] .enumerate(L,U) ∪𝐻 [𝑣] .enumerate(L′,U′)

A GENERAL ALGORITHM

Algorithm 5 shows a simple generalization that is able to perform verification, counting, and enumeration. The main difference compared to
Algorithm 2 is the different processing done in the process function depending on the function 𝑓 .

B ENUMERATION FOR HETEROGENEOUS CONSTRAINTS

Recall that if the constraint contains at least one row homogeneous predicate with inequality, then we can choose the column referenced in
the said predicate as the sort column 𝐶 and apply Algorithm 6.

If there exists no row homogeneous predicate, we pick any heterogeneous predicate (say 𝑠 .𝐴 < 𝑡 .𝐵). Then, we create a copy of the relation R

(say R
′). We sort R on column 𝐴 and R

′ on column 𝐵 in ascending order, and initialize pointers 𝑝1 for R and 𝑝2 for R′ by pointing them to
the head of the sorted relations. We will use the notation 𝑝 → 𝐴 to mean the value of attribute 𝐴 for the tuple pointed to be pointer 𝑝 .

We perform a sort-merge style traversal of both relations and insert only points for R into the data structure. We take the projection of
the tuple pointed to by 𝑝1 on the columns that participate in predicates that mention 𝑠 , insert it into the range search data structure, and
advance 𝑝1 as long as 𝑝1 → 𝐴 < 𝑝2 → 𝐵. If 𝑝1 cannot be advanced, then we take the tuple pointed to by 𝑝2, construct the range search
query, and query the data structure containing points from R that are guaranteed to have their value for 𝐴 smaller than 𝑝2 → 𝐵. Then,
pointer 𝑝2 is advanced. We keep advancing 𝑝2 until 𝑝1 → 𝐴 < 𝑝2 → 𝐵 and go back to processing R.

14

C MISSING PROOFS

C.1 Analysis of Theorem 1

Time and Space Complexity.We next establish the running time of the algorithm. First, observe that if 𝑘 = 0, then the algorithm takes
𝑂 (|R|) time since the for loop only performs a constant number of hash table operations. If 𝑘 ≥ 1, the algorithm performs one insertion and
two Boolean orthogonal range search queries in each iteration of the for loop. Suppose the insertion time complexity, denoted by 𝐼 (𝑛), is of
the form8 log𝛼 𝑛 and search time complexity is 𝑇 (𝑛) when the data structure has 𝑛 points in it. The running time can be bounded as:

|R|∑︂
𝑖=1

(︁
log𝛼 𝑖⏞⏟⏟⏞

insertion time

+ 2 · 𝑇 (𝑖)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
query time

)︁
<

∫ |R|+1

1
log𝛼 𝑖 𝑑𝑖 +

∫ |R|+1

1
2 · 𝑇 (𝑖) 𝑑𝑖

= 𝑂 (|R | · log𝛼 |R |) +
∫ |R|+1

1
2 · 𝑇 (𝑖) 𝑑𝑖

Seminal work by Overmars [32] showed that using range trees and 𝑘-d trees, one can design an algorithm with the parameters as shown
in Table 2.

The integral in the second term in the equation above can be bounded by setting 𝑇 (𝑖) = log𝑘 𝑖 or 𝑇 (𝑖) = 𝑖1−1/𝑘 . In both cases, the second
term evaluates to 𝑂 (|R| ·𝑇 (|R|)). For space usage, note that the hash table takes a linear amount of space in the worst case. Thus, the space
requirement of the tree data structure determines the space complexity. The main result can be stated as follows.

Lemma 1. Algorithm 2 correctly determines whether a homogeneous DC 𝜑 is satisfied.

Proof. We first show that Algorithm 2 is correct when 𝜑 only contains equality predicates. In this case, it is sufficient to determine whether
there exist two distinct tuples t1 and t2 such that 𝜋

vars= (𝜑) (t1) = 𝜋vars= (𝜑) (t2). The hash table𝐻 stores a counter for each distinct 𝜋
vars= (𝜑) (t)

and increments it for each tuple t ∈ 𝑅 (Line 6). Thus, the algorithm will correctly return false as soon as some counter becomes greater than
one and return true only if no such 𝑡1, 𝑡2 exists. Next, we consider the case when there exists at least one predicate with inequality. We show
the proof for the case when all inequality predicate operators are <, i.e., all predicates in the DC are of the form (s.𝐴 = t.𝐴) or (s.𝐴 < t.𝐴).
The proof for other operators is similar. We first state the following claim.

