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ABSTRACT

In data-driven systems, we often encounter tuples on which
the predictions of a machine-learned model are untrustwor-
thy. A key cause of such untrustworthiness is non-confor-
mance of a new tuple with respect to the training dataset. To
check conformance, we introduce a novel concept of data
invariant, which captures a set of implicit constraints that
all tuples of a dataset satisfy: a test tuple is non-conforming
if it violates the data invariants. Data invariants model com-
plex relationships among multiple attributes; but do not
provide interpretable explanations of non-conformance. We
present ExTuNe, a system for Explaining causes of Tuple
Non-conformance. Based on the principles of causality, Ex-
TuNe assigns responsibility to the attributes for causing non-
conformance. The key idea is to observe change in invariant
violation under intervention on attribute-values. Through a
simple interface, ExTuNe produces a ranked list of the test
tuples based on their degree of non-conformance and visual-
izes tuple-level attribute responsibility for non-conformance
through heat maps. ExTuNe further visualizes attribute re-
sponsibility, aggregated over the test tuples. We demonstrate
how ExTuNe can detect and explain tuple non-conformance
and assist the users to make careful decisions towards achiev-
ing trusted machine learning.
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1 INTRODUCTION

In data-driven systems, we often encounter tuples on which
the predictions of a machine-learned model are untrustwor-
thy. Early detection of such tuples is necessary to ensure
Trusted Machine Learning (TML) [3]. Since data is inher-
ently an incomplete specification for any task, invariably
there will exist multiple different models that can be learned
from the given training dataset. This in return introduces
uncertainty in predictions made using any specific model
learned from the dataset. Motivated by the issue of trusting
the predictions made by machine learning, we define non-
conforming tuples—which are tuples on which a machine-
learned model makes untrustworthy predictions. One might
see non-conforming tuples as outliers. However, traditional
definition of outlier overlooks the fact that some outliers are
non-conforming, for certain tasks, while others are not.

Example 1.1. Consider a dataset with three training tuples
with predictor attributes x1 and x2: {(1, 10), (2, 20), (4, 40)}.
We consider a task-agnostic setting and hence omit the tar-
get attribute. Now consider two new tuples: t1 = (3, 12) and
t2 = (10, 100). A traditional distance-based outlier detector
will mark t2 as an outlier and possibly t1 as an inlier. However,
MLmodels often exploit the consistent relationship observed
between the attribute pairs (x2 = 10x1) within the training tu-
ples, and assume it as an “invariant”. Since t1 violates this in-
variant, a model that uses 10x1 instead of x2 is likely to make
inaccurate prediction on t1, if x2 is the true predictor. Here, t1
is non-conforming and t2 is conforming with the invariant.

Example 1.1 shows the shortcoming of distance-based
outliers in capturing the notion of non-conformance. Iden-
tification of non-conforming tuples is a two-step process,
which is presented in our previous work [1]: (1) learning
data invariants from the training dataset, and (2) check-
ing for violation of the learned invariants by the test tu-
ples; violation of data invariants indicates non-conformance.
In this paper, we demonstrate ExTuNe, which (1) detects
non-conforming tuples and quantifies the degree of non-
conformance based on [1], and (2) extends [1] to explain the
cause of non-conformance by assigning degree of responsi-
bility to tuple attributes.

Demonstrations  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2741

https://doi.org/10.1145/3318464.3384694
https://doi.org/10.1145/3318464.3384694


Pattern-based outlier detection mechanisms [8] do not ex-
plain outliers. Scorpion [12] explains outliers through com-
mon explanation, but does not consider relationships among
attributes. In general, no prior work on explaining outliers [6,
7, 12] addresses the question: “which attributes or attribute
relationships are responsible for non-conformance?”
Learning data invariants and using that to detect non-

conformance is similar to one-class-classification (OCC) [10],
where the training data contains tuples from only one class.
Data invariants also achieve OCC, but do so under the addi-
tional requirement that they generalize the data in a way that
is aligned with the generalization obtained by a given class
of ML models. Data invariants also share similarity to func-
tional dependencies in databases but the latter encode stricter
invariants and do not work well for numeric attributes. Data
drift and covariate shift [9] detection has connection to non-
conformance detection. However, their techniques are based
on multivariate distribution modeling, without emphasizing
low-variance dimensions, and provide poor interpretability.
ExTuNe’s attribute responsibility has connection to fea-