Claim 1. Let𝑤 be the set of attributes that appear in the predicates with inequalities. Two tuples t1 and t2 in the same partition can form a

violation iff t1 (𝑤) ≺ t2 (𝑤) or t2 (𝑤) ≺ t1 (𝑤), where the notation t(𝑤) denotes the projection, 𝜋𝑤 (t), of tuple 𝑡 on attributes𝑤 .

Here, ≺ is the standard coordinate-wise strict dominance checking operator. Claim 1 follows directly from the semantics of the operator
under consideration and the definition of a violation. Suppose 𝑡 is the tuple being inserted in the tree. Line 10 will query the range tree with
L = (−∞, . . . ,−∞),U = (t(𝑣1), . . . , t(𝑣𝑘)) and L′ = (t(𝑣1), . . . , t(𝑣𝑘)), U′ = (∞, . . . ,∞). In other words, the algorithm searches for a point in
the tree such that 𝑡 is strictly smaller or larger for each of the 𝑘 coordinates. The existence of such a point would imply that there exists a
pair that forms a violation.

If the orthogonal range search finds no point, Claim 1 tells us that t cannot form a violation with any tuple s already present in the range
tree. In each iteration of the loop, we insert one tuple into the range tree. Therefore, if t1 and t2 form a violation, it will be discovered when
one of them (say t2) is already inserted in the range tree and t1 is being processed in the loop. This completes the proof. □

C.2 Other missing proofs

Proof of Proposition 1. We sketch the proof for 𝜑 : ∀s, t ∈ R, ¬(s.𝐴 = t.𝐴 ∧ s.𝐵 < t.𝐵), which can be extended straightforwardly for other
DCs of interest. We construct a unary relation R(𝐴, 𝐵) of size 𝑁 as follows: the first tuple 𝑡1 is (𝑎1, 𝑏1) and the remaining 𝑁 − 1 tuples are
(𝑎1, 𝑏2) where 𝑏1 < 𝑏2. Note that 𝑡1 forms a violation with every other tuple in the relation. Algorithm 2 initializes one range tree when
processing 𝑡1 (Line 9) and inserts 𝑡1 in it (Line 12). Thereafter, when tuple 𝑡2 is processed, the range search query (Line 10) will return
true and the algorithm will terminate. Note that all the operations take 𝑂 (1) time since the tree only contains two tuples. However, Facet
requires Ω(|R|) time for processing the refinement of s.𝐴 = t.𝐴 predicate.

Proof of Proposition 2. Consider the constraint 𝜑 : ¬(𝜙 ∧ s.𝐴 ≠ t.𝐴), where 𝜙 is a conjunction of homogeneous equality and disequality
predicates. Let (𝑞, 𝑟) be a violation to 𝜑 . Without loss of generality, we assume that q.𝐴 < r.𝐴, and then (𝑞, 𝑟) is also a violation to
𝜑1 : ¬(𝜙 ∧ s.𝐴 < t.𝐴). Since 𝜙 only contains equality and disequality predicates, (𝑟, 𝑞) also satisfies 𝜙 by symmetricity, and therefore (𝑟, 𝑞)
is a violation to 𝜑 and 𝜑2 : ¬(𝜙 ∧ s.𝐴 > t.𝐴). In fact, for any violation (𝑟, 𝑞) to 𝜑 , one of (𝑟, 𝑞) and (𝑞, 𝑟) must violate 𝜑1 while the other
violates 𝜑2. Thus, we only need to check 𝜑1 for violations, which contains 𝑙 − 1 disequality predicates and can be written as a conjunction of
2𝑙−1 DCs containing no disequality predicates by logical equivalence.