ture importance and feature selection for binary classifica-
tion. However, ExTuNe works in an OCC setting, where
data from other classes (counter-examples) are unavailable
during training. Unlike binary classifiers, which start with
the knowledge of tuples from both classes, ExTuNe’s goal is
to (1) predict which tuples fall in the negative class (i.e., non-
conforming), and (2) assign responsibility to the attributes
for non-conformance. Feature importance for OCC fails here
too, as it only considers the training data and overlooks the
test tuples. Responsibility computation in ExTuNe is generic
and can be applied to any technique (distance- or pattern-
based outlier detectors or classifiers) that distinguishes two
classes (representing conforming and non-conforming tu-
ples); however, ExTuNe applies it to non-conformance based
on data invariants due to our interest in TML.
In our demonstration, participants will observe how Ex-

TuNe detects the non-conforming tuples and provides real-
time explanation for non-conformance. We proceed to dis-
cuss, at a high level, the solution sketch of ExTuNe and
conclude with a detailed outline of our demonstration.

2 SOLUTION SKETCH

The key component of ExTuNe is an invariant learner, which
learns data invariants from the training tuples (Section 2.1).
When a new test tuple arrives, ExTuNe checks if the test
tuple satisfies the invariant, and if it does not, ExTuNe quanti-
fies the degree of non-conformance. To generate explanation
for non-conformance, ExTuNe uses an intervention-centric
approach that alters values of attributes, and observes change
in invariant violation. ExTuNe then assigns degree of respon-
sibility to the attributes for non-conformance (Section 2.2).

2.1 Data Invariants

Our approach for computing data invariants is based on “in-
verted” principal component analysis (PCA) [1]. Our key
observation is that low-variance principal components are
the most useful predictors of non-conformance [4, 10, 11]. Es-
sentially, we define invariants on the principal components,
while emphasizing the low-variance components.

Traditional ML techniques often discard the low-variance
components, indicating their implicit assumption that the
low-variance projections will continue to have low variance
on test data. ExTuNe’s non-conformance test is based on
checking this assumed precondition for ML models. Intu-
itively, for a dataset D, we compute the data invariant I that
encodes that “the projection of each tuple in D onto the
low-variance component results in values that lie within
4 standard deviations from the mean of the corresponding
projection.” An invariant I is a constraint that defines a set of
conforming tuples and ®x ⊢ I denotes that the tuple ®x belongs
to that conforming tuple set (i.e., satisfies the invariant I ).
We associate a numeric value characterizing the degree

of invariant violation by a tuple. The violation function
violation(®x, I ) denotes the “distance” of the tuple ®x from the
invariant I with the property that when ®x satisfies I (®x ⊢ I ),
violation(®x, I ) = 0; and as ®x moves away from I (®x ⊬ I ),
violation(®x, I ) approaches 1. A tuple can be non-conforming
by violating several invariants. To aggregate the violations
w.r.t. a set of invariants, we compute a weighted sum over
them while putting more weight on low-variance invariants
and less weight on high-variance invariants.
We discover data invariants using principal component

analysis, which is efficient and scalable: it is linear in num-
ber of tuples and cubic in number of attributes. Further, we
empirically found that data invariants serve as an effective
proxy for the trust on the ML model’s prediction: when a test
tuple violates the learned data invariants, then the model’s
prediction on that tuple is likely to be inaccurate [1].

2.2 Responsibility for Non-conformance

Responsibility quantifies the contribution of attributes of a
tuple for causing non-conformance. In this paper, we adapt
Halpern and Pearl’s [2] definition of causality. To measure
the degree of responsibility of attributes of tuples that violate
data invariants, we adapt the notion of degree of responsi-
bility from Meliou et al. [5]. We reason about causality by
intervening on attribute-values: we alter value of an attribute
to the attribute-mean over the training dataset, and observe
how it affects the tuple’s invariant violation.