Allowing mixed homogeneous constraints. We now extend our verification algorithm to work also for mixed homogeneous constraints
that can contain predicates of the form 𝑠 .𝐴 op 𝑠 .𝐵 as well as 𝑠 .𝐴 op 𝑡 .𝐴. Let ∀𝑠, 𝑡 : ¬𝜙 (𝑠, 𝑡) be a mixed homogeneous denial constraint. We first
rewrite 𝜙 in the form 𝜙𝑆 (𝑠) ∧ 𝜙𝑇 (𝑡) ∧ 𝜙𝑆𝑇 (𝑠, 𝑡) where 𝜙𝑆 contains all predicates that mention only 𝑠 (and not 𝑡), 𝜙𝑇 contains all predicates

8Throughout the paper, we use log𝑘 𝑁 to mean (log𝑁)𝑘 and not iterated logarithms.

15

that mention only 𝑡 (and not 𝑠), and 𝜙𝑆𝑇 contains all predicates that mention both 𝑠 and 𝑡 . The constraint ∀𝑠, 𝑡 : ¬𝜙 that we need to verify
over a given R can be equivalently rewritten as follows:

∀𝑠, 𝑡 : ¬𝜙 ⇔ ∀𝑠, 𝑡 : ¬(𝜙𝑆 (𝑠) ∧ 𝜙𝑇 (𝑡)) ∨ ¬𝜙𝑆𝑇 (𝑠, 𝑡)
⇔ ∀𝑠, 𝑡 : (𝜙𝑆 (𝑠) ∧ 𝜙𝑇 (𝑡)) ⇒ ¬𝜙𝑆𝑇 (𝑠, 𝑡)
⇔ ∀𝑠 ∈ S : ∀𝑡 ∈ T : ¬𝜙𝑆𝑇 (𝑠, 𝑡)

where S is the set of all tuples in R s.t. 𝜙𝑆 is true, and T is the set of all tuples in R s.t. 𝜙𝑇 is true. Note that S and T can overlap.

Example 13. We give an example of a mixed homogeneous constraint inspired by one of our production scenario. Consider the table Docshipwith
columns (Shipcity, Receiptcity, Shipdate, Receiptdate). Consider the constraint ¬(𝑠 .Shipcity = 𝑠 .Receiptcity ∧ 𝑡 .Shipcity =

𝑡 .Receiptcity ∧ 𝑠 .Shipcity = 𝑡 .Shipcity ∧ 𝑠 .Receiptdate ≥ 𝑡 .Shipdate ∧ 𝑠 .Shipdate ≤ 𝑡 .Receiptdate). The constraint is mixed-

homogeneous since the first three predicates are homogeneous and the remaining predicates are heterogeneous. The constraint encodes the business

logic that for intra-city document shipping, the [Shipdate, Receiptdate] intervals of orders in the same city never overlap, i.e, a new document

is shipped only if a previously shipped document has been received.

For verification, we maintain two range search data structures (same as the 𝐻 in Algorithm 2) 𝐻S and 𝐻T for points in S and T respectively.
For each tuple (aka point) 𝑞 ∈ R, we first check whether it belongs to S and T.
• If 𝑞 ∈ S, we perform range search on 𝐻T to find any point 𝑟 such that 𝜙𝑆𝑇 (𝑞, 𝑟) is true. If there is no such point, we insert 𝑞 into 𝐻S.

Otherwise, the constraint does not hold and the algorithm terminates. This step checks whether there is any previously seen point 𝑟 in T

such that (𝑞, 𝑟) forms a violation.
• Similarly, if 𝑞 ∈ T, we perform range search on 𝐻S to find any point 𝑟 such that 𝜙𝑆𝑇 (𝑟, 𝑞) is true. If there is no such point, we insert 𝑞 into
𝐻T. Otherwise, we output false.

Example 14. Continuing example 13, suppose the table has the following rows.

Shipcity Receiptcity Shipdate Receiptdate

𝑡1 Paris Paris 24-01-2024 26-01-2024

𝑡2 Paris Paris 27-01-2024 28-01-2024

Observe that 𝜙𝑆 (𝑠) = (𝑠 .Shipcity = 𝑠 .Receiptcity) and 𝜙𝑇 (𝑡) = (𝑡 .Shipcity = 𝑡 .Receiptcity). We build 2-D range search struc-

tures 𝐻𝑆 and 𝐻𝑇 over (Shipdate, Receiptdate). 𝐻𝑆 and 𝐻𝑇 both store points whose Shippingcity is the same as Receivingcity. Since
𝑡1 .Shippingcity = 𝑡1 .Receivingcity, we insert (24-01-2024, 26-01-2024) into 𝐻𝑆 and 𝐻𝑇 . When processing 𝑡2, since 𝑡2 satisfies 𝜙𝑆 (𝑠), we
query 𝐻𝑇 to find a point whose Shipcity is Paris, Shipdate is smaller than or equal to 28-01-2024 and Receiptdate is greater than or equal to

27-01-2024, and get no point for this query. Similarly, since 𝑡2 also satisfies 𝜙𝑇 (𝑡), we query 𝐻𝑆 to find a point whose Shipcity is Paris, Shipdate
is smaller than or equal to 28-01-2024 and Receiptdate is greater than or equal to 27-01-2024, and also get no point. Therefore, the constraint

holds on the table. Note that in this example since 𝐻𝑆 and 𝐻𝑇 store the same set of points, we only need to keep one of them.

D ENUMERATING VIOLATIONS

Algorithm 6 shows the detailed steps for enumerating violations for a homogeneous DC. We begin by sorting the relation on a column that
participates in some predicate that has an inequality operator (line 2). We can safely assume that the operator is either < or > since ≤, ≥
operator can be decomposed into two constraints: one containing only = as the operator for the predicate and the other containing < or >.
The algorithm iterates over the dataset and uses the hash table 𝐻 or range search data structure in a similar fashion to Algorithm 2. There
are two important differences to note. First, we can omit the inverted range search. This is because the sort order guarantees that for any
tuple 𝑡 , a violation can be formed only with tuples that appear before 𝑡 in the sort order. Second, since the dataset has already been sorted on
one of the columns with inequality predicates, the number of dimensions of the point inserted in the range search data structure is reduced
by one compared to Algorithm 2. The same idea can also be applied to any DC containing at least one row homogeneous predicate and using
the column referenced in the predicate for sorting. For DCs containing only heterogeneous predicates, we use a sort-merge style approach.

Theorem 2 has important implications. By reducing the number of dimensions by one, we get a logarithmic factor improvement in
running time and space requirement for range trees, and a polynomial improvement in running time when using k-d trees compared to
using the enumeration variant of Algorithm 2. As an example, for the class of constraints that contain at most two inequality predicates,
we can do the enumeration of violations in 𝑂 (|R| log |R| + 𝐾) time to enumerate 𝐾 violations. This class of constraints has been shown to
be representative of constraints that are routinely observed in practice [35]. We conclude this section by noting that by using count(L,U)
instead of enumerate(L,U) on line 22 of Algorithm 6, we can compute the number of violations as well.

E ADDITIONAL EXPERIMENTS

Scalability on production datasets. To study the scalability of Rapidash, we used dataset 𝐷1 and varied the number of rows to understand
the impact of input size on the running time of the DCs. Figure 9b shows the results when varying the dataset size of 𝐷1 from 0.5M to 50M.
Both Rapidash(⊥) and Rapidash(kd) scale almost linearly for the first three DCs. For 𝜑1,4, while Rapidash(⊥) scales linearly, Rapidash(kd)
has super linear scalability, which is in line with the expectation. The behavior of Rapidash on other datasets was also very similar. The

16

Algorithm 6: DC enumeration
Input :Relation R, Homogeneous DC 𝜑 containing at least one row homogeneous inequality predicate
Output :DC violations

1 𝐻 ← empty hash table
2 sort R on a column (say𝐶) that participates in an inequality predicate in ascending order if the predicate operator is < (and descending for >)
3 ℓ ← |vars(𝜑) \ {𝐶 ∪ vars= (𝜑) } |
4 Temp← ∅
5 foreach 𝑡𝑖 ∈ R do

6 𝑣 ← 𝜋
vars= (𝜑) (𝑡𝑖)

7 if 𝑣 ∉ 𝐻 then

8 if ℓ ≠ 0 then
9 𝐻 [𝑣] ← new OrthogonalRangeSearch()