Counterfactual cause. By definition, C is a counterfactual
cause of an event E if E would not occur unless C occurs.
In our case, an event is the violation of invariant I by
a tuple ®x = ⟨x1, x2, . . . , xi , . . . , xm⟩, i.e., ®x ⊬ I . The fact
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Figure 1: The ExTuNe demo: 1○ upload reference data, 2○ learn data invariants, 3○ upload test data, 4○ select the number of

most non-conforming tuples to preview, 5○ tuple-wise attribute-responsibility heatmap, 6○ aggregated attribute responsibility.

Ai = xi is a counterfactual cause for the violation if
intervening on the value of Ai prevents the invariant
violation: ⟨x1, x2, . . . , µi , . . . xm⟩ ⊢ I , where µi denotes the
attribute-mean of Ai . In such case, we assign responsibility
1 to attribute Ai .
Actual cause. C is an actual cause of E if E counterfactu-
ally depends on C under some permissive contingency [5].
To determine causality for an attribute-value that is not a
counterfactual cause, we allow alteration of other attributes
that are not counterfactual causes as permissive contingency.
However, we only allow alterations that involve changing
the value of an attribute to its attribute-mean. We define
minimum support to be the minimum number of attribute-
value alterations required within a contingency, among all
possible contingencies, to achieve counterfactual causality.
Contingencies with minimum support are the minimal con-
tingencies. We assign responsibility 1

M+1 to an attribute with
minimum supportM .
Example: Consider a tuple ®x=⟨x1, x2, . . . , xm⟩ s.t. ®x ⊬ I . Sup-
pose that, individually, none of A1=x1 and A2=x2 are coun-
terfactual causes for the violation, but ⟨µ1, µ2, x3, . . . , xm⟩ ⊢ I .
SinceA1=x1 is a counterfactual cause for the violation under
the contingency A2=µ2, it is an actual cause with minimum
support 1. So, we assign responsibility 1

1+1=
1
2 to A1. Using a

symmetric argument, A2 also gets responsibility 1
2 .

Approximating minimal contingency. Finding the mini-
mal contingency for an actual cause is NP-hard [5]. Hence,
we follow a greedy approach to find an approximate mini-
mal contingency. While this approach does not guarantee
optimality and might even fail to identify an actual cause, it
works well in practice, particularly when responsibility is
aggregated over a large set of non-conforming tuples.
The greedy approach iteratively selects attributes to

alter based on their contribution to the invariant violation.
For example, consider the invariant −3 ≤ F ( ®A) ≤ 3 where

F ( ®A) = 2A1 + 4A2 + 7A3 + 5A4 + 4A5 and attribute-mean
is 0 for all attributes. For a tuple ®x = ⟨6,−5, 2, 3, 2⟩,
F (®x) = 12 + (−20) + 14 + 15 + 8 = 29. None of the
attribute-values are counterfactual in this case. Now,
suppose that we are looking for minimal contingency (if
one exists) of A1 = 6. Clearly, ®x violated the invariant due
to 29 being too high than the upper bound 3 of the invariant.
We start by greedily picking A4 to alter as it contributes the
maximum (15) to F (®x). We obtain ®x ′ = ⟨6,−5, 2, 0, 2⟩ and
F (®x ′) = 12 + (−20) + 14 + 0 + 8 = 14. With this contingency,
A1 = 6 now counterfactually causes the violation as for
®x ′′ = ⟨0,−5, 2, 0, 2⟩, F (®x ′′) = 0+ (−20)+14+0+8 = 2, which
satisfies the invariant. So, we foundM = 1 and hence assign
responsibility 1

2 toA1. If this was not a valid contingency, we
would continue to intervene on the next most contributing
attribute (A3 in this case) to find a valid contingency.
Aggregating responsibility. Following the above proce-
dure, we compute Ri , j ,k which denotes the responsibility of
attribute Ai for causing tuple ®x (j) to violate invariant Ik . To
ensure that responsibilities are proportionate to the degree
of violations, we multiply Ri , j ,k byviolation(®x (j), Ik ). Finally,
we aggregate responsibilities over all invariants and tuples
and normalize the responsibilities across all attributes.