10 else

11 𝐻 [𝑣] ← ∅
12 if ℓ ≠ 0 then

/* Two rows can only form a violation if they satisfy the predicate containing 𝐶. Therefore, no violation can be formed for tuples

that have the same value for attribute 𝐶. */

13 if 𝑡𝑖 .𝐶 = 𝑡𝑖+1 .𝐶 then

14 Temp← Temp ∪ 𝑡𝑖
15 else

16 if Temp ≠ ∅ then
17 foreach 𝑟 ∈ Temp do

18 𝐻 [𝑣] .insert(𝜋
vars(𝜑)\{𝐶∪vars= (𝜑) } (𝑟))

19 Temp← ∅
20 𝐻 [𝑣] .insert(𝜋

vars(𝜑)\{𝐶∪vars= (𝜑) } (𝑡𝑖))
21 L,U← SearchRange(t_i) /* From Algorithm 2 */

22 L ← 𝐻 [𝑣] .enumerate(L,U)
23 output (𝑠, 𝑡) for each 𝑠 ∈ L
24 else

25 output (𝑠, 𝑡) for each 𝑠 ∈ 𝐻 [𝑣]
26 𝐻 [𝑣] ← 𝐻 [𝑣] ∪ 𝑡𝑖

ϕ1,1 ϕ1,2 ϕ1,3 ϕ1,4 ϕ2,1 ϕ2,2 ϕ2,3 ϕ2,4

DC number

101

103

S
iz

e
of

d
at

a
st

ru
ct

u
re

Facet Rapidash(⊥) Rapidash(kd)

(a) Space requirement of different algorithms for DC ver-

ification on prod datasets

0.5 5 50

Dataset size (in M)

10−1

100

101

102

T
im

e
in

se
co

n
d

s

ϕ1,1

0.5 5 50

Dataset size (in M)

10−1

100

101

102

ϕ1,2

0.5 5 50

Dataset size (in M)

10−1

100

101

102

T
im

e
in

se
co

n
d

s

ϕ1,3

Facet

Rapidash(⊥)

Rapidash(kd)

0.5 5 50

Dataset size (in M)

10−1

100

101

102

ϕ1,4

(b) Running time (in seconds) for DC verification on 𝐷1
with varying cardinality.

Figure 9: Additional experiments on production datasets

performance gap between Facet and our solution narrows when the dataset size is small. This is expected since Facet performance depends
on the sizes of cluster pairs generated by refinements.

Running time for vanilla. Figure 10 shows the running time of using range trees for DC enumeration and the experiments for running of
using kd-trees for enumeration and verification. In all experiments, Rapidash was the best performing and in most cases, vanilla usage of
range search algorithms was poor in performance. Facet performance was somewhere in the middle.

17

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
DC number

103

105

T
im

e
in

m
s

Vanilla

Facet

Rapidash(⊥)

(a) Running time (in ms) for enumeration on

all open source datasets.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
DC number

100

102

104

T
im

e
in

m
s

Vanilla

Facet

Rapidash(kd)

(b) Running time (in ms) for enumeration on

all open source datasets.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
DC number

100

102

104

T
im

e
in

m
s

Vanilla

Facet

Rapidash(kd)

(c) Running time (in ms) for DC verification

on all open source datasets.

Figure 10: Running time for vanilla range search for verification and enumeration.

18

	Abstract
	1 Introduction
	2 Background and Problem Statement
	3 Limitations of existing Solutions
	4 Rapidash Design and Analysis
	4.1 Foundation
	4.2 Orthogonal Range Search
	4.3 Verification Algorithm
	4.4 Heterogeneous Predicates
	4.5 Supporting disequalities
	4.6 Optimizations
	4.7 Enumerating violations
	4.8 Discussion

	5 Experimental Evaluation
	5.1 Experimental Setting
	5.2 Facet vs. Rapidash vs Vanilla Range Search
	5.3 Evaluation on Open-Source Datasets
	5.4 Evaluation on Production Datasets
	5.5 Varying the Number of Violations

	6 Related Work
	7 Conclusions
	References
	A General Algorithm
	B Enumeration for Heterogeneous Constraints
	C Missing proofs
	C.1 Analysis of Theorem 1
	C.2 Other missing proofs

	D Enumerating Violations
	E Additional Experiments