3 DEMONSTRATION

We will demonstrate ExTuNe on a real-world cardiovascular
disease dataset.1 The dataset contains information about pa-
tients with attributes such as height, weight, cholesterol level,
glucose level, systolic and diastolic blood pressures, etc. We
expect that most participants will be familiar with this data
domain and will be able to correctly interpret the explana-
tions ExTuNe provides. Our goal is to show that ExTuNe can
effectively detect non-conforming tuples and meaningfully
assign responsibility to attributes for non-conformance.
1Cardiovascular disease: kaggle.com/sulianova/cardiovascular-disease-dataset
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3.1 Explaining Tuple Non-conformance

Figure 1 shows a screenshot of ExTuNe’s graphical user in-
terface, built within a Jupyter Notebook. During the demon-
stration, we will guide the participants through six steps. We
have annotated each step with a circle in Figure 1.

Step 1○ (Upload reference data): First, the user uploads
a reference dataset, whose invariants she is interested to
learn. No tuple within the reference dataset should be non-
conforming, i.e., the reference data should be clean. For our
guided scenario, we upload the tuples with absence of car-
diovascular disease as the reference data.

Step 2○ (Learn data invariants): The user issues request
for learning data invariants. Following the procedure de-
scribed in Section 2.1, ExTuNe learns invariants and reports,
typically within a few seconds, that the learning is done.

Step 3○ (Upload test data): The user uploads the test data
containing potentially non-conforming tuples. She wants to
identify the non-conforming tuples and understand the cause
of non-conformance. For our guided scenario, we use tuples
with presence of cardiovascular disease as test data.

Step 4○ (Top-K non-conforming tuples): The user re-
quests to preview top-K non-conforming tuples from the
test dataset. She chooses the value of K = 10.
Step 5○ (Tuple-wise attribute-responsibility heat

map): ExTuNe shows top-10 most non-conforming tuples,
based on the invariants learned from the reference dataset, in
a table where the left-most column denotes identifier of the
tuple, followed by the degree of non-conformance (violation).
The rest of the table-cells depict a heat map which assigns
darker color on more responsible attributes, and lighter color
on less responsible ones. The heat map visualizes causes of
non-conformance in a tuple-level granularity.
In this dataset, height is in cm and weight is in kg;

cholesterol and glucose mappings are: 1 = normal, 2 =
above normal, 3 = well above normal; ap_hi and ap_lo cor-
respond to the systolic and diastolic blood pressure measure-
ments, whose normal values are 120 and 80, respectively.
For the first tuple, the non-conformance comes mostly

from the abnormally high blood pressures. For the second
tuple, besides abnormally high blood pressures, he also has
above normal glucose and cholesterol levels. For the sixth
tuple, although the blood pressures look normal, she has an
abnormally high weight of 180 kg (397 lbs) which is one of
the prime causes for her non-conformance.

Step 6○ (Aggregated attribute responsibility): The
user issues a request to visualize attribute responsibility
for over-all non-conformance of the test data. ExTuNe
visualizes the responsibility of different attributes for non-
conformance, aggregated over all tuples in the test data: sys-
tolic blood pressure is most responsible for non-conformance,
followed by diastolic blood pressure. This is very meaningful

since abnormal blood pressure is a primary indicator for car-
diovascular disease. This is followed by weight, cholesterol
level, and smoking, three other well-known risk factors.
Demonstration engagement.After our guided demonstra-
tion, participants will be able to plug their own datasets
into ExTuNe. We will also make two additional datasets—
MobilePrices2 (includes attributes such as ram, battery-
power, talk-time, etc.) and HousePrices3 (includes attributes
such as area, number-of-rooms, year-built, etc.)—available,
as we expect most participants to be familiar with these data
domains.
Through the demonstration, we will showcase how Ex-

TuNe can effectively detect non-conforming tuples and ex-
plain the causes of the observed non-conformance. Particu-
larly, we expect that the participants will be able to relate the
degree of responsibility assigned to different attributes to
their real-life experiences (e.g., abnormal blood pressure be-
ing a key cause for cardiovascular disease). The key takeaway
that our demonstration will highlight is that detecting non-
conforming tuples and understanding their causes can sig-
nificantly help users make decisions about (1) when to trust
machine learning models and when not, and (2) how to en-
rich the training data towards building more robust models.
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